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Resumo

Nessa tese foram estudados os estados ligados de duas part́ıculas em uma teoria quân-

tica de campos, utilizando a equação de Bethe-Salpeter com a representação de Nakanishi,

e considerando dois diferentes casos. O primeiro trata-se do estado de dois bósons dis-

tintos ligados por um bóson sem massa, também chamado de modelo de Wick-Cutkosky.

Para resolver esse modelo, desenvolveu-se novos métodos utilizando integrações por partes

na representação de Nakanishi; um desses consiste em transformar uma das integrações

em uma série e outro permite que se obtenha uma inédita equação diferencial no espaço

dos parâmetros da transformada. O segundo problema atacado consiste no estado ligado

de dois férmions, ligados por um bóson massivo. Nele, utilizou-se da chamada projeção na

frente de luz para se obter um kernel cont́ınuo para o operador, visando atacar o problema

numericamente. Entretanto, a projeção na frente de luz de uma amplitude pode gerar

termos singulares, conhecidos como contribuições de ponto final. Em (CARBONELL; KAR-

MANOV, 2010), esses termos singulares foram tratados utilizando-se de regularizadores

e fatores de forma. Em contrapartida, nessa tese os termos singulares foram tratados

analiticamente, escrevendo as integrais da frente de luz em termos de distribuições para

enfim obter os termos singulares que contribuem para a equação de Bethe-Salpeter para

o estado ligado de dois férmions.



Abstract

In this thesis, two particle bound states in quantum field theories were studied using

the Bethe-Salpeter equation with Nakanishi representation, in two di↵erent cases. The

first deal with two distinct bosons bounded by another massless boson, the so called

Wick-Cutkosky model. To solve it, two new methods were developed using integration by

parts in the Nakanishi representation; one of these transforms a integration into a series

and the other obtain a new di↵erential equation in the space of the Nakanishi transform

parameters. The second problem deals with the bound state of two fermions, bounded by

a massive boson. In it, a Light-Front projection was used to obtain a continuous kernel

for the operator in order to solve the problem numerically. However, the Light-Front

projection of an amplitude can give singular terms, known as endpoint contributions.

In (CARBONELL; KARMANOV, 2010), these singular terms were dealt with using regu-

larizators and form factors. However, in this thesis the singular terms were developed

analytically, writing the Light Front integrals as distributions in order to obtain the sin-

gular terms that contribute to the Bethe-Salpeter equation for the two fermion bound

state.
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1 Introduction

1.1 Objective

This thesis aims to develop the framework of the light-front (DIRAC, 1949) projected

Bethe-Salpeter equation (BSE) (BETHE, 1951) in Minkowski space with the Nakanishi

representation. Specifically, this is done through two main fronts: the Wick-Cutkosky

model (WICK, 1954; CUTKOSKY, 1954) and the fermionic massive BSE .

The Wick-Cutkosky is one of the first relativistics bound state models studied, and

was published only 3 years after the Bethe-Salpeter equation. It describes two bosons

bounded by another massless boson in the ladder approximation and has a very simple

equation describing it. Due to this simplicity, it will be the problem chosen to develop new

approaches to solve the scalar BSE, based on the uniqueness of the Nakanishi Perturbative

Integral Representation and integration by parts of the weight function.

The fermionic BSE describes two fermions bounded by a scalar massive particle in

the ladder approximation. This problem is more complex than the scalar one but it

is needed to describe real physical bound states. Followed the steps in (CARBONELL;

KARMANOV, 2010) this system is studied with the Nakanishi representation projected

onto the Light Front. However, this projection often results in singular terms called

endpoint contributions .That article dealt with it these singular contributions using a

form factor and a regularizer, but in this thesis the these singular terms will be calculated

by performing the integrals and dealing with the resulting distributions directly.

1.2 Motivation

The solution of the bound state problem in Minkowski space has been historically

avoided since relativistic propagators have poles and thus are di�cult to deal with nu-

merically. So, usually the problem is attacked using the Wick rotation (WICK, 1954),

which transforms a relativistic quantum field theory (QFT) into an euclidean QFT, whose

propagators are of the form �i
k2
E

+m2

, which is well behaved numerically, since it is bounded
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and smooth. However, the main problem with this method is that it is enough to obtain

the mass of the bound state (DORKIN et al., 2011) but not the dynamical content, such as

form factors (KARMANOV et al., 2008), which depends on the Bethe-Salpeter amplitude

(BSA) itself. Thus new frameworks to solve the BSE in the Minkowski space should be

investigated.

In the sixties, N. Nakanishi developed an parametric integral representation, very sim-

ilar of the type used by Wick, for Feynman Diagrams and scattering amplitudes (NAKAN-

ISHI, 1971)

�(k) =

Z 1

0

d�0
Z 1

0

Y

h

dz0h�(
X

h

z0h � 1)
g(n)(�0, z0)

(�0 �Ph z
0
hsh � i✏)n

, (1.1)

where sh are scalar products of the amplitude external momenta. He analyzed this rep-

resentation and demonstrated important properties such as analicity and uniqueness. Al-

though Nakanishi studied this formula for perturbative purposes, the initial ideia of Wick

was to use it to solve the nonperturbative BS equation. So, although this formula is build

constructively by analysing each Feynman diagram, the final result can be used as an

Ansatz for a nonperturbative amplitude.

In the nineties, Kusaka and Williams (KUSAKA; WILLIAMS, 1995; KUSAKA et al., 1997)

observed that the Nakanishi representation could be used to solve the massive interaction

ladder BS equation in Minkowski space , but the method was still not very practical

for numerical purposes. Thus, in 2006 Karmanov and Carbonell (KARMANOV, 2006)

proposed a new technique based on the application of the Nakanishi representation to the

BS equation and then projecting it onto the Light Front. This resulted in an generalized

integral equation with smooth kernels. Then Frederico, Salmè and Viviani (VIVIANI, 2012)

extended the light-front projected BS equation for scattering states and also developed a

new method based on the uniqueness of the Nakanishi representation (FREDERICO et al.,

2014).

Previously, such framework has been applied to study the massive scalar ladder BSE

in 3+1 (KARMANOV, 2006), ladder + Crossed-Box BSE (IANNONE, 2013) 2+1 dimensions

(PIMENTEL, 2013; PAIVA, 2014), scattering states (VIVIANI, 2012) and the fermionic BSE

in 3+1 dimensions (CARBONELL; KARMANOV, 2010). However, altough scalar 2+1 theo-

ries can help predict qualitative properties of bidimensional materials, the fermionic 2+1

massless bound state in Minkowski space is needed in order to study materials such as

graphene. Thus, this motivated some results here developed, such as new methods to ob-

tain the Wick-Cutkosky model from the 3+1 massless scalar bound state, and correction

terms for the light-front projected fermionic 3+1 BSE. Altough these new models and

methods still can’t investigate graphene properties directly they are the necessary first

steps towards a full solution.
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1.3 Organization

This thesis can be divided in a introductory theory presented in Chapters 2 and 3,

and the results presented in Chapters 4 and 5.

Chapter 2 aims to give a very brief heuristic discussion of the Bethe-Salpeter equation

used to model bound states in quantum field theory. However, for a complete discussion

of the subject one should look at the references. Chapter 3 develops the Nakanishi Pertur-

bative Theoretical Integral Representation (PTIR), for a given Feynman diagram, discuss

its integral by parts results, and defines the light-front (LF) variables used in the thesis.

Chapter 4 discuss two new methods to solve the well known Wick-Cutkosky model: the

first expands the LF integral into a sum using integration by parts, and the second uses

the Nakanishi PTIR uniqueness theorem, without the LF projection, to obtain a partial

di↵erential equation in the Nakanishi parameters. And Chapter 5 calculates the singu-

lar contributions that arise from the end point singularities after the LF projection of a

fermionic BSE. Finally, conclusions and futures directions are discussed.



2 The Bethe-Salpeter Equation

2.1 Introduction

This Chapter intends to briefly explain how to treat a two body bound state in a

quantum field theory, using the Bethe-Salpeter equation, and how it di↵ers from the

non-relativistic hamiltonian treatment. Usually, the study of quantum field theory is

heavily directed to scattering processes, due to its application in particle accelerators and

pedagogical value. So, standard techniques use the perturbative framework, which takes

a given n point green function of the theory and expands it for a weak coupling constant

g near the free theory. That produces results that can be seen as Taylor expansions of

the observables in the bare coupling constant g, and renormalization corrections .

However, this strategy fails to describe bound states, even in non-relativistic theories,

because they appear as poles in the green function, thus are inherently non-analytic.

Therefore, to analyze them one should use nonperturbative methods, such as integral

equations or the euclidean path integral formulation on the lattice. The lattice approach

is the standard method to obtain the masses of complex bound states such as the proton

but lacks the ability to obtain dynamical information due to its euclidean nature. Thus,

integral methods in Minkowski space based on Bethe-Salpeter and/or Schwinger-Dyson

equations are in demand to fully solve the bound state problem.

2.2 Relativistic and non-relativistic bound states

Altough QFT courses usually focuses on the scattering processes, the QM courses

spend a good amount of time studying the single particle bound state problem. One

reason one may argue is that non-relativistic bound states are commonly treated using

the time independent hamiltonian framework

H | i = E | i , (2.1)
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which ammounts to obtain the spectrum of the hamiltonian H, a partial di↵erential oper-

ator. Fundamentally, we are able to use this strategy for a nonrelativistic system because

at this scale interactions can be treated as an instantaneous action at distance. Thus, it

is possible to define vector states made of hyperplanes of the wave-function  , restricted

to the same time t0, and the Hamiltonian can be seen as a Lie Algebra which evolves the

state vector from the time t0 to t0+dt. Additionally, since the interaction is instantaneous

there is no need for interacting fields.

In QFT however, every interaction is local in time and space, and cannot travel faster

than the speed of light. So, the strategy of taking slices of t = t0 hyperplanes as state

vectors are not so e�cient in a relativistic environment, because a time evolution of dt

cannot obtain information form the entire hyperplane, at arbitrary distances. Of course

is still possible to use a Hamiltonian framework in QFT if one expands the matter and

interaction fields in the Fock space, but is not a practical or “natural” way to compute

relativistic observables. Therefore, in a QFT it is better to study the field correlations

between n given spacetime points (ti, xi) , in spite of two hyperplanes  (t1) and  (t2),

which are called the n-point green functions of the theory. Thus, almost every calculation

in QFT is made using derived objects from the green functions in momentum space, called

Feynman propagators.

2.3 The scalar Bethe-Salpeter equation

The di↵erential equation (2.1) can be inverted and transformed into an integral equa-

tion. First, separate the free hamiltonian and the potential

H = H0 + V. (2.2)

Then one can rewrite (2.1) and invert it

H | i = E | i (2.3)

(H0 + V ) | i = E | i (2.4)

(H0 � E) | i = �V | i (2.5)

| i = � 1

(H0 � E)
V | i , (2.6)

with 1
(H

0

�E) as an integral operator. Therefore, as shown by (2.6), it is possible to treat

a bound state with integral equations even in nonrelativistic systems; it is just not as

popular as the di↵erential approach. In a scalar quantum field theory, it is also possible
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to treat bound states as integral equations, with the Bethe-Salpeter equation

�(k, p) =
1

(p2 � k)2 �m2

1

(p2 + k)2 �m2
ig2
Z

d4k0

(2⇡)4
�(k0, p)

(k � k0)2 � µ2 + i✏
, (2.7)

where g is the coupling constant, m the matter particle mass and µ the interaction particle

mass. It is an integral equation that uses as building blocks relativistic propagators of the

form

i

k2 �m2
(2.8)



3 The Nakanishi Perturbative

Integral Representation and the

Light-Front Projection

3.1 Introduction

This Chapter introduces an integral representation formula for quantum field theory

amplitudes. It was extensively studied in the sixties by N. Nakanishi, whose goal was to

provide a unified way to write any scattering amplitude. The idea was to generalize the

Feynman parametrization method, but using a weight function in the numerator, and the

same denominator for a given set of external particles. Therefore, he was able to sum all

the Feynman diagrams for a given process, which are perturbative objects, and obtain the

a formula for the full scattering amplitude, which is nonperturbative. However, it must

be noted that this type of analytical formula with a weight function was already use by

Wick in his seminal paper, in order to obtain the ground state for the Wick-Cutkosky

model. Therefore, it is only natural to try to use the Nakanishi perturbative-theory

integral representation (PTIR) as an Ansatz for the nonperturbative BSE.

The last section also gives a brief introduction to the Light-Front framework, which is

used as an intermediate step in the solution of the BSE, in order to get smooth integrals

and avoid poles in the denominators.

3.2 Feynman parametric integral representation

Let G be a connected Feynman diagram with N external momenta pi, i 2 {1, · · · , N},
n internal propagators with momenta lj and masses mj, j 2 {, · · · , n} and k loops. Note

that the pi must satisfy the four-momentum conservation
PN

i=1 pi = 0. Each internal
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momentum can be written as external momenta and loop momenta of the form

lj =
kX

r=1

bjrqr +
NX

i=1

cjipi, (3.1)

where qr is the loop momentum associated with the loop number r, and bjr, cji 2 {�1, 0, 1}.
Within this framework, it is possible to write the integral fG(pi) associated with a given

Feynman diagram G, aside from multiplicative factors, as

fG(pi) =
kY

r=1

Z
d4qr

1

(l21 �m2
1 + i✏) · · · (l2n �m2

n + i✏)
, (3.2)

Where factors such as the coupling constants for each vertex were ignored. To calculate

(3.2), it is useful to use the Feynman parametrization,

1

A1 · · ·An

=
nY

i=1

Z 1

0

d↵i
�(
P
↵i � 1)

(
Pn

i=1 ↵iAi)n
(3.3)

in order to join the denominators as

fG(pi) =
kY

r=1

Z
d4qr

nY

i=1

Z 1

0

d↵i
�(
P
↵i � 1)

(
Pn

j=1 ↵j(l2j �m2
j) + i✏)n

. (3.4)

To evaluate the integral in d4qr, the first step is to expand the l2j as

l2j =
X

rr0

bjrbjr0qrq
0
r + 2

X

r,i

bjrcjiqrpi +
X

i,i0

cjicji0pipi0 . (3.5)

However, the crossed terms qrq0r are undesirable, because they make it harder to per-

form the d4qi integration. So, it is useful to see l2j as a quadratic form in the vector {qr}
and diagonalize or triangularize it, so that it is possible to write

X

j

↵jl
2
j =

X

r

drQ
2
r +

X

i,i0

eii0pipi0 , (3.6)

where Qr = qr +
P

i>r �riqi +
PN

j=1 �rjpj are obtained completing the squares for each qi

such that there are no more crossed terms, and eii0 is a function of the ↵j. Thus, it is

possible to write the Feynman integral, shifting the integration variable from qr to Qr as

fG(pi) =
kY

r=1

Z
d4Qr

nY

i=1

Z 1

0

d↵i
�(
P
↵i � 1)

((
Pk

r=1 drQ
2
r �

Pn
j=1 ↵jm2

j) +
P

ii0 eii0pip
0
i + i✏)n

. (3.7)
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Now, it is possible to perform the d4qr integral, using the formula

Z
d4Qr

1

(drQ2
r + Ar + i✏)n

=
1

dnr

Z
d4Qr

1

(Q2
r +

A
r

+i✏
d
r

)n

=
1

dnr
i⇡2 1

n� 1

1

n� 2

1

(Ar

+i✏
d
r

)n�2

= i⇡2 1

n� 1

1

n� 2

1

d2r

1

(Ar + i✏)n�2
. (3.8)

So, performing all the k d4Qr integrals, we are left with

fG(pi) =
(i⇡)k(n� 2k � 1)!

(n� 1)!

nY

i=1

Z 1

0

d↵i
�(
P
↵i � 1)

U2(
P

ii0 eii0pip
0
i �
Pn

i=1 ↵im2
j + i✏)n�2k

, (3.9)

where U = d1 · · · dk. This formula already hints at the general structure of a feynman

integral: an integral representation where the denominator of the integrand is a linear

combination of the scalar products of external momenta and particles masses. However, in

this representation the eii0 coe�cients of the scalar products, are only indirect functions of

the integration variables ↵i and are unique to each diagram. Moreover, the exponent n�2k

depends on the number of loops of a given Feynman diagram. In order to overcome this

issues and facilitate the procedure of summing Feynman diagrams for a given amplitude,

Nakanishi intended to build a framework where each integral would be given in the same

form, with the same exponent and the same denominator, and identify each of them using

a weight function in the numerator.

3.3 O↵-shell integral representation

Now that the Feynman parametric representation was obtained, it should be used to

derive the Nakanishi o↵-shell integral representation. First, one need to refer to Nakan-

ishi’s work and note that the denominator of (3.9) can be written as, in the modified

cut-set representation

X

ii0

eii0pip
0
i �

nX

i=1

↵im
2
j =

X

h

⌘hsh �
nX

j=1

↵jm
2
j , (3.10)

where sh are the so called invariant squares, and are terms of the form sh = (
P

j pj)
2, in

order to avoid crossed terms such as pipi0 with i 6= i0. It is important to represent the

denominator as a linear combination of sh because it makes all the ⌘h > 0. In order to
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obtain the Nakanishi representation, one first need to normalize the ⌘h as ⌘
hP
h

⌘
h

:

fG(pi) =
(i⇡)k(n� 2k � 1)!

(n� 1)!

nY

i=1

Z 1

0

d↵i
�(
P
↵i � 1)

U2(
P

j ⌘j)
n�2k(

P
h

⌘
hP
j

⌘
j

sh �
P

n

i=1

↵
i

m2

jP
j

⌘
j

+ i✏)n�2k
.

(3.11)

And now it is possible to define new integration variables � =
P

n

i=1

↵
i

m2

jP
j

⌘
j

2 [0,1) ,

zh = ⌘
hP
j

⌘
j

2 [0, 1] with
P

h zh = 1. To do it, we multiply the integrand of (3.11) by the

identity relation

1 =
Y

h

Z 1

0

dzh�

 
zh � ⌘hP

j ⌘j

!Z 1

0�
d��

 
��

P
l ↵lm

2
lP

j ⌘j

!
, (3.12)

where the 0� integration limit was used just in case there is a term proportional to �(�)

or another distribution with support on � = 0, for instance if all ml = 0. Finally, the Eq.

(3.12) is inserted in the integrand of (3.11)

fG(pi) =
(i⇡)k(n� 2k � 1)!

(n� 1)!

nY

i=1

Z 1

0

d↵i
�(
P
↵i � 1)

U2(
P

j ⌘j)
n�2k(

P
h

⌘
hP
j

⌘
j

sh �
P

n

i=1

↵
i

m2

jP
j

⌘
j

+ i✏)n�2k

⇥
Y

h

Z 1

0

dzh�

 
zh � ⌘hP

j ⌘j

!Z 1

0�
d��

 
��

P
l ↵lm

2
lP

j ⌘j

!

=
Y

h

Z 1

0

dzh�(
X

h

zh � 1)

Z 1

0�
d�

�
(n�2k)
G (�, zh)

(
P

h zhsh � �+ i✏)n�2k
, (3.13)

with

�(
X

h

zh � 1)�(n�2k)
G (�, zh)

=
(i⇡)k(n� 2k � 1)!

(n� 1)!

nY

i=1

Z
d↵i

�(
P
↵i � 1)(

P
j ⌘j)

n�2k

U2(
P

j ⌘j)
n�2k

Y

h

�

 
zh � ⌘hP

j ⌘j

!
�

 
��

P
l ↵lm

2
lP

j ⌘j

!
,

(3.14)

where �(n�2k)
G (�, zh) is the so called o↵-shell weight function.

First, it is important to know that although called a function, it is generally a distri-

bution, which is expected after so many delta functions. Also, certain highly symmetrical

Feynman diagrams, such as the box diagram, can make some scalar products in the de-

nominator lineary dependent and thus may be necessary a delta function in the numerator
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asserting this dependency relation. Second, Nakanishi’s original idea was to sum all the

diagram to obtain a scattering amplitude, so all of them must be made to exponent one

in the denominator, using sucessive integrations by parts, such as

fG(pi) =
Y

h

Z 1

0

dzh�(
X

h

zh � 1)

Z 1

0�
d�

�
(n�2k)
G (�, zh)

(
P

h zhsh � �+ i✏)n�2k

=
Y

h

Z 1

0

dzh�(
X

h

zh � 1)

Z 1

0�
d�

�
(1)
G (�, zh)

(
P

h zhsh � �+ i✏)
, (3.15)

where

�
(1)
G (�, zh) = (�1)n�2k�1 @

n�2k�1

@�n�2k�1
�
(n�2k)
G (�, zh). (3.16)

The type of quantum amplitude explored in this thesis is a vertex amplitude, i.e., one

with three external momenta p1, p2, p3. Let f3(pi) be this amplitude, it can be written as

f3(pi) =
Y

h

Z 1

0

dzh�(
X

h

zh � 1)

Z 1

0�
d�

�
(1)
3 (�, zh)

(
P

h zhp
2
h � �+ i✏)

. (3.17)

3.4 Half on-shell integral representation

In order to use the vertex o↵-shell representation for the BSA, we must put one of the

momenta on-shell, since the bound state P is on-shell. First, since using the momentum

conservation one may write :

p1 =
⇣p
2
+ k
⌘

(3.18)

p2 =
⇣p
2
� k
⌘

(3.19)

p3 = � (p) (3.20)

Which satifies
P

h ph = 0 implicitly. Substituting (3.20) in (3.17), and using p2 = M2,

(3.17) can be rewritten as

f3(pi) =
Y

h

Z 1

0

dzh�(
X

h

zh � 1)

Z 1

0�
d�

�
(1)
3 (�, zh)/(z1 + z2)

(k2 + p · k (z
1

�z
2

)
(z

1

+z
2

) +
M

2

4

(z
1

+z
2

+4z
3

)��

(z
1

+z
2

) + i✏)
. (3.21)
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Note that the term
M

2

4

(z
1

+z
2

+4z
3

)��

(z
1

+z
2

) does not depends on any external momenta, so one

should transform it in a new parameter ��0 for the representation. Also, the term (z
1

�z
2

)
(z

1

+z
2

)

multiplying p · k will be changed to z0 2 [�1, 1]. Inserting in (3.21) the identity relations

1 =

Z
d�0�(�0 +

 
M2

4 (z1 + z2 + 4z3)� �

(z1 + z2)

!
), (3.22)

and

1 =

Z 1

�1

dz0�(z0 �
✓
z1 � z2
z1 + z2

◆
), (3.23)

f3 can be written as

f3(p, k) =

Z
d�0
Z 1

�1

dz0
g(1)(�0, z0)

k2 + z0p · k � �0 + i✏
, (3.24)

where

g(1)(�0, z0) =
Y

h

Z 1

0

dzh�(
X

h

zh � 1)

Z 1

0�
d�

⇥ �
(1)
3 (�, zh)

(z1 + z2)
�(z0 �

✓
z1 � z2
z1 + z2

◆
)�(�0 +

 
M2

4 (z1 + z2 + 4z3)� �

(z1 + z2)

!
). (3.25)

Here the integral in �0 did not have any boundary in order to avoid discuss the com-

plicated problem of the Nakanishi representation support. However, if one knows that the

support is, for instance �0 > ��0 ! �0 + �0 > 0, Eq. (3.24) can be written as

f3(p, k) =

Z 1

0

d�0
Z 1

�1

dz0
g(1)(�0, z0)

k2 + z0p · k � �0 � �0 + i✏
. (3.26)

Finally, a very important mathematical property of the PTIR is the uniqueness of their

weight function (NAKANISHI, 1971). Specifically, if two quantum amplitudes are equal,

then its weight functions must also be equal

Z 1

0

d�0
Z 1

�1

dz0
g0(1)(�0, z0)

k2 + z0p · k � �0 � �0 + i✏
=

Z 1

0

d�0
Z 1

�1

dz0
g(1)(�0, z0)

k2 + z0p · k � �0 � �0 + i✏

) g0(1)(�0, z0) = g(1)(�0, z0). (3.27)

In his book, Nakanishi aimed to have the PTIR with exponent n = 1 always, such that

the uniqueness theorem was proven for n = 1 only. However, with the BSE it is useful
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to be able to choose what exponent n in the PTIR better fits a given problem. So, note

that the uniqueness property can be extended to di↵erent orders n because the weight

functions are related by integration by parts

Z 1

0

d�0
Z 1

�1

dz0
g0(1)(�0, z0)

k2 + z0p · k � �0 � �0 + i✏
=

Z 1

0

d�0
Z 1

�1

dz0
g(1)(�0, z0)

k2 + z0p · k � �0 � �0 + i✏
Z 1

0

d�0
Z 1

�1

dz0
g0(n)(�0, z0)

(k2 + z0p · k � �0 � �0 + i✏)n
=

Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(k2 + z0p · k � �0 � �0 + i✏)n

) g0(n)(�0, z0) = g(n)(�0, z0). (3.28)

Naturally, when one applies a LF projection on both sides of (3.28), its uniqueness

property is still valid. Thus, it still can be used in the framework of the light-front

projected Nakanishi representation. This theorem is an important tool to solve problems

by removing completely the dependency of the equation towards the momentum variables

k and p; and will be used in this thesis similarly to how it was already used in (FREDERICO

et al., 2014).

3.5 Integration-by-parts relations

The three leg half-o↵-shell amplitude BS amplitude can be written as

�(k, p) =

Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)n
, (3.29)

where n is a variable to be chosen and g(n)(�0, z0) is the corresponding weight-function. A

natural question that appears is how to relate g(n)(�0, z0) with g(m)(�0, z0) for given n and

m. The way to investigative these relations is to explore the integration by parts in the

parameters �0 and z0.

3.5.1 Integration by parts in the �0 parameter

To perform the integration by parts, one can choose to di↵erentiate the weight-function

and integrate the denominator or the opposite. We advocate here to integrate the weight-

function and di↵erentiate the denominator, because in this way we can control better the

boundary term in the integration by parts and isolate the relationship between g(n)(�0, z0)

and g(n+1)(�0, z0). More details follows below:
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Z 1

�1

dz0
Z 1

0

d�0
g(n)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)n

+ n

Z 1

�1

dz0
Z 1

0

d�0

R �0

�
0

d�00g(n)(�00, z0)

(k2 + p · kz0 � �0 � 2 + i✏)n+1

=

 Z 1

�1

dz0
1

(k2 + p · kz0 � �0 � 2 + i✏)n

Z �0

�
0

d�00g(n)(�00, z0)

!����
�0=1

�0=0

(3.30)

The �0 is a free parameter to define the primitive of g(n)(�0, z0) and we wish to use this

degree of freedom to disappear with the boundary term in the integration by parts. We

claim that setting �0 = 0 is the correct value. To verify, let’s substitute it in (3.30):

 Z 1

�1

dz0
1

(k2 + p · kz0 � �0 � 2 + i✏)n

Z �0

0

d�00g(n)(�00, z0)

!����
�0=1

�0=0

=

 Z 1

�1

dz0
1

(k2 + p · kz0 � �0 � 2 + i✏)n

Z �0

0

d�00g(n)(�00, z0)

!����
�0=1

(3.31)

In fact, any �0 < 0 would work because the support of g(n)(�0, z0) is �0 � 0, but �0 = 0 is

enough. This last term will be zero if the integral
R �0

0 d�00g(n)(�00, z0) grows slower than the

decay of the denominator 1
(�0+2�k2�p·kz0�i✏)n . Explicitly, this is true if g

(n)(�0, z0) = O(�0n).

Using induction, it is easy to see that we only need that g(1)(�0, z0) = O(�0). This is

reasonable to expect because if g(1) increases faster than �0 we would have an amplitude

which increases at least logarithmically in the momenta, and that wouldn’t be acceptable

physically. Finally, we remove the boundary term and obtain

Z 1

�1

dz0
Z 1

0

d�0
g(n)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)n
= �n

Z 1

�1

dz0
Z 1

0

d�0
R �0

0 d�00g(n)(�00, z0)

(k2 + p · kz0 � �0 � 2 + i✏)n+1

g(n+1)(�0, z0) = �n

Z �0

0

d�00g(n)(�00, z0),

@

@�0
g(n+1)(�0, z0) = �n(g(n)(�0, z0)). (3.32)

This shows us that g(n) is smoother as n grows since it is given by integrals. Oth-

erwise, trying to make n smaller can also make it very singular, sometimes even an dis-

tribution when you need to di↵erentiate a discontinuous function. For instance, if we

take g(2)(�0, z0) = ⇥(�0)f(z0) we would need g(1)(�0, z0) = �(�0)f(z0). This shows that
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the original strategy pursued by Nakanishi, which consist in transforming every Feynman

diagram to weight function n = 1 may result in a very singular weight-function for the

scattering amplitude. So, we can conclude that in for each problem we should select n

that facilitates the solution.

3.5.2 Integration by parts in the z0 parameter

It is also possible to integrate by parts in the z0 parameter. When we did that with

the �0, the useful e↵ect was to change the order of the denominator. However, since z0

multiplies p · k, this term will be put in evidence when we di↵erentiate the denominator

by z0, and this can be useful in di↵erent types of equations. Moreover, the main method

will be the opposite: di↵erentiate the weight-function while integrating the denominator.

Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

+
1

(p · k)(n� 1)

Z 1

0

d�0
Z 1

�1

dz0
@z0g

(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n�1

=
1

(p · k)(n� 1)

✓Z 1

0

d�0
1

(�0 + 2 � k2 � p · kz0 � i✏)n�1
g(n)(�0, z0)

◆ ����
z0=1

z0=�1

(3.33)

If g(n)(�0, 1) = g(n)(�0,�1) = 0 then the boundary term disappears. However if that is

not the case,we can also move this term to under the integral sign in z’ with � functions

and rewrite:

Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

=
1

(p · k)(n� 1)

Z 1

0

d�0
Z 1

�1

dz0
�@z0g(n)(�0, z0) + g(n)(�0, z0)(�(z0 � 1)� �(z0 + 1))

(�0 + 2 � k2 � p · kz0 � i✏)n�1
.

(3.34)

Now, multiplying both sides by p · k we have
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(p · k)
Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

=
1

(n� 1)

Z 1

0

d�0
Z 1

�1

dz0
�@z0g(n)(�0, z0) + g(n)(�0, z0)(�(z0 � 1)� �(z0 + 1))

(�0 + 2 � k2 � p · kz0 � i✏)n�1

=

Z 1

0

d�0
Z 1

�1

dz0
R �0

0 d�00(�@z0g(n)(�00, z0) + g(n)(�00, z0)(�(z0 � 1)� �(z0 + 1)))

(�0 + 2 � k2 � p · kz0 � i✏)n

= n

Z 1

0

d�0
Z 1

�1

dz0
�@z0g(n+1)(�0, z0) + g(n+1)(�0, z0)(�(z0 � 1)� �(z0 + 1))

(�0 + 2 � k2 � p · kz0 � i✏)n
. (3.35)

We now understand what we gain by studying the integration by parts in z0: we learn

how to deal with a multiplication by p · k outside the sign of the integral. Now, whenever

we have an p · k multiplying a Nakanishi PITR, we know that it acts on the weight-

function as g(n)(�0, z0) ! R �0

0 d�00(�@z0g(n)(�00, z0)+ g(n)(�00, z0)(�(z0� 1)� �(z0+1))). This

will be useful to deal with the BS equation directly with the uniqueness, without using

the light-front projection.

3.5.3 Multiplication by k2

Let’s use what we learned in the previous sections to deal with the problem of multi-

plying by k2 a Nakanishi PITR

k2

Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n
. (3.36)

To solve it, we must first rewrite k2 = �(�0 + 2 � k2 � p · kz0) + �0 + 2 � z0p · k,
substitute it in (3.36), and use the previous results on multiplication by p · k
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k2

Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

=

Z 1

0

d�0
Z 1

�1

dz0
✓ �1

(�0 + 2 � k2 � p · kz0 � i✏)n�1
+

�0 + 2 � z0p · k
(�0 + 2 � k2 � p · kz0 � i✏)n

◆
g(n)(�0, z0)

=

Z 1

0

d�0
Z 1

�1

dz0(
�(n� 1)

R �0

0 d�00g(n)(�00, z0) + (�0 + 2)g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

+
�z0p · k(g(n)(�0, z0))

(�0 + 2 � k2 � p · kz0 � i✏)n
)

=

Z 1

0

d�0
Z 1

�1

dz0(
�(n� 1)

R �0

0 d�00g(n)(�00, z0) + (�0 + 2)g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

+
(@z0 � �(z � 1) + �(z + 1))

R �0

0 d�00(z0g(n)(�00, z0))

(�0 + 2 � k2 � p · kz0 � i✏)n
). (3.37)

Finally, to simplify the notation let us define the operator
R �0

that acts on a weight-

function as (
R �0

)gn(�0, z0) =
R �0

0 d�00gn(�00, z0). Now, we can write the final answer

k2

Z 1

0

d�0
Z 1

�1

dz0
g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

=

Z 1

0

d�0
Z 1

�1

dz0

 
(�0 + 2 � ((n� 1) + @z0 + �(z � 1)� �(z + 1))z0

R �0
)g(n)(�0, z0)

(�0 + 2 � k2 � p · kz0 � i✏)n

!
.

(3.38)

So, we discover that multiplying by k2 outside the integral sign is equivalent to act on

the weight-function with the operator (�0+2� ((n� 1)+ @z0 + �(z� 1)� �(z+1))z0
R �0

)

under the integral sign.

3.6 Light Front Variables

The Nakanishi PTIR gives a compact way to represent an amplitude, however there

still is the problem of how to deal numerically with the poles in the denominator. One

possible approach described in this thesis is to extract the denominator from both sides

of the equation using the uniqueness theorem, and arrive at an equation with only the

Nakanishi variables �0 and z0. Another strategy is to use the light-front projection, i.e., the

integral
R
dk�, because it eliminates the pole, arriving at a strictly positive denominator.

The Light-Front framework was introduced by Dirac and consists in a new set of
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coordinates to express four-vectors. For instance, the momentum coordinates are

k� = k0 � k3, (3.39)

k+ = k0 + k3, (3.40)

k? = (k1, k2). (3.41)

And after the
R
dk� is performed, we are left only with k+ and k?. Moreover, since

they always appear only indirectly as scalar products, let us calculate those with LF

variables, in the bound state center of mass frame

k2 = k�k+ � k2
?, (3.42)

p · k =
M

2

�
k� + k+

�
. (3.43)

In order to make the final result algebraically simpler, we define the new set of variables

� 2 [0,1),z 2 [�1, 1] such that

k+ = �z
M

2
, (3.44)

k2
? = �, (3.45)

which enable us to write the scalar products as

k2 =

✓
�z

M

2

◆
k� � �, (3.46)

p · k =
M

2

�
k��� z

M2

4
. (3.47)

And with these new variables we can demonstrate explicitly the e↵ect of the LF pro-

jection on the Nakanishi PTIR

Z
dk�

Z
d�0
Z 1

�1

dz0
g
(4)
i (�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)4

= � 2⇡i

3M

Z
d�0

g
(4)
i (�0, z)

(� + �0 + 2 + M2

4 z2)3
. (3.48)
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As we can see, the LF projection transforms a denominator with poles to one strictly

positive. So, now it is possible to tackle the BS integral equation with ordinary methods,

such as basis expansion and numerical quadrature.



4 Wick-Cutkosky Model Revisited

4.1 Introduction

The Bethe-Salpeter (BS) equation was proposed to treat the problem of the bound

state in a relativistic framework. However, since its kernel has poles, the numerical so-

lution can not be obtained using standard numerical algorithms for integral equations

such as quadrature methods used for euclidean amplitudes. In order to solve this di�-

culty, in 1954 Wick and Cutkosky published articles proposing new methods (WICK, 1954;

CUTKOSKY, 1954) . In particular, the Wick rotation avoids the poles and, since then, this

has been the canonical way to solve the BS equation. Nevertheless, Wick also proposed

the strategy of using a particular type of integral representation for the BS amplitude for

a massless interaction, and using a Dirac delta ansatz for his separable weight function

he was able to obtain a simpler equation for the massless case. Moreover, Cutkosky ex-

tended Wick’s work to the full spectrum of the massless ladder interaction case containing

all possible angular momentum values. This model has been known as the Wick-Cutkosky

model, specially important as a toy model since it gives a simple integral equation on only

one parameter.

In this chapter we present new methods to solve this model using the Nakanishi PTIR.

Firstly, a new strategy is presented based on transforming the �0 integral into a sum, using

integration by parts, which was published in (PIMENTEL; PAULA, 2016). Secondly, two

new approaches are developed using the uniqueness theorem of the Nakanishi PTIR and

integration by parts, which gives both an integral and a di↵erential equation for the full

s-wave spectrum, purely in the space of the Nakanishi parameters �0 and z0.
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4.2 Wick-Cutkosky Model with the Nakanishi Rep-

resentation

The starting point is the scalar BS equation with a ladder massless interaction, given

by

�(k, p) =
1

m2 � (p2 � k)2
1

m2 � (p2 + k)2
ig2
Z

d4k0

(2⇡)4
�(k0, p)

(k � k0)2 + i✏
, (4.1)

where g is the coupling constant, p is the total momentum of the bound state and k is

the relative momentum.

The s-wave BS amplitude �(k, p) can be written as a three leg Nakanishi representation

with one momentum on-shell (p) and two o↵-shell (p2 � k and p
2 + k),

�(k, p) =
�i

4⇡

Z 1

0

d�0
Z 1

�1

dz0
g(�0, z0)

(�0 + 2 � k2 � p.kz0 � i✏)3
. (4.2)

Note that the symmetry �(k0,~k, p) = �(�k0,~k, p), such as for an s-wave, is translated

as g(�0, z0) = g(�0,�z0) for the weight function in this representation. Substituting this

representation in the previous BS equation and projecting the equation in the light-front

by integrating in k� we obtain from (KARMANOV, 2006)

Z 1

0

d�0
g(�0, z)

(�0 + � + z2m2 + (1� z2)2)2
=

Z 1

0

d�0
Z 1

�1

dz0 V (�, z; �0, z0)g(�0, z0). (4.3)

The Kernel of the integral equation is

V (�, z; �0, z0) =
↵m2

2⇡

1

(� + z2m2 + (1� z2)2)

1

(�0 + z02m2 + (1� z02)2)

⇥
 

✓(z � z0)�
� + �0 1�z

1�z0 + z2m2 + (1� z2)2
� 1� z

1� z0
+

✓(z0 � z)�
� + �0 1+z

1+z0 + z2m2 + (1� z2)2
� 1 + z

1 + z0

!
,

(4.4)

where we defined ↵ = g2/4⇡. The Bethe-Salpeter equation can be rewritten in a suitable

way as

Z 1

0

d�0
g(�0, z)

(�0 + � + z2m2 + (1� z2)2)2
=
↵m2

2⇡

1

d0(z)

Z 1

�1

dz0 [!(z, z0)✓(z � z0) + !(�z,�z0)✓(z0 � z)] ,

(4.5)
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where we introduced the auxiliary functions

!(z, z0) =

Z 1

0

d�0
g(�0, z0)

(�0 + a(z0))(�0 + c(z, z0))
; d0(z) = � + z2m2 + (1� z2)2;

a(z0) = z02m2 + (1� z02)2; c(z, z0) =
1� z0

1� z
d0(z). (4.6)

Now, we intend to transform the integration in �0 into a sum, using integration by

parts. To do that, we first define the sequence G(n) (�0, z) as

G(0)(�0, z) = g(�0, z); G(n+1)(�0, z) = �
Z 1

�0
d�00 G(n)(�00, z); (4.7)

G(n)(�0, z) =
@

@�0
G(n+1)(�0, z). (4.8)

Please note that the index n in G(n)(�0, z) is only used to index the sequence and

is unrelated to the n used to denote the order of the weight-function g(n)(�0, z0) in the

previous chapter.

The strategy to be developed here is to expand de d�0 integral as a sum. So, we

perform an integration by parts in �0 in the LHS of eq. (4.3)

Z 1

0

d�0
g(�0, z)

(�0 + � + z2m2 + (1� z2)2)2
=

Z 1

0

d�0
g(�0, z)

(�0 + d0(z))
2 (4.9)

=

Z 1

0

d�0
✓
@

@�0
G(1)(�0, z)

◆
1

(�0 + d0(z))
2

= G(1)(0, z)
1

d0(z)2
(4.10)

�
Z 1

0

d�0 G(1)(�0, z)
@

@�0

✓
1

(�0 + d0(z))
2

◆
.

(4.11)

Each integration by parts generates a new term for the sum. In general, the relation-

ship that generates the n-th term of the sum is

Z 1

0

d�0 G(n)(�0, z)
@(n)

@�0(n)

✓
1

(�0 + d0(z))
2

◆
=

Z 1

0

d�0
✓
@

@�0
G(n+1)(�0, z)

◆
@(n)

@�0(n)
1

(�0 + d0(z))
2

=

✓
G(n+1)(�0, z)

@(n)

@�0(n)

✓
1

(�0 + d0(z))
2

◆◆ ����
1

0

�
Z 1

0

d�0 G(n+1)(�0, z)
@(n+1)

@�0(n+1)

✓
1

(�0 + d0(z))
2

◆
.

(4.12)

Thus, after performing n integrations by parts we have
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Z 1

0

d�0
g(�0, z)

(�0 + � + z2m2 + (1� z2)2)2
=

=
nX

i=1

(�1)i�1

✓
G(i)(�0, z)

@(i�1)

@�0(i�1)

✓
1

(�0 + d0(z))
2

◆◆ ����
1

0

(4.13)

+ (�1)n
Z 1

0

d�0 G(n)(�0, z)
@(n)

@�0(n)

✓
1

(�0 + d0(z))
2

◆
.

(4.14)

The remaining term in the limit of large n vanishes and each term of the sum is

proportional to G(i)(0, z). So, we define this term as a sequence of functions in the

variable z

bi(z) = G(i)(0, z). (4.15)

Finally, in the limit of n ! 1

Z 1

0

d�0
g(�0, z)

(�0 + � + z2m2 + (1� z2)2)2
=

1X

i=1

i!
bi(z)

d0(z)i+1
,

(4.16)

which eliminates the d�0 integral and transforms the LHS of (4.3) into a sum. We now

intend to do the same for the RHS:
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Z 1

0

d�0
g(�0, z0)

(�0 + a(z0))(�0 + c(z))

=
1X

j=1

(�1)j�1

✓
G(j)(�0, z0)

@(j�1)

@�0(j�1)

✓
1

(�0 + a(z0)) (�0 + c(z, z0))

◆◆ ����
1

0

=
1X

j=1

(�1)j�1bj(z
0)

j�1X

n=0

✓
j � 1

n

◆
@(j�n�1)

@�0(j�n�1)

✓
1

�0 + a(z0)

◆
@(n)

@�0(n)

✓
1

�0 + c(z, z0)

◆

=
1X

j=1

bj(z
0)

j�1X

n=0

(j � 1)!

n!(j � n� 1)!

(j � n� 1)!

a(z0)j�n

n!

c(z, z0)n+1

=
1X

j=1

bj(z
0)

j�1X

n=0

(j � 1)!

a(z0)j�nc(z, z0)n+1

=
1X

i=1

1

c(z)i

1X

j=i

(j � 1)!bj(z0)

a(z0)j�i+1

=
1X

i=1

✓
1� z

(1� z0)d0(z)

◆i 1X

j=i

(j � 1)!bj(z0)

a(z0)j�i+1
. (4.17)

Collecting the terms, the BS equation for the Wick-Cutkosky model can be expressed

as

1X

i=1

i!
bi(z)

d0(z)i+1
=

↵m2

2⇡

1

d0(z)

Z 1

�1

dz0

 1X

i=1

1� z

(1� z0)d0(z)

!i 1X

j=i

(j � 1)!bj(z0)

a(z0)j�i+1
✓(z � z0)

+ z ! �z and z0 ! �z0. (4.18)

Note that for � ! 1 ) d0 ! 1 and therefore the small i terms dominates the series.

Then we can match the 1
di
0

terms of the series and we have, since a(z) and bi(z) are even:

bi(z) =
↵m2

2⇡

Z 1

�1

dz0
1

i!

 ✓
1� z

1� z0

◆i

✓(z � z0) +

✓
1 + z

1 + z0

◆i

✓(z0 � z)

! 1X

j=i

(j � 1)!bj(z0)

a(z0)j�i+1
.

(4.19)

To solve the eigenequation we search for solutions where bi(z) = 0 if i > imax for some

imax. Also, since the resulting matrix is triangular by blocks, the eigenvalues are solely

determined by the i = j = imax equations in the diagonal. Therefore, they determined by

solving the equations

bi(z) =
↵m2

2⇡

Z 1

�1

dz0
1

i

 ✓
1� z

1� z0

◆i

✓(z � z0) +

✓
1 + z

1 + z0

◆i

✓(z0 � z)

!
bi(z0)

a(z0)
, (4.20)
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which is exactly the Wick-Cutkosky equation originally obtained. Moreover, to recon-

struct the eigenfunction one needs the full set of equations for i  imax.

Previously it was used the Ansatz g(�0, z0) = �(�0)f(z0) (KARMANOV, 2006; WICK,

1954), which is equivalent to set bi(z0) = 0 for i > 1 in the present formalism. Therefore,

in order to extend this idea for the full s-wave spectrum, and be able to reconstruct

g(�0, z0) from bi(z0) we propose the following Ansatz

g(�0, z0) =
i
maxX

i=1

bi(z
0)�(i�1)(�0), (4.21)

where the �(i�1)(�0) = @i�1

@�0i�1

�(�0).

This distribution has support only in �0 = 0 and reproduces equations (4.16) and

(4.17), because integrating a derivate of a delta gives the derivative of the integrand.

Therefore, this reproduces the same e↵ect as the derivatives performed in the integration

by parts. So, given the uniqueness theorem this must be the solution for the Nakan-

ishi weight function. Also, note that the support of the distribution is the same as the

boundary of the integral (�0 = 0), which is ill-defined. Therefore, if one wants to be

mathematically precise, the �0 integral should start at �✏ for any ✏ > 0.

Finally, in order to reconstruct the Bethe-Salpeter amplitude we should use the Nakan-

ishi Perturbative Integral Representation (4.2) and insert the Ansatz (4.21) to give

�(k, p) =
�i

4⇡

i
maxX

n=1

(n+ 1)!

3

Z 1

�1

dz0
bn(z0)

(2 � k2 � p.kz0 � i✏)n+2
. (4.22)

It is intesting to note that (4.22) is in fact the initial Ansatz used by Cutkosky in

(CUTKOSKY, 1954). Moreover, the light-front wave function can also be obtained from

(4.22) using the relation (KARMANOV, 2006)

 (k?, z) =
(!.k1)(!.k2)

⇡(!.p)

Z 1

�1
�(k + �!, p)d�, (4.23)

which gives

 (k?, z) =
1� z2

8
p
⇡

i
maxX

i=1

i!
bi(z)

(k2
? +m2 � (1� z2)M

2

4 )i+1
. (4.24)

4.3 Numerical Results

In this section we compare the numerical values of the first four eigenvalues by solving

the Bethe-Salpeter equation for zero mass exchange (4.3) and the ones obtained from eq.
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(4.20), obtained using the method described in the last section.

First, we solve the light-front projected BS equation (4.3) using a Laguerre basis in

� and �0, and a Legendre basis in z , with 5 basis functions in � and 5 in z, and obtain

the eigenvalues of the ground state (↵(�0,z0)
1 ) and the first excited state (↵(�0,z0)

2 ) for various

bounding energies B/m. Then, we solve eq. (4.20) using a Legendre basis in z obtaining

the eigenvalues of the ground state (↵(z0)
1 ) and the first excited state (↵(z0)

2 ). The results

are presented in table 4.1.

TABLE 4.1 – Values of ↵ = g2/4⇡ as a function of binding energy B/m for a massless
scalar exchange for the ground state and the first excited state. The first and third column
shows the results for eq. (4.3). The second and fourth column shows the results for eq.
(4.20).

B/m ↵
(�0,z0)
1 ↵

(z0)
1 ↵

(�0,z0)
2 ↵

(z0)
2

0.1 1.11 1.12 2.90 2.93
0.2 1.78 1.79 4.90 4.85
0.3 2.34 2.35 6.58 6.53
0.4 2.84 2.84 8.09 8.05
0.5 3.29 3.30 9.44 9.42

For the ground state and the first excited state the numerical results has a margin of

error of about 1%, which supports the method presented in this work.

4.4 Wick-Cutkosky Model with the Uniqueness Method

onto the Light Front

The Wick-Cutkosky Model equations can also be obtained with the so called unique-

ness method, which consists in a type of analytic inversion of the operator in the LHS of

the Nakanishi BSE. Consequentially, the momentum variables disappears from the equa-

tion and we are left with a simple eigenequation, when we were dealing previously with

a generalized eigenequation relating only the Nakanishi PTIR parameters �0 and z0. The

basic idea is to factorize the same operator in the left and right handed sides, use the

uniqueness theorem and remove it from the equation. Summarizing

Z 1

0

d�0
g1(�0, z0)

(� + �0 + z2m2 + (1� z2)2)2
=

Z 1

0

d�0
g2(�0, z0)

(� + �0 + z2m2 + (1� z2)2)2

) g1(�
0, z0) = g2(�

0, z0). (4.25)
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Let’s restart the calculation from the following massless BSE with the Nakanishi Rep-

resentation projected in the Light-Front

Z 1

0

d�0
g(�0, z)

(�0 + � + z2m2 + (1� z2)2)2
=

Z 1

0

d�0
Z 1

�1

dz0V (�, z; �0, z0)g(�0, z0), (4.26)

in which the kernel V (�, z, �0, z0) is

V (�, z, �0, z0) =
↵m2

2⇡

1

(� + z2m2 + (1� z2)2)

1

(�0 + z02m2 + (1� z02)2)

⇥
 

✓(z � z0)�
� + �0 1�z

1�z0 + z2m2 + (1� z2)2
� 1� z

1� z0
+

✓(z0 � z)�
� + �0 1+z

1+z0 + z2m2 + (1� z2)2
� 1 + z

1 + z0

!
,

(4.27)

where we defined ↵ = g2/4⇡.

Note that the kernel V has, in fact, two di↵erent denominators (� + �0 1�z
1�z0 + z2m2 +

(1� z2)2) and (�+ �0 1+z
1+z0 + z2m2+(1� z2)2), and we need to reduce the � dependence

into only one denominator in order to apply the uniqueness method. Also, it is necessary

to eliminate the z0 dependence in the denominator so that we can take it out of the dz0

integration. To facilitate it, we can rewrite (4.27) as

V (�, z, �0, z0) = W (�, z, �0, z0)⇥(z � z0) +W (�,�z, �0,�z0)⇥(z0 � z), (4.28)

where,

W (�, z, �0, z0) =
↵m2

2⇡

1

(� + z2m2 + (1� z2)2)

1

(�0 + z02m2 + (1� z02)2)

⇥
 

✓(z � z0)�
� + �0 1�z

1�z0 + z2m2 + (1� z2)2
� 1� z

1� z0

!
(4.29)

Let’s take the first kernel term W (�, z, �0, z0)⇥(z � z0) and change the integration
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variable �00 ! �0 1�z
1�z0 such that

Z 1

0

d�0
Z 1

�1

dz0W (�, z, �0, z0)⇥(z�z0)g(�0, z0) =

Z 1

0

d�00
Z 1

�1

dz0
V 0(�, z, �00)⇥(z � z0)g(�00 1�z0

1�z
, z0)

(�00 1�z0

1�z
+ z02m2 + (1� z02)2)

,

(4.30)

where

V 0(�, z, �0) =
↵m2

2⇡

1

� + z2m2 + (1� z2)2
1

� + �0 + z2m2 + (1� z2)2
. (4.31)

The important thing to note here is that the V 0(�, z, �00) does depends on z’, thus it can

be taken out of the dz0 integral. We can now do the same for the W (�,�z, �0, z0)⇥(z0� z)

term and make the change of integration variable �00 ! �0 1+z
1+z0 which enables us to rewrite,

noting that V 0(�, z, �0) = V 0(�,�z, �0)

Z 1

0

d�0
Z 1

�1

dz0W (�,�z, �0,�z0)⇥(z0 � z)g(�0, z0)

=

Z 1

0

d�00
Z 1

�1

dz0
V 0(�, z, �00)⇥(z0 � z)g(�00 1+z0

1+z
, z0)

(�00 1+z0

1+z
+ z02m2 + (1� z02)2)

. (4.32)

Summarizing, we can rewrite,

RHS =

Z 1

0

d�0
Z 1

�1

dz0V (�, z; �0, z0)g(�0, z0)

=

Z 1

0

d�00V 0(�, z, �00)

Z 1

�1

dz0
✓

⇥(z � z0)g(�00 1�z0

1�z
, z0)

�00 1�z0

1�z
+ z02m2 + (1� z02)2

+
⇥(z0 � z)g(�00 1+z0

1+z
, z0)

�00 1+z0

1+z
+ z02m2 + (1� z02)2

◆
. (4.33)

Now that we extracted V 0 to outside the dz0 integral, we must combine the denomi-

nators in V 0 using a Feynman parametrization

V 0(�, z, �0) =
↵m2

2⇡

Z 1

0

d⇠

(� + z2m2 + (1� z2)2 + �00⇠)2
. (4.34)

Finally, the last step is to remove the ⇠ out of the denominator. To do that, we make

a final variable transformation �000 ! �00⇠ and now we are able to isolate the desired
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denominator to apply the uniqueness method

RHS =

Z 1

0

d�000

(� + �000 + z2m2 + (1� z2)m2)2

⇥
Z 1

�1

dz0
Z 1

0

d⇠

✓
↵m2

2⇡

1

⇠

◆

⇥
 

⇥(z � z0)g(�
000(1�z0)
⇠(1�z) , z0)

�000(1�z0)
⇠(1�z) + z02m2 + (1� z02)2

+
⇥(z0 � z)g(�

000(1+z0)
⇠(1+z) , z0)

�000(1+z0)
⇠(1+z) + z02m2 + (1� z02)2

!
. (4.35)

Now we can write LHS = RHS and eliminate the common operator. With this we

obtain the final massless Bethe-Salpeter equation with the uniqueness method

g(�000, z) =

Z 1

�1

dz0
Z 1

0

d⇠

✓
↵m2

2⇡

1

⇠

◆

⇥
 

⇥(z � z0)g(�
000(1�z0)
⇠(1�z) , z0)

�000(1�z0)
⇠(1�z) + z02m2 + (1� z02)2

+
⇥(z0 � z)g(�

000(1+z0)
⇠(1+z) , z0)

�000(1+z0)
⇠(1+z) + z02m2 + (1� z02)2

!
. (4.36)

To check the consistency of this equation towards the previous integration by parts

method, we substitute the known ground state solution g(�0, z0) = �(�0)b1(z0). Consequen-

tially, we substitute g(�
000(1�z0)
⇠(1�z) , z0) = �(�000)⇠(1�z)

1�z0 b1(z0), g(
�000(1+z0)
⇠(1+z) , z0) = �(�000)⇠(1+z)

1+z0 b1(z0),

thus

�(�000)b1(z) =

Z 1

�1

dz0
Z 1

0

d⇠

✓
↵m2

2⇡

◆
�(�000)b1(z

0)

⇥
✓

⇥(z � z0)(1� z)

(z02m2 + (1� z02)2)(1� z0)
+

⇥(z0 � z)(1 + z)

(z02m2 + (1� z02)2)(1 + z0)

◆
, (4.37)

and eliminating �(�000) from both sides gives

b1(z) =

✓
↵m2

2⇡

◆Z 1

�1

dz0b1(z
0)

⇥
✓

⇥(z � z0)(1� z)

(z02m2 + (1� z02)2)(1� z0)
+

⇥(z0 � z)(1 + z)

(z02m2 + (1� z02)2)(1 + z0)

◆
, (4.38)

which is the correct equation for the fundamental state of the Wick-Cutkosky model. If

one prefers to isolate a kernel for the uniqueness Wick-Cutkosky model, we should make

the additional integral variable transformations. For instance, if we make y ! �000(1�z0)
⇠(1�z)

the first term in the integral can be changed to
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Z 1

0

d⇠

✓
1

⇠

◆ ⇥(z � z0)g(�
000(1�z0)
⇠(1�z) , z0)

�000(1�z0)
⇠(1�z) + z02m2 + (1� z02)2)

!

=

Z 1

�1

dy

y

⇥(y � �000(1�z0)
(1�z) )⇥(z � z0)

y + z02m2 + (1� z02)2
g(y). (4.39)

On the other hand, if we make y ! �000(1+z0)
⇠(1+z) the second term in the integral can be

changed to

Z 1

0

d⇠

✓
1

⇠

◆ ⇥(z0 � z)g(�
000(1+z0)
⇠(1+z) , z0)

�000(1+z0)
⇠(1+z) + z02m2 + (1� z02)2)

!

=

Z 1

�1

dy

y

⇥(y � �000(1+z0)
(1+z) )⇥(z0 � z)

y + z02m2 + (1� z02)2
g(y). (4.40)

Finally, we can rewrite the uniqueness Wick-Cutkosky equation as

g(�000, z) =

Z 1

�1

dz0
Z 1

�1
dyV UNIQ(�000, z, y, z0)g(y, z0), (4.41)

where

V UNIQ(�000, z, y, z0) =
↵m2

2⇡

⇥(y � �000(1�z0)
1�z

)⇥(z � z0) +⇥(y � �000(1+z0)
1+z

)⇥(z0 � z)

y(y + z02m2 + (1� z02)2)
. (4.42)

Note that the approach present in this section is similar to one one employed in for the

massive case since both of them are based on the uniqueness theorem. The main di↵erence

here is that the massless case can be dealt with using only integration by parts, while in

that reference the strategy was to employ Feynamn parametrization and delta functions

as an intermediate step in order to obtain the same denominator at the right and left hand

sides. The main advantage of the method here presented is a better analytical control,

since it depends only on integration by parts and not on implicit parametrizations and

distributions; while its disavantage is that it is restricted to the massless case.
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4.5 A new di↵erential approach to the uniqueness

method

In the previous sections, the uniqueness method was used after a light-front projection,

integrating the BSE in the variable k�. However, this was only appropriate because we

already started from the light-front projected BSE, otherwise the projection would only

be an unnecessary step in the calculation. In this section let us show that it is possible

to use the uniqueness method without the LF projection using only integration by parts

relations.

Starting from the scalar massless BSE

�(k, p) =
1

(p2 � k)2 �m2

1

(p2 + k)2 �m2
ig2
Z

d4k0

(2⇡)4
�(k0, p)

(k � k0)2 + i✏
, (4.43)

We substitute in it the Nakanishi PTIR for the s-wave amplitude �(k, p)

�(k, p) =

Z
d�0
Z 1

�1

dz0
g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)3
, (4.44)

and multiply both sides of the BSE by the inverse of the free propagators (p2 ±k)2�m2 =

k2 ± p · k � 2, to arrive at a equation of the form

(k2 + p · k � 2)(k2 � p · k � 2)

Z
d�0
Z 1

�1

dz0
g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)3

= ig2
Z

d4k0

(2⇡)4
1

(k � k0)2 + i✏

Z
d�0
Z 1

�1

dz0
g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)3
. (4.45)

Now we would like to absorb the e↵ect of multiplying by the inverse of the free prop-

agators in the left hand side as an operator acting directly on the weight function. To do

that we bring the inverse propagators terms inside the integral:

(k2 + p · k � 2)(k2 � p · k � 2)

Z
d�0
Z 1

�1

dz0
g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)3

=

Z
d�0
Z 1

�1

dz0g(3)(�0, z0)⇥ (
1

(k2 + p · kz0 � �0 � 2 + i✏)
+

+
2(�0 � p · kz0)

(k2 + p · kz0 � �0 � 2 + i✏)2
+
�02 � 2�0(p · k)z0 � (1� z02)(p · k)2

(k2 + p · kz0 � �0 � 2 + i✏)3
). (4.46)

The crucial step now is to use integration by parts in the Nakanishi PTIR to avoid the
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(p ·k) terms in the numerator and to use only one common denominator 1
(k2+p·kz0��0�2+i✏)

instead of three denominators of exponents one, two and three. There are two useful

formulas that come from the integration by parts when the boundary term are null:

Z
d�0

g(n)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)n
=

Z
d�0

�@�0g(n)(�0, z0)/(n� 1)

(k2 + p · kz0 � �0 � 2 + i✏)n�1
,

(4.47)

(p · k)
Z 1

�1

dz0
g(n)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)n
=

Z 1

�1

dz0
@z0g

(n)(�0, z0)/(n� 1)

(k2 + p · kz0 � �0 � 2 + i✏)n�1
.

(4.48)

For the �0 integration by parts, the condition to have a boundary term null is that
g(n)(�0,z0)

(k2+p·kz0��0�2+i✏)n�1

! 0 when �0 ! 0, and for the z0 integration by parts we must have

g(n)(�0, 1) = g(n)(�0,�1) = 0. It is important to note that there is a (p · k)2 term in Eq.

(4.46), which will need two integration by parts in z0. However the boundary term is zero

both times because (1� z2)g(3)(�0, z0) gives a second order zero at z0 = ±1.

Finally, we apply the integration by parts formulas (4.48) in the Eq. (4.46) and have,

for the exponents 2 and 3

Z
d�0
Z 1

�1

dz0
2(�0 � p · kz0)g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)2
=

Z
d�0
Z 1

�1

dz0
�2(@�0�0 + @z0z

0)g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)
,

(4.49)
Z

d�0
Z 1

�1

dz0
(�02 � 2�0(p · k)z0 � (1� z02)(p · k)2)g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)3

=

Z
d�0
Z 1

�1

dz0
1
2(@

2
�0�02 + 2@�0@z0�

0z0 � @2z0(1� z02))g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)
, (4.50)

where the terms in parentheses are the final di↵erential operators. For instance,

(@z0z0)g(3)(�0, z0) should be read as @z0(z0(g(3)))(�0, z0); the operator “multiply by z0 ” fol-

lowed by the operator @z0 . Summing all the terms, we have, for the left hand side of the

BSE
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(k2 + p · k � 2)(k2 � p · k � 2)

Z
d�0
Z 1

�1

dz0
g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)3

=

Z
d�0
Z 1

�1

dz0
(12(@

2
�0�02 + 2@�0@z0�

0z0 � @2z0(1� z02))� 2(@�0�0 + @z0z
0) + 1)g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)

=

Z
d�0
Z 1

�1

dz0
(12�

02@2�0 + (z0@z0 + 1)(�0@�0 + 1)� (1� z02)@2z0 � 1)g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)
. (4.51)

To solve the right hand side, we use the loop integral L(a, b, µ, n) =
R

d4k0

((k�k0)2�µ2+i✏)(k2+a·k+b)n ,

where 1
(k2+a·k+b)n is a generic test function. Using µ = 0, n = 3, a = pz0, b = �2 � �0, we

have

ig2
Z

d4k0

(2⇡)4
1

(k � k0)2 + i✏

Z
d�0
Z 1

�1

dz0
g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)3

=
ig2

(2⇡)4

Z
d�0
Z 1

�1

dz0g(3)(�0, z0)

Z
d4k0

(k � k0)2 + i✏

1

(k2 + p · kz0 � �0 � 2 + i✏)3

=
ig2

(2⇡)4

Z
d�0
Z 1

�1

dz0g(3)(�0, z0)L(pz0,�2 � �0, 0, 3)

=
ig2

(2⇡)4

Z
d�0
Z 1

�1

dz0g(3)(�0, z0)
i⇡2

2

1

(�2 � �0 � z02M2/4)(k2 + p · kz0 � �0 � 2 + i✏)

=
g2

32⇡2

Z
d�0
Z 1

�1

dz0
1

(k2 + p · kz0 � �0 � 2 + i✏)

g(3)(�0, z0)

(�0 +m2 + (z02 � 1)M2/4)
. (4.52)

Now we can identify the left hand side and the right hand side to obtain the equation

Z
d�0
Z 1

�1

dz0
(12�

02@2�0 + (z0@z0 + 1)(�0@�0 + 1)� (1� z02)@2z0 � 1)g(3)(�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)

=
g2

32⇡2

Z
d�0
Z 1

�1

dz0
1

(k2 + p · kz0 � �0 � 2 + i✏)

g(3)(�0, z0)

(�0 +m2 + (z02 � 1)M2/4)
(4.53)

Note that both the left hand side and the right hand side have as a prefactor the

operator
R
d�0
R 1

�1 dz
0 1
k2+p·kz0��0�2

. So, we can use the uniqueness theorem to extract

this operator from both sides and we arrive at the di↵erential equation for the s-wave
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Wick-Cutkosky model

(
1

2
�02@2�0+(z0@z0+1)(�0@�0+1)�(1�z02)@2z0�1)g(3)(�0, z0) =

g2

32⇡2

g(3)(�0, z0)

(�0 +m2 + (z02 � 1)M2/4)
,

(4.54)

which can be simplified multiplying both sides by (�0 +m2 + (z02 � 1)M2/4). Thus, we

write it as

Dg(3)(�0, z0) =
g2

32⇡2
g(3)(�0, z0), (4.55)

where D is the di↵erential operator

D = (�0 +m2 + (z02 � 1)M2/4)(
1

2
�02@2�0 + (z0@z0 + 1)(�0@�0 + 1)� (1� z02)@2z0 � 1). (4.56)

Since this is a equation for the Wick-Cutkosky model, it should be able to reproduce the

previous known di↵erential equation in z0. So, as a test, we substitute the known ground

state solution g(3)(�0, z0) = �(�0)b(z0). Each di↵erential term acts on the delta function as
1
2�

02@2�0�(�0) = �(�0) and �0@�0�(�0) = ��(�0). Therefore, the di↵erential operator D acts

on g(3)(�0, z0) as

Dg(3)(�0, z0) =

= (�0 +m2 + (z02 � 1)M2/4)(
1

2
�02@2�0 + (z0@z0 + 1)(�0@�0 + 1)� (1� z02)@2z0 � 1)�(�0)b(z0)

= (�0 +m2 + (z02 � 1)M2/4)(1 + (z0@z0 + 1)(�1 + 1)� (1� z02)@2z0 � 1)�(�0)b(z0)

= (�0 +m2 + (z02 � 1)M2/4)(�(1� z02)@2z0)�(�
0)b(z0)

= ��(�0)(m2 + (z02 � 1)M2/4)(1� z02)@2z0b(z
0). (4.57)

Writing the left hand side equals the right hand side, and extracting the common term

�(�0) we arrive at the equation

(m2 + (z02 � 1)M2/4)(1� z02)@2z0b(z
0) =

g2

32⇡2
b(z0), (4.58)

which is the di↵erential equation for the Wick-Cutkosky model, originally obtained by

Wick (WICK, 1954; HWANG; KARMANOV, 2004).

The main innovation of this method is to obtain one single di↵erential equation for

every s-wave solution instead of an enumerable set of di↵erential equations, indexed by
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the principal quantum number, as obtained by Wick and Cutkosky. Also, this method

can be partly extended to the massive case, since the main idea is to move the free

propagators to the left hand side of the BSE. However, a massive interaction loop integral

gives logarithms, so the right hand side would need be calculated numerically.



5 Fermion Bound State with a

massive scalar interaction

5.1 Introduction

The BS equation is used to solve the bound state problem in a relativistic field theory,

thus it is naturally formulated in Minkowski space. Consequently, to solve it one has

to deal with poles arising from relativistic propagator. In the past decades since its

formulation, the popular approach to solve the BS equation was to use a Wick rotation; a

contour deforming procedure in the k0 complex plane, which translates the lorentz metric

into a euclidean one. This is equivalent to transforming a relativistic field theory into an

euclidean field theory, which does not have poles in its propagators, and thus are better

suited for a numerical treatment.

In recent years an alternative approach has been tried using the so callend Nakanishi

PTIR, an integral representation for field theory amplitudes. That, together with a LF

projection to eliminate the poles in the propagators, has been the strategy behind some

recent papers in the field. However, projecting a quantum amplitude onto the light front

can result in singular contributions, due to endpoint singularities (HAUTMANN, 2007;

MELIKHOV; SIMULA, 2003). Thus these singularities must be dealt with somehow, either

using regulators or facing the distributions that arise.

This chapter will follow from J. Carbonell and V. A. Karmanov work on the fermion

bound state problem with the Nakanishi PTIR projected onto the light front (CARBONELL;

KARMANOV, 2010). In that paper, the authors used a form factor F (q) = µ2�⇤2

q2�⇤2+i✏
, and

a numerical regulator ⌘(k, p) = (m2�L2)
( p
2

+k)2�L2+i✏
(m2�L2)

( p
2

�k)2�L2+i✏
, in order to get smoother kernels

and make the LF projection integral convergent. Explicitly, the fermionic BSE is expanded
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in a base Si and can be written as

�i(k, p) =
i

(p/2 + k)2 �m2 + i✏

i

(p/2� k)2 �m2 + i✏

Z
d4k0

(2⇡)4
(�ig2)

P4
i0=1 cii0�i0(k0, p)

(k � k0)2 � µ2 + i✏
,

(5.1)

then they modified (5.30) inserting ⌘(k, p) and F (q) such that

⌘(k, p)�i(k, p) = ⌘(k, p)
i

(p/2 + k)2 �m2 + i✏

i

(p/2� k)2 �m2 + i✏

⇥
Z

d4k0

(2⇡)4
(�ig2)F (q)2

P4
i0=1 cii0�i0(k0, p)

(k � k0)2 � µ2 + i✏
. (5.2)

However, the authors also performed a calculation using only the F (q) and not also the

⌘(k, p), whose results are missing some terms due to cumbersome distributional corrections

of the LF integral given by endpoint contributions. The alternative approach explored in

this thesis is to avoid these regulators and instead use a Nakanishi PTIR of order 4 to

make the LF projection convergent, and explore what are these distributional corrections.

5.2 Fermionic BS equation

In this section, we present the fermionic BS equation with an scalar interaction fol-

lowing the derivation presented in the previous mentioned work. The BS equation for a

two fermions bound state, mediated by a massive scalar, with a ladder kernel, is given by

�(k, p) =
i(m+ /p/2 + /k)

(p/2 + k)2 �m2 + i✏

Z
d4k0

(2⇡)4
�(k0, p)

(�ig2)

(k � k0)2 � µ2 + i✏

i(m� /p/2 + /k)

(p/2� k)2 �m2 + i✏
,

(5.3)

where µ is the scalar interaction mass, m is the fermions masses and g the coupling

constant. For a J⇡ = 0+ state, one may write the BS amplitude as

�(k, p) = S1�1 + S2�2 + S3�3 + S4�4, (5.4)

where the Si form a basis of spin structures and the �i are scalar functions of k2 and p ·k.
The chosen basis was
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S1 = �5, (5.5)

S2 =
/p

M
�5, (5.6)

S3 =
k · p
M3 /p�5 �

1

M
/k�5, (5.7)

S4 =
i

M2
�µ⌫pµk⌫�5, (5.8)

with �µ⌫ = i
2(�µ�⌫ � �⌫�µ). Substituting (5.4) in (5.9), and using the trace properties of

the basis, we can write the following equation for each scalar �i

�i(k, p) =
i

(p/2 + k)2 �m2 + i✏

i

(p/2� k)2 �m2 + i✏

Z
d4k0

(2⇡)4
(�ig2)

P4
i0=1 cii0�i0(k0, p)

(k � k0)2 � µ2 + i✏
,

(5.9)

where the cii0 are defined by the trace relation

cii0 =
Tr
⇥
Si(/p/2 + /k +m)(ig)S 0

i0(ig)(/p/2� /k +m)
⇤

Tr [S2
i ]

, (5.10)

and S 0
i denotes the Si with the exchange k ! k0.

Using this formula (5.10), we arrive at the individual expressions for each cii0
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c11 = m2 +
M2

4
� k2, (5.11)

c12 = mM, (5.12)

c13 = 0, (5.13)

c14 = �b0M2, (5.14)

c21 = mM, (5.15)

c22 = m2 +
M2

4
+ k2 � 2

(p · k)2
M2

, (5.16)

c23 = �2b0(p · k), (5.17)

c24 = �2b0mM, (5.18)

c31 = 0, (5.19)

c32 = 2(p · k), (5.20)

c33 =
b0

b

✓
m2 � M2

4
+ 2

(p · k)2
M2

� k2

◆
, (5.21)

c34 = 2
b0

b

m

M
(p · k), (5.22)

c41 = M2, (5.23)

c42 = 2mM, (5.24)

c43 = 2
b0

b

m

M
(p · k), (5.25)

c44 = �b0

b

✓
M2

4
�m2 � k2

◆
, (5.26)

with b and b0 defined by

b =
1

M4
((p · k)2 �M2k2) =

~k2

M2
, (5.27)

b0 =
1

M4
((p · k)(p · k0)�M2(k · k0)) =

~k · ~k0

M2
. (5.28)

Now, we write each �i as a Nakanishi representation of order 4

�i(k, p) =

Z
d�0
Z 1

�1

dz0
g
(4)
i (�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)4
, (5.29)

and substitute it in (5.9) to arrive at
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Z
d�0
Z 1

�1

dz0
g
(4)
i (�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)4
=

Z
d�0
Z 1

�1

dz0
1

((p/2 + k)2 �m2 + i✏) ((p/2� k)2 �m2 + i✏)

ig2

(2⇡)4

⇥
4X

i0=1

g
(4)
i0 (�0, z0)

Z
d4k0

(k � k0)2 � µ2 + i✏

cii0

(k2 + p · kz0 � �0 � 2 + i✏)4
. (5.30)

The next step is to perform the loop integral on the right hand side. In order to do

that, we must observe that each cii0 have one of three general structures: it is a polynomial

in { k2, p · k } or, a polynomial in { k2, p · k } times b0/b or a polynomial in { k2, p · k } times

b0 :

cii0 = dii0(k
2, p · k)(�ii02A +

b0

b
�ii02B + b0�ii02C). (5.31)

Where dii0 is the polynomial, and all the possible (i, i0) are divided in three sets A, B,
C corresponding to each of these cases

A = { (i, i0) | i0 2 { 1, 2 } } , (5.32)

B = { (i, i0) | i 2 { 3, 4 } , i0 2 { 3, 4 } } , (5.33)

C = { (i, i0) | i 2 { 1, 2 } , i0 2 { 3, 4 } } . (5.34)

Now we can use the loop integral formulas calculated in the appendix:

L(↵, �, µ, n) =

Z
d4k0 1

(k � k0)2 � µ2

1

(k02 + ↵ · k0 + �)n

= i⇡2 1

n� 1

Z 1

0

dv
vn�1

(v(1� v)(k + ↵/2)2 + v(� � ↵2/4) + (1� v)µ2)n�1
,

(5.35)

and
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L(F )(↵, �, µ, n) =

Z
d4k0 b0

(k � k0)2 � µ2

1

(k02 + ↵ · k0 + �)n

= i⇡2 b

n� 1

Z 1

0

dv
(1� v)vn�1

(v(1� v)(k + ↵/2)2 + v(� � ↵2/4) + (1� v)µ2)n�1
,

(5.36)

and use them, with n = 4, ↵ = pz0, � = ��0 � 2 , to obtain the loop integral for each

cii0 on the right hand side of (5.9)

Z
d4k0

(k � k0)2 � µ2 + i✏

cii0

(k2 + p · kz0 � �0 � 2 + i✏)4

=

Z
d4k0

(k � k0)2 � µ2 + i✏

dii0(k2, p · k)(�ii02A + b0

b
�ii02B + b0�ii02C)

(k2 + p · kz0 � �0 � 2 + i✏)4

= dii0(k
2, p · k)(�ii02AL(↵, �, µ, n) +

✓
�ii02B
b

+ �ii02C

◆
L(F )(↵, �, µ, n))

= dii0(k
2, p · k)

⇥
✓
�ii02Ai⇡

2 1

n� 1

Z 1

0

dv
vn�1

(v(1� v)(k + ↵/2)2 + v(� � ↵2/4) + (1� v)µ2)n�1

+

✓
�ii02B
b

+ �ii02C

◆
i⇡2 b

n� 1

Z 1

0

dv
(1� v)vn�1

(v(1� v)(k + ↵/2)2 + v(� � ↵2/4) + (1� v)µ2)n�1

◆

= dii0(k
2, p · k)(�ii02A + (�ii02B + �ii02Cb)(1� v))

⇥
✓
i⇡21

3

Z 1

0

dv
v3

(v(1� v)(k + z0p/2)2 � v(�0 + 2 + z02M2/4) + (1� v)µ2)3

◆
. (5.37)

Now we can substitute it in (5.30) and get

Z
d�0
Z 1

�1

dz0
g
(4)
i (�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)4
=

� g2

48⇡2

Z
d�0
Z 1

�1

dz0
1

((p/2 + k)2 �m2 + i✏) ((p/2� k)2 �m2 + i✏)

⇥
✓Z 1

0

dv
v3

(v(1� v)(k + z0p/2)2 � v(�0 + 2 + z02M2/4) + (1� v)µ2)3

◆

⇥
4X

i0=1

g
(4)
i0 (�0, z0)dii0(k

2, p · k)(�ii02A + (�ii02B + �ii02Cb)(1� v)). (5.38)
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5.3 The singular contributions

The next step to solve the fermionic BSE is to project the equation onto the light

front, i.e. perform the integral
R
dk�. First, for the left hand side we will use the LF

integral calculated in the appendix

ILF (↵, �,m, n) =

Z
dk�(k�)m

(↵k� + �)n
(5.39)

With ↵ = M
2 (z

0 � z), � = �� � �0 � 2 � M2

4 zz0, m = 0 and n = 4. Thus, we have

Z
dk�

Z
d�0
Z 1

�1

dz0
g
(4)
i (�0, z0)

(k2 + p · kz0 � �0 � 2 + i✏)4
(5.40)

=

Z
d�0
Z 1

�1

dz0g
(4)
i (�0, z0)

Z
dk� 1

(k2 + p · kz0 � �0 � 2 + i✏)4

=

Z
d�0
Z 1

�1

dz0g
(4)
i (�0, z0)ILF (

M

2
(z0 � z),�� � �0 � 2 � M2

4
zz0, 0, 4)

=

Z
d�0
Z 1

�1

dz0g
(4)
i (�0, z0)

 
�⇡i

3

�(M2 (z
0 � z))

(�� � �0 � 2 � M2

4 zz0)3

!

= � 2⇡i

3M

Z
d�0

g
(4)
i (�0, z)

(� + �0 + 2 + M2

4 z2)3
. (5.41)

Now, we must apply the LF projection to the right hand side. However, the goal of this

chapter is to obtain the additional contributions only, that appears as distributions,and

there are only these contributions when there are at least (k�)2 or (k�)3 in the numerator.

In order to see that, note that the RHS of the fermionic BSE follows the general structure

I 0LF (↵, �,m, n) =

Z
dk�(k�)m

(k2 + p · k � 2 + i✏)(k2 � p · k � 2 + i✏)(↵k� + � + i✏)n
, (5.42)

which converges for n big enough. However, if we set ↵ = 0, this integral can be

rewriteen as

I 0LF (0, �,m, n) =

Z
dk�(k�)m

(k2 + p · k � 2 + i✏)(k2 � p · k � 2 + i✏)(� + i✏)n
, (5.43)

and now the denominator under n does not contribute to its convergence anymore.

Since we can write k2 = k+k��k2
?, the free propagators only contribute with 1

(k�)2 . Thus,
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if m = 2 or m = 3 the integral diverges. Finally, this divergence indicates that the integral

(5.42) results in distributions with support ↵ = 0 if m � 2, for instance one could have a

term proportional to �(↵).

In order to identify which are the singular ones, note that the only terms that cointains

k� are the

dii0(k
2, p · k)(�ii02A + (�ii02B + �ii02Cb)(1� v)) =

3X

j=0

⌘
(j)
ii0 (k

�)j, (5.44)

where ⌘(j)ii0 is a polynomial in the LF variables � and z. So, if we expand all scalar terms

in LF variables of the form

k2 = k+k� � k2
? =

✓
�z

M

2

◆
k� � �, (5.45)

(p · k) = M

2

�
k� + k+

�
=

✓
M

2

◆
k� � z

M2

4
, (5.46)

b = (
1

M4
(p · k)2 �M2k2)

=
1

M4
((

✓
M

2

◆
k� � z

M2

4
)2 �M2(

✓
�z

M

2

◆
k� � �))

=
1

M4

  ✓
M

2

◆2

(k�)2 � z
M3

4
k� + (z

M2

4
)2
!

+

✓
z
M3

2

◆
k� + �M2

!

=
(k�)2

4M2
+ z

k�

4M
+

z2

16
+

�

M2
(5.47)

We conclude, combining (5.47) with (5.44) , that the only terms (i, i0) that have (k�)2

in the numerador are the (1,4), (2,2) , (2,3) , (2,4), (3,3), and the only that have (k�)3 is

(2,3). Therefore, these ⌘(j)ii0 , with j � 2 are

⌘
(2)
14 = �1

4
(1� v), (5.48)

⌘
(2)
22 = �1

2
, (5.49)

⌘
(2)
23 = �z

8
(1� v), (5.50)

⌘
(2)
24 = � m

2M
(1� v), (5.51)

⌘
(2)
33 =

1

2
(1� v), (5.52)

⌘
(3)
23 = � 1

4M
(1� v). (5.53)
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As one can check, these coe�cients are directly proportional to the Fj;ii0 presented in

appendix B, obtained with a form factor F (q) and Nakanishi exponenent n = 3.

Now we can obtain the LF projected BS equation

Z
d�0

g
(4)
i (�0, z)

(� + �0 + 2 + M2

4 z2)3

=
3M

2⇡i

g2

48⇡2

Z
dk�

⇥
Z

d�0
Z 1

�1

dz0
1

((p/2 + k)2 �m2 + i✏) ((p/2� k)2 �m2 + i✏)

⇥
✓Z 1

0

dv
v3

(v(1� v)(k + z0p/2)2 � v(�0 + 2 + z02M2/4) + (1� v)µ2)3

◆

⇥
4X

i0=1

g
(4)
i0 (�0, z0)

3X

j=0

⌘
(j)
ii0 (k

�)j

=
3M

2⇡i

g2

48⇡2

Z
d�0
Z 1

�1

dz0
Z 1

0

dv

4X

i0=1

g
(4)
i0 (�0, z0)

3X

j=0

⌘
(j)
ii0 (k

�)j

⇥
Z

dk� 1

((p/2 + k)2 �m2 + i✏) ((p/2� k)2 �m2 + i✏)

⇥
✓

v3

(v(1� v)(k + z0p/2)2 � v(�0 + 2 + z02M2/4) + (1� v)µ2)3

◆
. (5.54)

To perform the
R
dk� , we must use the LF integral calculated in the appendix

I 0LF (↵, �,m, n) =

Z
dk�(k�)m

(k2 + p · k � 2 + i✏)(k2 � p · k � 2 + i✏)(↵k� + � + i✏)n
, (5.55)

and use it with the following variables

↵ = v(1� v)
M

2
(z0 � z), (5.56)

� = �v

✓
+�0 + 2 +

1

4
M2z02

◆
� (1� v)v

✓
�1

4
M2z0 (z0 � z) + �

◆
+ µ2(1� v), (5.57)

for the cases m = 2, n = 3 and m = 3, n = 3 to arrive at
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I 0LF (↵, �, 2, 3) = Regular

+

 
�8⇡i�(z0 � z)

v(1� v)M3(1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!
,

(5.58)

I 0LF (↵, �, 3, 3) = Regular

+

 
�8⇡i�(z0 � z)

v(1� v)M3(1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�
!

+

 
�⇡i64z(� +m2)�0(z0 � z)

v2(1� v)2M5(1� z2)2
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!
.

(5.59)

where the so called regular terms of the integral are the ones that does not contain

distributions, only ordinary functions.

Finally, we substitute these results in the BSE to obtain the new distributional cor-

rections

Z
d�0

g
(4)
i (�0, z)

(� + �0 + 2 + M2

4 z2)3

=
3M

2⇡i

g2

48⇡2

Z
d�0
Z 1

�1

dz0
Z 1

0

dvv3
4X

i0=1

g
(4)
i0 (�0, z0)

3X

j=0

⌘
(j)
ii0 I

0
LF (↵, �, j, 3)

= Regular

+
g2

4⇡2

Z
d�0
Z 1

0

dvv3

⇥
✓ 

�
P4

i0=1 g
(4)
i0 (�0, z)⌘(2)ii0 (�1i�4i0 + �2i�2i0 + �2i�3i0 + �2i�4i0 + �3i�3i0)

v(1� v)M3(1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!

+

 
g
(4)
3 (�0, z)�i2/4

vM3(1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�
!

+

 
�2z(� +m2)@z0g

(4)
3 (�0, z)�i2

v2(1� v)M5(1� z2)2
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!◆
(5.60)

It is importante to note that there are two terms that have a pole in v = 1, making

the dv integral diverge logarithmically: the i = 2, i0 = 2, j = 2 and the i = 2, i0 = 3, j = 3,

proportional to the delta derivative. Since the divergence is slow, it should not give
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numerical problems. However if one wants to have a complete analytical analysis, these

terms must be somehow renormalized or cancel each other divergences.

5.4 Extreme binding energy for a massless vector in-

teraction

The first papers describing the scalar Wick-Cutkosky model explored several particular

cases of the equation. One of these is the extreme binding energy case, when the bound

state becomes massless (M = 0). Since M = 0 implies that the propagators can be

written as i
(p/2�k)2�m2

= i
(p/2+k)2�m2

= i
k2�m2

, the scalar BSE simplifies to the form

�(k, p) =
i

k2 �m2

i

k2 �m2
ig2
Z

d4k0

(2⇡)4
�(k0, p)

(k � k0)2 + i✏
, (5.61)

and has �(k, p) = �(k, 0) = 1
(k2�m2)3 as a solution for the ground state.

It is undeniable the similarity of this solution to the Nakanishi Ansatz used to solve

the general Wick-Cutkosky and BSE , thus one may argue that the analysis of the M = 0

case can give useful heuristics to attack the M > 0 case. Given this motivation, the goal

of this chapter is to obtain a similar analysis of the M = 0 case, but for the fermionic

bound state with a massless vector interaction.

First, let us note that the coe�cients of the massless vector and the scalar interactions

equations are proportional. In fact, writing the BS amplitude as �(k, p) = �1(k, p)S1 +

�2(k, p)S2 + �3(k, p)S3, where Si is the same base used for the scalar interaction, we have

a new set of coe�cients cVij related to the scalar ones as cVij = ⇠ijc
S
ij where

⇠ =

2

66664

4 �2 0 0

4 �2 �2 0

0 �2 �2 0

0 0 0 0

3

77775
. (5.62)

Since we now know that the coe�cients are proportional, let us observe what happens

to then as M ! 0. Since cV13 = cS13 = 0, �1 is only coupled to �2. However, cS12 = mM ,

so in the extreme binding energy limit, cV12 ! 0 and �1 decouples from �2. Thus, we can

investigate this limit for a massless vector interaction by analyzing only the decoupled �1

equation
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�1(k) = cV11
i

k2 �m2

i

k2 �m2
ig2
Z

d4k0

(2⇡)4
�1(k0)

(k � k0)2 + i✏

= 4(m2 � k2)
�1

(k2 �m2)2
ig2
Z

d4k0

(2⇡)4
�1(k0)

(k � k0)2 + i✏

= 4
ig2

k2 �m2

Z
d4k0

(2⇡)4
�1(k0)

(k � k0)2 + i✏
. (5.63)

Now, we multiply both sides by k2 �m2 and have

(k2 �m2)�1(k) = 4ig2
Z

d4k0

(2⇡)4
�1(k0)

(k � k0)2 + i✏
. (5.64)

The next step is to write �1 as a parametric representation on �0 of the form

�1(k) =

Z
d�0

p(�0)

(k2 �m2 � �0 + i✏)3
, (5.65)

which emerge naturally from the Nakanishi PITR in the limit M ! 0

�1(k) =

Z
d�0
Z 1

�1

dz0
g(3)(�0, z0)

(k2 + p · kz0 +M2/4�m2 � �0 + i✏)3

=

Z
d�0

(k2 �m2 � �0 + i✏)3

Z 1

�1

dz0g(3)(�0, z0)

=

Z
d�0

(k2 �m2 � �0 + i✏)3
p(�0), (5.66)

where p(�0) =
R 1

�1 dz
0g(3)(�0, z0). Now we can substitute (5.65) in (5.64) and solve it

for p(�0). First, the left hand side equation gives

(k2 �m2)�1(k) = (k2 �m2)

Z
d�0

p(�0)

(k2 �m2 � �0 + i✏)3

=

Z
d�0

p(�0)

(k2 �m2 � �0 + i✏)2
+

�0p(�0)

(k2 �m2 � �0 + i✏)3
. (5.67)

Now, we can use integration by parts so that all denominators have exponent 1. Setting

the boundary terms to 0,we write
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(k2 �m2)�1(k) =

Z
d�0

p(�0)

(k2 �m2 � �0 + i✏)2
+

�0p(�0)

(k2 �m2 � �0 + i✏)3

=

Z
d�0

�@�0p(�0)

(k2 �m2 � �0 + i✏)
+

@2�0(�0p(�0))/2

(k2 �m2 � �0 + i✏)

=

Z
d�0

�@�0p(�0) + @2�0(�0p(�0))/2

(k2 �m2 � �0 + i✏)

=

Z
d�0

�0@2�0p(�0)/2

(k2 �m2 � �0 + i✏)
. (5.68)

To compute the right hand side, we use the loop integral L(a, b, µ, n) presented in the

appendix.

4ig2
Z

d4k0

(2⇡)4
�1(k0)

(k � k0)2 + i✏
= 4ig2

Z
d4k0

(2⇡)4
1

(k � k0)2 + i✏

Z
d�0

p(�0)

(k2 �m2 � �0 + i✏)3

=
4ig2

(2⇡)4

Z
d�0p(�0)

Z
d4k0 1

(k � k0)2 + i✏

1

(k2 �m2 � �0 + i✏)3

=
4ig2

(2⇡)4

Z
d�0p(�0)L(0,�m2 � �0, 0, 3)

=
4ig2

(2⇡)4

Z
d�0p(�0)

i⇡2

2

1

�m2 � �0
1

k2 �m2 � �0

=
g2

2(2⇡)2

Z
d�0

p(�0)

m2 + �0
1

k2 �m2 � �0
. (5.69)

Using the uniqueness theorem, we are now able to remove the operator 1
2

R
d�0

(k2�m2��0+i✏)

from both sides and have a equation purely in the parameter �0

�0@2�0p(�0) =
g2

(2⇡)2
p(�0)

m2 + �0

(m2 + �0)�0@2�0p(�0) =
g2

(2⇡)2
p(�0)

Dp(�0) =
g2

(2⇡)2
p(�0) (5.70)

where D is the di↵erential operator (m2 + �0)�0@2�0 . We propose a solution of (5.70)

expressing p(�0) in a basis of the form |ni = �0n+2 with n 2 {0, 1, 2, 3, · · · }, for the region

�0 > 0. It is important to note that there may be additional solutions as distributions

located at �0 = 0, as p(�0) = �(�0) is a solution for the scalar case. So, we should be aware

that the present analysis using the proposed basis may not account for the full spectrum
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of Eq. (5.70). Also, a given p(�0) = �0n may give as an amplitude a divergent integral, so

some renormalization procedure may be necessary to recover the BS amplitude.

In this basis, D has matrix elements of the form

hm|D|ni = (n+ 2)(n+ 1)(�mn +m2�m(n+ 1)) (5.71)

Since this matrix is triangular, its eigenvalues are the elements of the diagonal hn|D|ni =
(n+ 2)(n+ 1). This gives a spectrum for the possible values of the coupling constant as

g2 = (2⇡)2(n+ 2)(n+ 1) (5.72)

With n 2 {0, 1, 2, 3, · · · }. For the ground state of this model n = 0, the eigenvector

solution is of the form p0(�0) = m2�0 + �02.

Finally it is important to remember the limitations of this analysis. First, the decou-

pled sector of �2 and �3 were not analysed and may give additional eigenvectors for the

spectrum of the BSE. Second, there may be additional solutions based on distributions

such as Dirac deltas and its derivatives. Third, this basis can give divergent integrals for

the amplitude, which may require a renormalization procedure.



6 Conclusion

In this thesis, the Wick-Cutkosky model and the fermion bound state problem were

investigated in the framework of the Bethe-Salpeter equation in the ladder approximation,

in order to obtain better methods to study relativistic bound states in a quantum field

theory. It is essential to further develop new methods since the bound state problem

in Minkowski space is still an undeveloped research field. Although there are numerous

methods to solve it with the euclidean metric, such as Wick rotated BSE and lattice

field theory, the Minkowski space BS amplitude is necessary in order to compute some

dynamical observables, such as form factors.

The Wick-Cutkosky model was analysed and rederived using two new methods based

on the Nakanishi representation. The first expanded one of the integrals into a serie using

integration by parts, and the second transformed the integral equation into a di↵erential

equation using integration by parts and the uniqueness theorem. These demonstrate that

the Wick-Cutkosky is a great toy model that can be used to test new analytical approaches

for the BSE.

The fermionic BSE in the ladder approximation was analysed using the Nakanishi rep-

resentation projected onto the Light Front. The analysis followed from the work developed

in (CARBONELL; KARMANOV, 2010), however in this thesis form factors or regulators were

not used in order to deal with problematic divergent integrals. Instead, it was proposed to

changed the order of the Nakanishi representation and calculate directly integrals which

turned out to be Dirac delta functions or its derivatives. Thus, it was possible to present

some corrections necessary for the fermionic light-front projected BSE.

Building on the results presented in this Thesis, there are new interesting problems to

investigate in order to advance the understanding of relativistic bound states. These may

include fermions in 2 + 1 dimensions for bidimensional materials, a deeper investigation

of the massless fermion bound state since it has a simpler analytic structure and possibly

finding a fermionic analogue of the Wick-Cutkosky model, crossed-box contributions for

the Wick-Cutkosky model and the fermion bound state and develop a method that does

not rely on the LF projection but uses the Nakanishi representation in euclidean space.
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Appendix A - Useful Integrals

In this appendix we derive some useful integrals formulas used through the thesis, in

an e↵ort to improve the understandability of the calculations.

A.1 Feynman Parametrization

The Feynman parametrization is a key ingredient in the usual algorithm to perform

the loop integrals in quantum field theory. The main idea is to note that the denominator

in each propagator is a second order polynomial in the fields momenta, so any linear

combination of them is also a second order polynomial. In this section we derive the

relation for only two denominators A and B. First, observe the integral formula

Z 1

0

dv
1

(y + vx)2
=

1

y

1

x+ y
(A.1)

Now, we can set y = A and x = B � A and we have

Z 1

0

dv
1

(A+ v(B � A))2
=

1

AB
(A.2)

If we want a formula for 1
ABn

instead, we need only to di↵erentiate n� 1 times in B

@n�1

@Bn�1

Z 1

0

dv
1

(A+ v(B � A))2
=

@n�1

@Bn�1

1

AB
(A.3)

(�1)n�1(n)!

Z 1

0

dv
vn�1

(A+ v(B � A))n+1
= (�1)n�1(n� 1)!

1

ABn
(A.4)

n

Z 1

0

dv
vn�1

(A+ v(B � A))n+1
=

1

ABn
(A.5)
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A.2 d4k Integration

Usually, the second step in a loop integral is to execute a d4k integral that can be

written in the general form

Z
d4k

(k2 + b+ i✏)n
(A.6)

Here k is a four-vector and b a real number. Since k2 = k2
0 � k2

1 � k2
2 � k2

3, we can

perform (A.6) as a sequence of four unidimensional integrations of the form

Z
dki

(k2
i + bi + i✏)n

(A.7)

Where the limits of integration are implicitly from �1 to 1. To solve this unidimen-

sional integral, first we start with the case n = 1, which has a known primitive

@

@ki

tan�1(ki/
p
bi)p

bi
=

1

k2
i + bi

(A.8)

Which permit us to evaluate the integral (A.7) for n = 1

Z
dki

(k2
i + bi + i✏)

=
⇡p
bi

(A.9)

For the case n > 1 we di↵erentiate n� 1 times in bi and obtain

Z
dki

(k2
i + bi + i✏)n

=
⇡(1/2)(3/2) · · · (n� 2 + 1/2)

(n� 1)!bn�1/2
i

(A.10)

The problem now is that the denominator has a half integer exponent, so we also need

the primitive for this case

@

@ki

ki

bi
p

k2
i + bi

=
1

(k2
i + bi)3/2

(A.11)

Which enables us to perform the integral with exponent 3/2

Z
dki

(k2
i + bi + i✏)3/2

=
2

bi
(A.12)
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For a higher half integer exponent n+ 1/2 we di↵erentiate n� 1 times in bi and have

Z
dki

(k2
i + bi + i✏)n+1/2

=
(n� 1)!

((n� 1) + 1/2) · · · (2 + 1/2)(1 + 1/2)

2

(bi)n
(A.13)

Now, we are ready to calculate (A.6), iterating four unidimensional integrations, in

this order: k3, k2, k1, k0.

Z
d4k

(k2 + b+ i✏)n
=
⇡(1/2)(3/2) · · · (n� 2 + 1/2)

(n� 1)!
(A.14)

⇥ 2(n� 2)!

((n� 2) + 1/2) · · · (2 + 1/2)(1 + 1/2)
(A.15)

⇥ ⇡(1/2)(3/2) · · · (n� 3 + 1/2)

(n� 2)!
(A.16)

⇥ 2(n� 3)!

((n� 3) + 1/2) · · · (2 + 1/2)(1 + 1/2)
(A.17)

⇥ i
1

bn�2
(A.18)

= i⇡2 1

n� 1

1

n� 2

1

bn�2
(A.19)

A.3 Loop Integrals

With the tools of the Feynman parametrization and d4k integral, we are now able

to perform a general loop integral. To be concrete, let’s define a loop integral with an

interaction kernel with mass µ acting on a test function 1
(k02+ak0+b)n as

L(a, b, µ, n) =

Z
d4k0 1

(k � k0)2 � µ2

1

(k02 + ak0 + b)n
(A.20)

Where b real number and a is a four-vector proportional to (1, 0, 0, 0) . It is interesting

to note that there is an useful recursion formula

L(a, b, µ, n+ 1) = � 1

n

@

@b
L(a, b, µ, n) (A.21)
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Now, we perform a Feynman parametrization to join the denominators

L(a, b, µ, n) =

Z
d4k0

Z 1

0

dv
nvn�1

((k02 � 2k · k0 + k2)� µ2 + v((a+ 2k)k0 + (b+ µ2 � k2)))n+1

(A.22)

Complete the squares in the denominator of (A.24)

L(a, b, µ, n) = (A.23)
Z 1

0

dv

Z
d4k0 nvn�1

((k0 + (�k + vk + va/2))2 � (�k + vk + va/2)2 + k2 � µ2 + v(b+ µ2 � k2))n+1

(A.24)

And shift the integration variable k00 ! k0 + (�k + vk + va/2) to perform the d4k0

integral

L(a, b, µ, n) = (A.25)

i⇡2 1

n� 1

Z 1

0

dv
vn�1

(�(�k + vk + va/2)2 + k2 � µ2 + v(b+ µ2 � k2))n�1
(A.26)

The next step is to expand the square term as (�k + vk + va/2)2 = k2 � 2vk · (k +

a/2) + v2(k + a/2)2 in the denominator and obtain

L(a, b, µ, n) = (A.27)

= i⇡2 1

n� 1

Z 1

0

dv
vn�1

(�(�2vk · (k + a/2) + v2(k + a/2)2)� µ2 + v(b+ µ2 � k2))n�1

(A.28)

= i⇡2 1

n� 1

Z 1

0

dv
vn�1

(�v2(k + a/2)2 � µ2 + v(b+ µ2 + k2 + a · k))n�1
(A.29)

= i⇡2 1

n� 1

Z 1

0

dv
vn�1

(v(1� v)(k + a/2)2 + v(b� a2/4) + (1� v)µ2)n�1
(A.30)

This is the general result, however it is also very important to calculate explicity some

common particular n and µ combinations which happens frequently. First, let us set

n = 3, which is the usual n used to solve the BSE. We have
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L(a, b, µ, 3) = (A.31)

= i⇡21

2

Z 1

0

dv
v2

(v(1� v)(k + a/2)2 + v(b� a2/4) + (1� v)µ2)2
(A.32)

=
i⇡2

2
(A.33)

⇥
✓

k2 + ak + b+ µ2

(b� a2/4)
p

(k2 + ak + b+ µ)2 � 4(b� a2/4)µ4
(A.34)

+ 2µ2

log

✓
4(b�a2/4)µ2

(
p

((k2+ak+b+µ2)2�(4b�a2)µ2])2+(k2+ak+b+µ2))2

◆

((k2 + ak + b+ µ2)2 � 4(b� a2/4)µ4)3/2

◆
(A.35)

It is very important to note that the presence of a log µ2 in the expression above,

makes L(a, b, µ, 3) a non-analytic function in µ, so we can’t simply expand it in a taylor

series in µ. In fact, besides the logarithm term, everything else in (A.35) is analytic in

µ2, which enables us to infer a series expression of the form

L(a, b, µ, 3) = c00(a, b, k) +
1X

i=1

(ci0(a, b, k) + ci1(a, b, k) log µ
2)µ2i (A.36)

Also, L(a, b, µ, n) can be written in a series similar to (A.36), since the recursion (A.21)

would preserve the structure in µ2 and only change de coe�cients cij. Moreover, it is useful

to obtain the first order term (i = 1) explicitly in (A.36) to have a good approximation of

L(a, b, µ, 3) in the limit of very small interaction mass µ. Expanding the analytic terms

of (A.35) we have

L(a, b, µ, 3) = L(a, b, 0, 3) (A.37)

+
i⇡2

2

✓
� 1

(b� a2/4)(k2 + ak + b)2
+

4 + 2 log (b�a2/4)
(k2+ak+b)2

(k2 + ak + b)3
(A.38)

+ 2
1

(b� a2/4)(k2 + ak + b)
log µ2

◆
µ2 +O(µ4 log µ2) (A.39)

Where,

L(a, b, 0, 3) =
i⇡2

2

1

(b� a2/4)(k2 + ak + b)
(A.40)

Besides the n = 3 case, it is important to study the massless interaction µ = 0 case,

which is present, for instance, in the Wick-Cutkosky model and the two fermion bound
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state with a massless vector interaction. Since we already have L(a, b, 0, 3) we can obtain

L(a, b, 0, n) with the recursion relation (A.21) and write, for n > 2

L(a, b, 0, n) = � i⇡2

n� 1

⇣
b� a2

4

⌘2�n

� (k2 + ak + b)2�n

(n� 2)
�
a
2 + k

�2 (A.41)

=
i⇡2

n� 1

1

(n� 2)(k2 + ak + b)n�2(b� a2/4)n�2

(k2 + ak + b)n�2 �
⇣
b� a2

4

⌘n�2

�
a
2 + k

�2

(A.42)

=
i⇡2

n� 1

1

(n� 2)(k2 + ak + b)n�2(b� a2/4)n�2

n�3X

i=0

(k2 + ak + b)n�3�i

✓
b� a2

4

◆i

(A.43)

=
i⇡2

n� 1

n�3X

i=0

1

(k2 + ak + b)i+1
�
b� a2

4

�n�2�i (A.44)

(A.45)

That is a very important result, because this self-reproducibility of the test function
1

(k2+ak+b)n when acted by an massless interaction kernel, giving as result a linear combina-

tion of 1
(k2+ak+b)m with 1  m  n�1, is what enabled the discovery of the Wick-Cutkosky

model in the first place.

A second type of loop integral appears in calculations involving fermions, due to the

presence of numerator terms when the propagators are contracted

L(F )(a, b, µ, n) =

Z
d4k0 (p · k)(p · k0)�M2k02

M4

1

(k � k0)2 � µ2

1

(k02 + ak0 + b)n

=

Z
d4k0

~k · ~k0

M2

1

(k � k0)2 � µ2

1

(k02 + ak0 + b)n

Where ~k is, in fact, an abuse of notation to write (0,~k). To solve it, one must use

the same trick as in Eq. (A.24): a Feynman parametrization followed by a shift in the

integration variable. Since the calculation is mostly the same, here we perform it in less

details.
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L(F )(a, b, µ, n) =

=

Z
d4k0

~k · ~k0

M2

Z 1

0

dv
nvn�1

((k02 � 2k · k0 + k2)� µ2 + v((a+ 2k)k0 + (b+ µ2 � k2)))n+1

=

Z
d4k0

Z 1

0

dv
nvn�1~k · ~k0

M2((k0 + (�k + vk + va/2))2 � (�k + vk + va/2)2 + k2 � µ2 + v(b+ µ2 � k2)))n+1

=

Z
d4k00

Z 1

0

dv
nvn�1~k · ( ~k00 � (�k + vk + va/2))

M2((k00)2 � (�k + vk + va/2)2 + k2 � µ2 + v(b+ µ2 � k2)))n+1

=

Z
d4k00

Z 1

0

dv
nvn�1(~k · ~k00 + ~k2(1� v)� ~k · av/2)

M2((k00)2 � (�k + vk + va/2)2 + k2 � µ2 + v(b+ µ2 � k2)))n+1

= i⇡2 1

n� 1

~k2

M2

Z 1

0

dv
(1� v)vn�1

(�(�k + vk + va/2)2 + k2 � µ2 + v(b+ µ2 � k2)))n+1

= i⇡2 1

n� 1

~k2

M2

Z 1

0

dv
(1� v)vn�1

(v(1� v)(k + a/2)2 + v(b� a2/4) + (1� v)µ2)n�1

Where a · ~k = 0 and the term ~k · ~k00 produces an odd integrand, so the integration

vanishes with it, remaining only the (1 � v)~k2 in the numerator. Again, it is important

to calculate explicitly the µ = 0 case

L(F )(a, b, µ, n) = i⇡2 1

n� 1

~k2

M2

Z 1

0

dv
(1� v)vn�1

(v(1� v)(k + a/2)2 + v(b� a2/4))n�1

= i⇡2 1

n� 1

~k2

M2

Z 1

0

dv
(1� v)

((1� v)(k + a/2)2 + (b� a2/4))n�1

Setting n = 4 we have

L(F )(a, b, µ, 4) = i⇡21

3

~k2

M2

Z 1

0

dv
(1� v)

((1� v)(k + a/2)2 + (b� a2/4))3

= i⇡21

6

~k2

M2

1

(b� a2/4)(k2 + ak + b)2
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And since the recursion relation (A.21) is still valid for L(F )(a, b, µ, n)

L(F )(a, b, µ, n+ 1) = � 1

n

@

@b
L(F )(a, b, µ, n) (A.46)

We can iterate it to obtain L(F )(a, b, µ, n) from L(F )(a, b, µ, 4) for a given n � 4 ob-

taining

L(F )(a, b, µ, n) = (�1)n�4 3!

(n� 1)!

@n�4

@bn�4
L(F )(a, b, µ, 4)

= (�1)n
3!

(n� 1)!

@n�4

@bn�4
i⇡21

6

~k2

M2

1

(b� a2/4)(k2 + ak + b)2

=
(�1)n

(n� 1)!
i⇡2

~k2

M2

@n�4

@bn�4

1

(b� a2/4)(k2 + ak + b)2

=
(�1)n

(n� 1)!
i⇡2

~k2

M2

n�4X

i=0

(n� 4)!(i+ 1)(�1)n�4

(b� a2/4)n�i�3(k2 + ak + b)i+2

=
i⇡2

(n� 1)(n� 2)(n� 3)

~k2

M2

n�4X

i=0

(i+ 1)

(b� a2/4)n�i�3(k2 + ak + b)i+2

This result suggests that, while for L(a, b, µ, n) the “simplest” n possible is 3, for

L(F )(a, b, µ, n) the “simplest” n is 4, since for n > 4 the result is a sum. So, it may useful

to treat the fermionic BSE with Nakanishi PITR of di↵erent orders n, specially when

searching for a possible fermionic Wick-Cutkosky model.

A.4 Light-Front Projection

The second tipe of useful integral to be used in this thesis is the Light-Front projection.

These are characterized in the momentum space as an integration in the Light-Front

variable k�, and in the position space they project the given physical system in the

hyperplane x�, giving a Light-Front wave function. This projection is also used as a

regularizator, so that the once singular BS equation can be treated numerically with the

Nakanishi representation.

The simplest of these formulas, and the one from which the general case will be

derived, can be written as
R
dk� 1

(↵k�+�)2 . The main source of di�culty in calculating

these integrals is that the result is a distribution on the variable ↵; generally a delta

function or its derivatives. Therefore, the strategy to calculate this integral will be to
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introduce a cuto↵ 1/� and then to make � ! 0+. Using the scheme, this integral can be

written as

Z 1/�

�1/�

dk� 1

(↵k� + �)2
=

�2�

↵2 � �2�2
(A.47)

Where � is supposed to have a small imaginary part to avoid the pole. To better

understand the behavior as � goes to zero, let us first define the function

⌘�(x) =
1

⇡

�

�2 + x2
(A.48)

Which is called the poisson kernel and is the fundamental solution of the Laplace

equation. One of its important features is that it is normalized to one:
R
dx⌘�(x) = 1 for

any �. However, note that when � ! 0+ ⌘�(x) converges pointwise to zero if x 6= 0, and

converges to 1 if x = 0. Therefore, it exhibit the expected the expected behavior of a

Dirac delta function: 0 if x 6= 0, 1 if x = 0 and norm = 1. In fact, this type of function

is what the mathematicians call an aproximation to identity or nascent delta function.

Futhermore, if one considers its limit as a distribution (also called weak limit), one gets

lim
�!0+

⌘�(x) = �(x) (A.49)

And that is the identity to be used so that we can obtain a delta function from integral

(A.47), since we can write it as

Z 1/�

�1/�

dk� 1

(↵k� + �)2
=

2⇡

�2
⌘�(i

↵

�
) (A.50)

And now we are able to make � ! 0+ and use (A.49) to obtain

Z
dk�

(↵k� + �)2
=

2⇡

�2
�(i

↵

�
)

=
2⇡

�2(i/�)
�(↵)

=
�2⇡i

�
�(↵)
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In the general case, we define the integral, with n � m+ 2

ILF (↵, �,m, n) =

Z
dk�(k�)m

(↵k� + �)n
(A.51)

To obtain a recursion relation, we di↵erentiate (A.51) in ↵ and �

@

@↵

Z
dk�(k�)m

(↵k� + �)n
= �n

Z
dk�(k�)m+1

(↵k� + �)n+1

@

@�

Z
dk�(k�)m

(↵k� + �)n
= �n

Z
dk�(k�)m

(↵k� + �)n+1

Which enable us to write the following recursion relations

ILF (↵, �,m+ 1, n+ 1) =
�1

n

@

@↵
ILF (↵, �,m, n)

ILF (↵, �,m, n+ 1) =
�1

n

@

@�
ILF (↵, �,m, n)

Thus, using the base case n = 2,m = 0, we obtain a formula for any m,n

ILF (↵, �,m, n) =
(�1)n�2

(n� 1)!

@m

@↵m

@n�m�2

@�n�m�2
ILF (↵, �, 0, 2)

=
(�1)n�2

(n� 1)!

@m

@↵m

@n�m�2

@�n�m�2

✓�2⇡i

�
�(↵)

◆

=
(�1)n�2

(n� 1)!

@n�m�2

@�n�m�2

✓�2⇡i

�
�(m)(↵)

◆

=
(�1)n�2

(n� 1)!
(�1)n�m�2(n�m� 2)!

✓ �2⇡i

�n�m�1
�(m)(↵)

◆

= (�1)m+1 (n�m� 2)!

(n� 1)!

✓
2⇡i

�n�m�1
�(m)(↵)

◆

Where �(m)(↵) is a shorthand for @m

@↵m

�(↵).
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A second type of LF projection appears when you have a product of propagators,

such as in the right hand side of the BS equation, where there are the free propagators

multiplying the loop integral. For this type of this situation, we define the following LF

integral formula

I 0LF (↵, �,m, n) =

Z
dk�(k�)m

(k2 + p · k � 2 + i✏)(k2 � p · k � 2 + i✏)(↵k� + � + i✏)n
(A.52)

With n � m. Here we are writting the small imaginary part i✏ explicitly because it is

more convenient, given the methods used to calculate I 0LF . Naturally, in order to integrate

in k�, the free propagators must be written using LF variables. Since k2 = k�k+ � k2
?

and p · k = M
2 (k

+ + k�), we may write the propagators as

k2 ± p · k � 2 = (k+ ±M/2)k� + (±M

2
k+ � 2 � k2

?) (A.53)

First, we calculate the case n = 1, m = 0, and use recursion relations to obtain the

general case, as was done with the previous integral ILF . To simplify let us first write

k2 + p · k � 2 = ↵0k� + �0 and k2 � p · k � 2 = ↵00k� + �00, to have a more compact

notation. In order to evaluate I 0LF (↵, �, 0, 1), we will use the residue theorem.Note that

↵0 = (k+ + M
2 ) > 0 and ↵00 = (k+ � M

2 ) < 0, thus if we close the contour in the lower

plane, we will not have one of these poles, since they are

1.k� = ��00+i✏
↵00

2.k� = ��0+i✏
↵0

3.k� = ��+i✏
↵

And pole 1 is in the upper plane. Also, pole 3 is in the lower plane i↵ ↵ > 0. Let

Res2 and Res3 be the residues of I 0LF at the poles 2 and 3. Now we can use the residue

theorem to evaluate I 0LF (↵, �, 0, 1) making ✏! 0

I 0LF (↵, �, 0, 1) =

Z
dk�

(↵00k� + �00)(↵0k� + �0)(↵k� + �)

= 2⇡i (Res2 +Res3⇥(↵))

= 2⇡i

✓
↵0

(�00↵0 � ↵00�0)(�↵0 � ↵�0)
+

↵⇥(↵)

(�00↵� ↵00�)(�0↵� ↵0�)

◆
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Observe that Res3 has a first-order zero in the variable ↵, as this is important at

delta function manipulations ahead. Using this base integral, we are able to obtain

also the needed integrals used in the fermionic BS equation I 0LF (↵, �, 0, 3), I
0
LF (↵, �, 1, 3),

I 0LF (↵, �, 2, 3), I
0
LF (↵, �, 3, 3), because I 0LF obeys the same recursion relations as I 0LF

I 0LF (↵, �,m+ 1, n+ 1) =
�1

n

@

@↵
I 0LF (↵, �,m, n)

I 0LF (↵, �,m, n+ 1) =
�1

n

@

@�
I 0LF (↵, �,m, n)

Thus, we arrive at

I 0LF (↵, �, 0, 3) =
(�1)2

2

@2

@�2
I 0LF (↵, �, 0, 1)

= ⇡i

✓
@2

@�2
Res2 +⇥(↵)

@2

@�2
Res3

◆

= ⇡i

✓
(�1)(�2)↵0(�↵0)2

(�00↵0 � ↵00�0)(�↵0 � ↵�0)3
+ ↵⇥(↵)

✓
(�1)(�2)(�↵00)2

(�00↵� ↵00�)3(�0↵� ↵0�)
+

(�1)2(�↵00)(�↵0)

(�00↵� ↵00�)2(�0↵� ↵0�)2
+

(�1)(�2)(�↵0)2

(�00↵� ↵00�)(�0↵� ↵0�)3

◆◆

= ⇡i

✓
2↵0↵02

(�00↵0 � ↵00�0)(�↵0 � ↵�0)3
+ ↵⇥(↵)

✓
2↵002

(�00↵� ↵00�)3(�0↵� ↵0�)
+

↵00↵0

(�00↵� ↵00�)2(�0↵� ↵0�)2
+

2↵02

(�00↵� ↵00�)(�0↵� ↵0�)3

◆◆

I 0LF (↵, �, 1, 3) =
(�1)2

2

@

@↵

@

@�
I 0LF (↵, �, 0, 1)

= ⇡i

✓
@

@↵

@

@�
Res2 +

@

@↵

@

@�

✓
Res3

↵
(↵⇥(↵))

◆◆

= ⇡i

✓
@

@↵

@

@�
(Res2) +⇥(↵)

@

@↵

@

@�
(Res3) +

@

@�

✓
Res3

↵
(↵�(↵))

◆◆

= ⇡i

✓
@

@↵

@

@�
(Res2) +⇥(↵)

@

@↵

@

@�
(Res3)

◆
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I 0LF (↵, �, 2, 3) =
(�1)2

2

@2

@↵2
I 0LF (↵, �, 0, 1)

= ⇡i

✓
@2

@↵2
Res2 +

@2

@↵2

✓
Res3

↵
(↵⇥(↵))

◆◆

= ⇡i

✓
@2

@↵2
(Res2) +

@

@↵

✓
⇥(↵)

@

@↵
(Res3) +

Res3

↵
(↵�(↵))

◆◆

= ⇡i

✓
@2

@↵2
(Res2) +

@

@↵

✓
⇥(↵)

@

@↵
(Res3)

◆◆

= ⇡i

✓
@2

@↵2
(Res2) +⇥(↵)

@2

@↵2
(Res3) + �(↵)

@

@↵
Res3

◆

These calculations shows that distributional terms only appears for m � 2 , mainly

due to the first-order zero present at Res3, as the identity ↵�(↵) = 0 cancels this term in

the case m = 1. To obtain the last integral, I 0LF (↵, �, 3, 3), we must use the reverse of the

previous recursion relations

�1

3

@

@�
I 0LF (↵, �, 3, 3) = I 0LF (↵, �, 3, 4)

I 0LF (↵, �, 3, 3) = �3

Z �

�1
d�0I 0LF (↵, �

0, 3, 4)

=

Z �

�1
d�0 @

@↵
I 0LF (↵, �

0, 2, 3)

Where was used the following abuse of notation for the integration:
R �

�1 d�f(�) =
R �

�1 d�0f(�0). And since we already calculated I 0LF (↵, �
0, 2, 3), we can finally have I 0LF (↵, �

0, 3, 3)

I 0LF (↵, �, 3, 3) =

Z �

�1
d�

@

@↵
I 0LF (↵, �, 2, 3)

=

Z �

�1
d�

@

@↵
⇡i

✓
@2

@↵2
(Res2) +⇥(↵)

@2

@↵2
(Res3) + �(↵)

@

@↵
Res3

◆

= ⇡i

Z �

�1
d�

✓
@3

@↵3
(Res2) +⇥(↵)

@3

@↵3
(Res3) + �(↵)2

@2

@↵2
Res3 + �0(↵)

@

@↵
Res3

◆

.These results were always written as derivatives of the residues, in order to have a
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shorter expression. However, they will be used in this thesis to obtain the distributional

parts of these integrals, that were not explicitly calculated in the literature. Thus, let

us write I 0LF (↵, �,m, n) = Regular + Singular, where the singular terms are the ones

containing distributions and the regular terms contain ordinary functions. We now want

to obtain an expanded formula for the singular terms of I 0LF (↵, �, 2, 3) and I 0LF (↵, �, 3, 3)

I 0LF (↵, �, 2, 3) = Regular + ⇡i�(↵)

✓
@

@↵
Res3

◆

= Regular + �(↵)⇡i

✓
�2↵0↵00 � ↵2�0�00

(�↵0 � ↵�0)2 (�↵00 � ↵�00)2

����
↵=0

◆

= Regular + �(↵)⇡i

✓
1

�2↵0↵00

◆

I 0LF (↵, �, 3, 3) = Regular + ⇡i

Z �

�1
d�

✓
�(↵)2

@2

@↵2
Res3 + �0(↵)

@

@↵
Res3

◆

= Regular

+ �(↵)

✓
2⇡i

Z �

�1
d�

@2

@↵2
Res3

◆

+ �0(↵)

✓
⇡i

Z �

�1
d�

@

@↵
Res3

◆

= Regular

+ �(↵)

✓
�2⇡i

�

(�↵0 � ↵�0) (�↵00 � ↵�00)

◆

+ �0(↵)

✓
�⇡i� (�(↵

00�0 + ↵0�00)� 2↵�0�00)

(�↵0 � ↵�0)2 (�↵00 � ↵�00)2

◆

= Regular

+ �(↵)

✓
�⇡i �

(�↵0 � ↵�0) (�↵00 � ↵�00)

����
↵=0

◆

+ �0(↵)

✓
�⇡i� (�(↵

00�0 + ↵0�00)� 2↵�0�00)

(�↵0 � ↵�0)2 (�↵00 � ↵�00)2

����
↵=0

◆

= Regular

+ �(↵)

✓
�⇡i 1

�↵0↵00

◆

+ �0(↵)

✓
�⇡i(↵

00�0 + ↵0�00)

(�↵0↵00)2

◆

As a last step, we must substitute the ↵0,↵00, �0, �00 by the corresponding expressions
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in term of the LF variables such as � and z. Also, it is better to assume already that

↵k�+� corresponds to ones used in this theses, given by the resulting loop integral, since

it enables us to simplify some expressions. So, the variables can be expressed as

↵0 = �M

2
(�1 + z)

↵00 = �M

2
(1 + z)

�0 = �(� +m2 � (1� z)
M2

4
)

�00 = �(� +m2 � (1 + z)
M2

4
)

↵ = v(1� v)
M

2
(z0 � z)

� = �v

✓
+�0 + 2 +

1

4
M2z02

◆
� (1� v)v

✓
�1

4
M2z0 (z0 � z) + �

◆
+ µ2(1� v)

Note that, since the distributions have support only on ↵ = 0, we can substitute z0 by

z in all of the expressions. This makes the singular terms algebrically simpler than the

regular ones. Thus, we may finally write the final expressions for the singular terms of

I 0LF (↵, �, 2, 3) and I 0LF (↵, �, 3, 3)
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I 0LF (↵, �, 2, 3) = Regular +

 
�⇡i�(v(1� v)M2 (z

0 � z))
M2

4 (1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!

= Regular +

 
�8⇡i�(z0 � z)

v(1� v)M3(1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!

I 0LF (↵, �, 3, 3) = Regular + ⇡i

Z �

�1
d�

✓
�(↵)2

@2

@↵2
Res3 + �0(↵)

@

@↵
Res3

◆

= Regular

+

 
�⇡i�(v(1� v)M2 (z

0 � z))
M2

4 (1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�
!

+

 
�⇡i 16z(� +m2)�0(v(1� v)M2 (z

0 � z))

M3(1� z2)2
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!

= Regular

+

 
�8⇡i�(z0 � z)

v(1� v)M3(1� z2)
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�
!

+

 
�⇡i64z(� +m2)�0(z0 � z)

v2(1� v)2M5(1� z2)2
�
v
�
�0 + 2 � 1

4M
2z2
�
+ �(1� v)v � µ2(1� v)

�2

!
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