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Resumo

O avanço cient́ıfico de cristais bidimensionais (2D) como o grafeno e seus análogos levou

ao desenvolvimento de um novo paradigma na f́ısica do estado sólido. Por meio da

combinação de suas propriedades em heteroestruturas de van der Waals, não apenas

novas aplicações tecnológicas são posśıveis, como também o estudo de fenômenos f́ısicos

de interfaces. Propriedades únicas nestes empilhamentos surgem por meio de rotações,

pressões, hibridizações e deformações.

Acompanhando a crescente evolução experimental destes sistemas, este trabalho de

mestrado baseia-se teoricamente para modelar e simular o contato entre materiais 2D em

heteroestruturas verticais por meio do emprego da mecânica quântica e teoria do funcional

da densidade. Em primeiro lugar, um método foi desenvolvido para prever e realizar

simulações destes empilhamentos 2D, levando em conta a eficiência computacional e a

criação de sistemas reaĺısiticos. A técnica, denominada “método das redes coincidentes”,

apresentou excelente concordância com outros dados teóricos e experimentais. Quando

aplicado a um banco de dados de 30 cristais 2D, mais de 700 combinações de baixo custo

computacional foram encontradas.

A aplicação do método apresenta uma série de sistemas de interesse para simulações

ab initio. Os primeiros exemplos apresentados são sistemas com HfS2, ZrS2 e MoS2,

cujas estabilidades e propriedades eletrônicas no contato interfacial foram estudadas.

Em seguida, rotações foram impostas a bicamadas de hBN/MoSe2 e seus efeitos em

propriedades eletrônicas são analisados. Interfaces com fosforeno, MoSe2 e WSe2 também

foram investigadas. Os efeitos da interação de van der Waals sobre as propriedades

estruturais e eletrônicas das bicamadas mostraram-se significativos, aumentando o gap do

fosforeno e levando a hibridizações entre as camadas. Alinhamentos de bandas e gaps foram

modulados por meio do contato, pressão externa e campos elétricos. Finalmente, a validade

da regra de Anderson é questionada pela análise detalhada de dez sistemas bicamada.

Casos nos quais esta regra falha são analisados, e uma teoria é proposta para explicar

estas discrepâncias. Esse trabalho tem importância na investigação de alinhamentos de

bandas e fenômenos f́ısicos de interfaces bidimensionais com aplicações em dispositivos

eletrônicos e optoeletrônicos.



Abstract

The scientific advance of two-dimensional (2D) crystals such as graphene and its analogous

has developed a new paradigm in solid state physics. By combining their properties in van

der Waals heterostructures, not only technological applications are possible, but also the

study of physical phenomena in 2D interfaces. Unique properties arise in these stackings

by rotation, pressure, hybridization and deformations.

Accompanying the growing experiments of these systems, this masters dissertation

is theoretically-based to model and simulate the contact of 2D materials in vertical

heterostructures by employing quantum mechanics and density functional theory. First of

all, a method was developed to predict and perform simulations of 2D stacks, taking into

account computational cost and the creation of realistic systems. The technique, named

“coincidence lattice method”, is in agreement with other theoretical and experimental data.

When applied to a database of 30 2D crystals, more than 700 low-computational cost

combinations are found.

The application of the method presents a series of interesting systems for ab initio

simulations. The first examples are systems with HfS2, ZrS2 and MoS2, whose stabilities

and electronic properties in the interfacial contact are studied. Then, interlayer twists are

imposed to hBN/MoSe2 heterobilayers and their effects in the heterostructure electronic

properties are analyzed. Interfaces with phosphorene, MoSe2 and WSe2 are also investigated.

Effects of van der Waals interaction on structural and electronic properties of the bilayers

are significant, opening the phosphorene gap and leading to hybridization between layers.

Band alignments and gaps are modulated by contact, external pressure and electric field.

Finally, the validity of the Anderson rule is questioned by a comprehensive analysis of ten

bilayer systems. Cases in which this rule fails are analyzed, and a theory is proposed to

explain these discrepancies. This work is important in the investigation of band alignments

and physical phenomena in 2D interfaces with applications to electronic and optoelectronic

devices.
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1 Introduction

1.1 Motivation

Since 2004, the scientific world faces a new paradigm in materials science with the

introduction of graphene, the first atom-thick two-dimensional (2D) crystal structure

obtained from the exfoliation of graphite (NOVOSELOV et al., 2004). For their experiments

with this structure, the Physics Nobel Laureates (2010) Andre Geim and Konstantin

Novoselov leveraged a scientific vanguard to study disruptive features offered by this

2D crystal (GEIM; NOVOSELOV, 2007). Among the outstanding properties displayed

by graphene, it is possible to enumerate its: zero effective mass and ballistic transport

at room temperature (MOROZOV et al., 2008; MAYOROV et al., 2011), which allows

electric current densities six times larger than in copper; Young’s modulus of 1 TPa and

breaking strength of 42 N m−1 (LEE et al., 2008), making it the stronger material known;

excellent thermal conductivity, on the order of 5000 W/mK (BALANDIN et al., 2008);

impermeability to gases (BUNCH et al., 2008); and several others.

Although it holds great potential for electronics, graphene is a zero-gap semiconductor.

The lack of control over charge carriers renders graphene inappropriate to build logic gates,

since it is impossible to switch this material on and off without destroying some of its

useful properties (SCHWIERZ, 2010; SCHWIERZ, 2013). Therefore, the development

of 2D electronics and optoelectronics still has lots of challenges to face before becoming

scalable.

Graphene, however, is not the only 2D crystal available nowadays (XU et al., 2013;

BUTLER et al., 2013; MAS-BALLESTE et al., 2011). Among the most popular 2D crystals

is hexagonal boron nitride (hBN). Its insulating properties in a monolayer crystal are used

for enhanced dielectrics (DEAN et al., 2010), interface decoupling (VERBITSKIY et al.,

2015), avoidance of chemical degradation (MAYOROV et al., 2011) and tunneling barrier

(AMET et al., 2012). The huge band gap is also promising for ultraviolet optoelectronic

devices (PAKDEL et al., 2014) and band alignment engineering (KING et al., 2014).

Another group of widely studied and interesting materials are transition metal dichalco-

genides (TMDCs). Their unique electronic properties include layer-dependent band gap
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in the visible spectrum, which allows band engineering for field-effect transistors (FET)

and flexible and transparent optoelectronic devices (JARIWALA et al., 2014; WANG et

al., 2012). Molybdenum dichalcogenides are notorious examples of useful semiconducting

compounds for electronic devices. FET fabricated with MoS2 have displayed a current

on/off ratio as high as 108 and low power consumption (RADISAVLJEVIC et al., 2011)

while photosensitive devices have shown improved response when compared with graphene

(YIN et al., 2011). Molybdenum diselenide (MoSe2), on the other hand, exhibit a direct

optical band gap of 1.55 eV, which is close to the optimal value for solar cells applications

(TONGAY et al., 2012). Moreover, FET manufactured with MoSe2 have also been reported,

displaying properties such as high temperature dependence (LARENTIS et al., 2012) and

low noise (DAS et al., 2015).

A fourth important example among trending 2D crystals is the monolayer black

phosphorus, named phosphorene (Ph). This buckled single-layer crystal with a rectangular

Bravais lattice is strongly anisotropic (FEI; YANG, 2014) and has an on-off ratio up to

10,000 (LIU et al., 2014). Furthermore, black phosphorus has a direct band gap depending

on the number of layers and up to 1.51 eV in the monolayer case (QIAO et al., 2014). This

crystal suggests application in solar cells, photosensors and atomically-thin transistors.

Different semiconductors can be assembled to take advantage of the amalgamated

properties. In the case of 2D materials, one efficient way of doing this is by stacking

the layers to form van der Waals (vdW) heterostructures (GEIM; GRIGORIEVA, 2013).

The wide library of 2D crystals and the absence of lattice-matching constraints on vdW

stacks broaden possibilities for novel devices based on interface modulation, such as hBN-

based quantum wells (DUFFERWIEL et al., 2015; WITHERS et al., 2015). In general,

heterojunctions are crucial elements in modern electronic, photonic, optoelectronic and

photovoltaic semiconductor technologies (KROEMER, 2001; TSAI et al., 2014). The

electronic properties from each side of the interface can come in three different configurations

(see Fig. 1.1) and determine the joint behavior of the junction. For instance, photovoltaic

action for electron and hole separation requires type-II heterostructures (KITTEL, 2004)

for light-harvesting (SONG et al., 2000), while light-emitting diodes benefit from a type-I

band alignment (KITTEL, 2004) for a high emission efficiency (WALTEREIT et al., 2000).

Vertical tunneling field effect transistors (TFETs) may count on (nearly) broken-gap

alignment, or type-III (KITTEL, 2004), for better performance (YAN et al., 2015).

vdW heterostructures based on atomically thin 2D crystals are fundamentally different

and more flexible than those based on conventional covalently bonded semiconductor

interfaces. Their arrangement can be made with almost arbitrary order and orientation

(GEIM; GRIGORIEVA, 2013). The lack of strong bonds between vdW materials enables

for high-quality interfaces without the constraint of atomically precise commensurability

(CHHOWALLA et al., 2013; LEE et al., 2014; ARGENTERO et al., 2017). These
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FIGURE 1.1 – Band alignments for semiconductor heterojunctions. For each material (1
or 2) on the interface, the valence band maximum (VBM) and conduction band minimum
(CBM) are shown.

characteristics make vdW heterostructures promising to the future of electronics and

optoelectronics.

Up to now, however, no theory has been developed to fully describe the band alignments

in vdW-bonded crystals. Therefore, this dissertation tackles a main question on the

understanding of vdW heterostructures: how do band alignments and band offsets, which

determine any heterojunction, behave on such interfaces? To handle this question from

a theoretical perspective, we break this investigation into four subquestions: (i) how to

simulate vdW heterostructures using ab initio calculations with low computational cost

and realistic modeling? (ii) How do stacking and rotation influence the electronic properties

of vdW interfaces? (iii) How does external perturbations, such as pressure and electric

field tune the interface properties and band alignments? And (iv) what are the underlying

rules for band alignments in these interfaces, and do the electron affinity rule apply for

such contacts?

In this work, we present a systematic work on 2D crystals and their vdW heterostruc-

tures to answer these questions. From the development of a mathematical method to

simulate these systems to comprehensive analysis of their electronic properties, we push

the boundaries of our current understanding of band alignments on 2D crystals and vdW

heterojunctions.

1.2 Objectives

This dissertation aims to provide theoretical descriptions of monolayer 2D systems and

their vdW heterostructures using mathematical models and first-principles calculations.

We propose ourselves to supply reliable and systematic content on structural and electronic

properties of these systems. We also try to explain phenomena arising in these interfaces

using current physical and chemical theory, emphasizing the importance of theoretical

predictions to develop new technology.
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1.3 Structure

This dissertation is structured as follows, according to the sequence of its chapters:

1. Introduction, in which the context of 2D materials and vdW heterostructures is

presented, as well as the problems to be tackled and goals to be reached in this

dissertation;

2. Theoretical methodology, which describes the theoretical principles used in this

work, from topics on quantum mechanics to the density functional theory. The

coincidence lattice method, which provides a method to predict favorable vdW

heterostructures, is also presented;

3. Prediction of coincidence lattices, which provides a benchmark of 2D monolayers,

a validation of the coincidence lattice method and favorable combinations for studying

electronic properties and band alignments of vdW heterostructures;

4. Influences of stacking and rotation on band alignments, in which the co-

incidence lattice method is employed to understand the influences of stacking of

lattice-matched and -mismatched HfS2, ZrS2 and MoS2 heterobilayers on their elec-

tronic properties. The effects of the interlayer twist on electronic and structural

properties of hBN/MoSe2 heterostructures are also studied;

5. Influences of external perturbations on band alignments, in which stacks

of phosphorene combined with MoSe2 and WSe2 are studied and a series of novel

phenomena due to stacking and external effects are demonstrated. Furthermore,

band offsets are tuned by external perturbations;

6. Validity of the Anderson rule, which presents a comprehensive analysis of band

alignments for ten heterocombinations of 2D crystals with tin dichalcogenides. Then,

the application of the Anderson rule to vdW heterostructures is questioned, and a

theory to describe failures of the model is proposed;

7. Conclusions, which summarize the results found, positioning them in the scientific

context of this work.



2 Theoretical methodology

In this chapter, fundamental concepts to be used in this dissertation are introduced.

We start from concepts on quantum mechanics and solid state physics, which are the

founding stones for this work. Then, the Hartree-Fock approximation and the Density

Functional Theory are introduced as the main tools of electronic structure calculations.

2.1 Schrödinger equation

The foundation of the entire quantum mechanics is the Schrödinger equation and a

set of postulates (PIZA, 2009; SAKURAI; NAPOLITANO, 2013). Its description relates

the temporal evolution of a wavefunction according to its conditions. These latter are

described by means of a hamiltonian operator Ĥ containing the entire dynamics of the

system. Therefore, the Schrödinger’s equation is described in its operator format,1

ĤΨ = i~
∂

∂t
Ψ, (2.1)

where Ψ is a wavefunction subject to the normalization

∫
R3

Ψ∗(r,t)Ψ(r,t)d3r = 1. (2.2)

Eq. (2.1) can be rewritten as function of the kinetic (T̂ ) and potential (V̂ ) energy operators,

(T̂ + V̂ )Ψ = i~
∂

∂t
Ψ. (2.3)

Considering a time-independent potential, the problem can be solved using the separa-

tion of variables

Ψ(r, t) = ψ(r)ϕ(t), (2.4)

1The spacial and temporal dependency of the wavefunctions is sometimes implicit to avoid notation
overload.
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leading to an equation with a only spatial or temporal dependency, as described by the

eigenvalues spatial equation

(T̂ + V̂ )ψ =

(
− ~2

2m
∇2 + V̂

)
ψ = Eψ, (2.5)

and the temporal equation

i~
∂

∂t
ϕ = Eϕ. (2.6)

Equation (2.5) allows us to find the eigenstates of the hamiltonian Ĥ, while Eq. (2.6)

determines the dynamics of the wavefunctions evolution.

Expected values for observables in a quantum mechanical system can be made by

integrating the wavefunction ψ in R3. For a generic operator Â,

〈A〉ψ =

∫
ψ∗(r)Âψ(r)d3r, (2.7)

or, using the Dirac notation,

〈A〉 = 〈ψ|Â|ψ〉. (2.8)

2.2 Bloch theorem

By applying the Schrödinger equation to an electron in a solid, it is possible to obtain

its behavior, essential to the Solid State Physics. By definition, crystals are ordered

and periodic arrangements of atoms. This ordering is described by a Bravais lattice

(ASHCROFT; MERMIN, 1976),

R = m1a1 +m2a2 +m3a3, (2.9)

with ai vectors in R3 and mi integer numbers. The vectors ai enclose a region in R3 defined

as the crystal unit cell. It has all information of the periodic crystal and is at least one

period of it.

The position of the atoms in the crystal is described by an atomic basis. Therefore, it

is possible to mathematically replicate a unit cell with atoms in well-defined positions in

all space, thus defining an infinite crystalline solid. In this case, the potential felt by the
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electron obeys

V (r) = V (r + R). (2.10)

The electron wavefunction in this periodic potential is given by the Bloch theorem

(ASHCROFT; MERMIN, 1976),

ψnk(r) = eik·runk(r), (2.11)

where k is the wavevector, n the band index and unk(r) is a function with the periodicity

of the Bravais lattice, that is,

unk(r) = unk(r + R). (2.12)

Consequently, the wavefunction has the property

ψnk(r + R) = eik·Rψnk(r). (2.13)

An interpretation can be assigned to these results. Eigenstates of the hamiltonian operator

associate a wavevector k for each wavefunction k that obeys the periodicity given by Eq.

(2.13).

To allow for the analysis of an infinite solid from the finite solid limit, it is useful

to impose some boundary conditions to the wavefunctions. Usually, Born-von Karman

boundary conditions are adopted by its periodicity treatment in arbitrarily larger volumes.

These conditions require that

ψ(r +Niai) = ψ(r), i = 1,2,3, (2.14)

where Ni are integer numbers related to the number of unit cells in the direction of the

vector ai. The total number N of primitive cells on the finite crystal with the Born-von

Karman conditions is

N = N1N2N3. (2.15)

According to Eq. (2.13), we should have

ψnk(r +Niai) = eik·Niaiψnk(r), (2.16)
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that is,

eik·Niai = 1. (2.17)

A way to satisfy the Eq. (2.17) is to define a set of vectors bi given by


b1 = 2π a2×a3

a1·(a2×a3)

b2 = 2π a3×a1

a1·(a2×a3)

b3 = 2π a1×a2

a1·(a2×a3)

, (2.18)

The linear combination G of these vectors,

G = n1b1 + n2b2 + n3b3. (2.19)

defines the reciprocal lattice of the crystal. Therefore, Bloch wavevectors k are given by

k =
3∑
i=1

mi

Ni

bi, (2.20)

satisfying Eq. (2.17).

Reciprocal lattice vectors given by (2.18) are analogous to those from the direct lattice

of Eq. (2.9). It is possible to understand the former as a Fourier series to the discrete

space of the latter. Therefore, it is natural that the reciprocal lattice (2.19) is periodic

and has a primitive cell. The smallest cell of the reciprocal lattice and centered at the

point (0,0,0) is called first Brillouin zone (1BZ).

For 2D materials, the solid is treated as if one of the direct lattice vectors is much

larger than the others, asymptotically leading to the 2D case. In this case, one of the

reciprocal lattice vectors would have norm close to zero and its 1BZ would be 2D as well.

A Fourier analysis is now possible, using the wavefunctions from Eqs. (2.11) and (2.12),

ψnk = eik·r
∑
G

cnke
iG·r. (2.21)

In this case, the wavefunction ψnk was decomposed in a series of plane waves with momenta

given by vectors G of the reciprocal lattice. The kinetic energy of a plane wave is calculated

by

−~2

2m
∇2eiG·r =

−~2G2

2m
eiG·r. (2.22)
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To obtain a computationally feasible approximation, it is necessary to truncate the

Fourier series from Eq. (2.21). In general, this is made by truncating the vectors G

describing the basis of ψ in Eq. (2.22) up to a maximum plane waves kinetic energy.

As higher energy components represent faster oscillations, adequate descriptions for

macroscopic systems such as solids can be obtained by this truncation. The criterion

to determine this limit, however, has to be derived from convergence analysis of the

wavefunction under study.

2.3 Hartree-Fock approximation

Up to now, only the problem of an electron in a periodic potential was treated. When

considering an atomic, molecular or solid system, the complexity increases. For an

interacting many-body system with the Coulomb potential, the hamiltonian is

Ĥ = T̂ + V̂ + V̂int, (2.23)

where T̂ and V̂ are the operators given by the sum of the kinetic and Coulomb potential

energy of all particles, respectively, and V̂int is the interacting energy between particles.

If we consider the mass of the atomic nuclei much larger than those from electrons, it is

possible to approximate a solid by fixing the atomic nuclei. Then, the kinetic energy of the

wavefunction is solely due to electrons. This also simplifies the repulsion between nuclei

and allow us to fix the Coulomb potential of the atom as an external potential V̂ext acting

towards the electrons. With this simplification, called Born-Oppenheimer approximation

(ASHCROFT; MERMIN, 1976), the hamiltonian of the many-body system is written as

Ĥ = − ~2

2me

∑
j

∇2
j︸ ︷︷ ︸

T̂

+
∑
j

Vext(rj)︸ ︷︷ ︸
V̂

+
1

2

e2

4πε0

∑
j

∑
k 6=j

1

|rj − rk|︸ ︷︷ ︸
V̂int

. (2.24)

From this point on, it is useful to employ atomic units to the description of the

equations. Conveniently, we adopt

1

4πε0

= e = ~ = me = 1. (2.25)

In the Hartree system of units, the quantities from Eq. (2.25) are dimensionless. The

length unit is the Bohr radius (0,529 Å), the speed of light is the inverse of the fine structure

constant (approximately 1/137) and energies are given in Hartree, with 1 H = 27.2114

eV = 4.359 · 10−18 J. The convenience of this system of units lies in the absence of small
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constants such as ~ in calculations — which is useful in computational representations

of the floating-point values — and in the simplified notation we obtain. Therefore, Eq.

(2.24) is rewritten as

Ĥ = −1

2

∑
j

∇2
j +

∑
j

Vext(rj) +
1

2

∑
j

∑
k 6=j

1

|rj − rk|
, (2.26)

which, for the Coulomb potential, is equivalent to

Ĥ = −1

2

∑
j

∇2
j +

∑
j

∑
k

Zk
|rj −Rk|

+
1

2

∑
j

∑
k 6=j

1

|rj − rk|
, (2.27)

where Zk is the charge of the atomic nucleus indexed by k, with Rk its respective position.

From the given hamiltonian, it is possible, in principle, to solve the Schrödinger equation.

However, when one observes Eq. (2.27), it is seen that a system with N electrons, each one

described by a vector rj in R3, has a Schrödinger equation dependent of 3N coordinates.

Since the number of parameters necessary to solve the equation scales exponentially with

the number of coordinates, the problem quickly turns to be unfeasible. Furthermore, the

electron-electron interaction is not determined in an analytical manner, which further the

complexity of the Schrödinger equation.

To work around these problems, more approximations can be made. A first one is the

Hartree-Fock (HF) approximation (PARR, 1980). It is based on the variational principle of

quantum mechanics, which states that if ψ is the ground state of the hamiltonian operator,

then

〈ψ|Ĥ|ψ〉 ≤ 〈φ|Ĥ|φ〉, (2.28)

for all wavefunctions φ. The search for the ground state, therefore, can be done by

minimizing the expected value of the energy, as in Eq. (2.28). Usually, this is made

possible using trial functions ψα and minimizing the expected value of the hamiltonian

with respect to the parameter α.

The HF approximation supposes a family of wavefunctions Φ satisfying the properties of

a fermionic or bosonic system. In the case of fermions, such as electrons, this wavefunction

is antisymmetric when the spin is included. Therefore, the exchange of two particles leads
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only to a 180◦ phase shift. In the HF method, Φ is described by a Slater determinant,

Φ(r1σ1, . . . , rNσN) =
1√
N !

det


φ1(r1)σ1(χ1) . . . φ1(rN)σ1(χN)

...
...

φN(r1)σN(χ1) . . . φN(rN)σN(χN)

 , (2.29)

where φi form a set of orthonormal orbitals. Based on this family of functions, the expected

value of the hamiltonian is minimized. To do so, the Lagrange multipliers method is

employed to the space of functions φi. Mathematically, this requires a functional derivative

of the Schrödinger equation with respect to the trial function given by (2.29),

δ

δφ∗i

[
〈Φ|Ĥ|Φ〉 −

∑
j

εj (〈φj|φj〉 − 1)

]
= 0, (2.30)

where εj are the Lagrange multipliers of the problem. Applying the hamiltonian from Eq.

(2.27) in the Schrödinger equation and further development of the Eq. (2.30) allows us

to obtain an expression to the electronic interaction. This leads us to the Hartree-Fock

equations, which consist in a system of differential equations similar to the Schrödinger

equation, given by

[
−∇

2

2
+ Vext(r) + VH(r) + Σ̂X

]
φi = εiφi, (2.31)

where the electron-electron interaction is divided into a classic contribution VH , the Hartree

term, with

VH(r) =
∑
j

∫
|φj(r′, σ)|2

|r− r′|
d3r′ =

∑
j

∫
n(r′)

|r− r′|
d3r′, (2.32)

and a quantum contribution Σ̂X , the Fock term, with

Σ̂Xφi = −
∑
j

∫
φi(r

′, σ)φ∗j(r
′, σ)φj(r, σ)

|r− r′|
d3r′. (2.33)

Equation (2.32) can be written in terms of the electronic density n(r), while Eq. (2.33)

can be only expressed in terms of orbitals φi. The slow part of this method consists in

the calculation of these contributions, also known as the exchange expression. Since the

algorithm is of order O(N2), the computational complexity is high in this method.

The HF method allows us to iteratively solve the problem. A first trial is given by
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the superposition of orbitals of interest to define Eq. (2.29). Then, the Hartree and

Fock operators are constructed based on Eqs. (2.32) and (2.33). From this point on, the

problem is reduced to a matrix diagonalization, in which the new eigenstates φi satisfying

the HF equations should be found. Once these eigenstates are found, the Hartree and

Fock operators can be constructed again, and the procedure can be repeated. This cycle is

known as the self-consistent cycle, and is useful for the numeric convergence of the problem.

In general, stopping criteria have to be defined to halt the self-consistent cycle. Some

possibilities are the variation of the total energy of the eigenvalues between two iterations.

As a first approximation, the HF method is surprisingly useful. Most popular in

quantum chemistry due to its approach using wavefunctions and orbitals, it reasonably

describes atomic and molecular systems. However, significant deviations are found when

comparing the theoretical results with measurements, since the Slater determinant is

not able to adequately describe the complete wavefunction. By definition, the Slater

determinant does not represent the correlation between electrons, that is, the Coulomb

repulsion one electron imparts on the other. This is due to the local dependency of each

orbital φi.

2.4 Density Functional Theory

In quantum mechanics, the wavefunction of a system is enough to describe it com-

pletely. The HF method has shown a perspective to solve many-body problems using

an approximation to the wavefunction and solving a system of differential equations in

a self-consistent manner. This method, however, has main disadvantages regarding high

computational efforts and the absence of correlation effects.

In 1964, Walter Kohn and Pierre Hohenberg proposed a theory that immediately shifted

this paradigm in quantum mechanics. Instead of depending solely on the wavefunction, the

Density Functional Theory (DFT) proves that properties of physical systems, such as total

energy, are functionals of the electronic density n(r) of the ground state. Therefore, there

is a mapping between a three-variable function n(r) to a real number, which is a quantity

of interest. Furthermore, the DFT presents an exact derivation for the calculation of these

properties. Although an analytical and closed theory for the DFT is not yet available,

studies are still being made in this line to improve the description of electronic systems.

It is immediately evident that making calculations with a real function of three

variables is much simpler than solve differential equations with 3N -variable systems. The

improvement in terms of computational effort and accuracy renders DFT a good alternative

to the HF procedure, specially when the systems under investigation are solids.
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2.4.1 Hohenberg-Kohn theorems

The theorems of Hohenberg-Kohn determine the exactness of DFT (HOHENBERG;

KOHN, 1964). In the first theorem, it is shown that there is an injection between the

electronic density n(r) of the ground state and a potential up to a constant. In other

words, given an electronic density of the ground state, it is possible to find a family of

potentials differing by less than a constant, that generates this ground state electronic

density.

The formal demonstration of this first theorem is surprisingly simple. It is made by

contradiction, supposing, in the first place, that there are two potentials Vext,1(r) and

Vext,2(r) that differ by more than a constant, but lead to the same ground state electronic

density n(r). Both potentials determine two hamiltonians Ĥ1 and Ĥ2, similarly to Eq.

(2.24). Consequently, two different wavefunctions, Ψ1 and Ψ2, are associated to these

operators.

Given that both wavefunctions are distinct, the variational principle from Eq. (2.28)

assures that

〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉. (2.34)

Replacing a hamiltonian such as Ĥi = T̂ + V̂ee + V̂ext,i in Eq. (2.34) leads to

〈Ψ1|T̂ + V̂ee + V̂ext,1|Ψ1〉 < 〈Ψ2|T̂ + V̂ee + V̂ext,1|Ψ2〉. (2.35)

However, the expected value of the external potential is better understood using the

notation from Eq. (2.7),

〈Ψi|V̂ext,1|Ψi〉 =

∫
ψ∗i (r)Vext,1ψi(r)d3r =

∫
Vext,1ni(r)d3r. (2.36)

Since by hypothesis both wavefunctions have the same density,

n(r) = ψ∗1(r)ψ1(r) = ψ∗2(r)ψ2(r), (2.37)

the inequality from Eq. (2.35) is simplified to

〈Ψ1|T̂ + V̂ee|Ψ1〉 < 〈Ψ2|T̂ + V̂ee|Ψ2〉. (2.38)
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Repeating the same procedure but exchanging Ψ1 by Ψ2 leads to

〈Ψ2|T̂ + V̂ee|Ψ2〉 < 〈Ψ1|T̂ + V̂ee|Ψ1〉. (2.39)

Equations (2.38) and (2.39) cannot be simultaneously satisfied, rendering the initial

hypothesis an absurd and completing the proof. Therefore, it is not possible to two

potentials which differ by more than a constant to lead to the same electronic density of

the ground state. As a corollary of the first Hohenberg-Kohn theorem, the density can be

used to completely describe any quantum mechanical system.

The consequence of this demonstration is more useful than it seems. It implies that

the knowledge of the electronic density of the ground state allow us to find the potential

of the system, thus, its eigenstates and eigenvalues.

The second Hohenberg-Kohn theorem attests that the electronic density of the ground

state of a system also minimizes its energy. The demonstration is evident: if the density of

the ground state does not minimizes the energy, then, there is another density for which

the energy is minimum. Invoking the variational principle, the initial density could not be

that from the ground state.

Based on both Hohenberg-Kohn theorems, all informations from a system may be

derived from the electronic density. Therefore, it is possible to assure the existence of a

functional from the density to the energy,

E[n(r)] = 〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉, (2.40)

that can be rewritten in terms of the external potential and the electronic density as

E[n(r)] = 〈Ψ|T̂ + V̂ee|Ψ〉+

∫
n(r′)Vext(r

′)d3r′. (2.41)

A usual way to write the expected value of the kinetic energy and the electron-electron

interaction is

F [n(r)] = min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉, (2.42)

leading to the ground state energy

E[n(r)] = F [n] +

∫
n(r′)Vext(r

′)d3r′. (2.43)

Many-body problems can be exactly solved using DFT. All derivations have been
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made exact, and no approximation was made to Eq. (2.43). Thus, it suffices to know the

functional of F [n] in its exact form to solve all problems of energy in quantum systems.

However, since it is not known, an approximate framework for the DFT is necessary.

2.4.2 Kohn-Sham scheme

The Kohn-Sham scheme is one of the first ways to solve many-body problems within

the DFT (KOHN; SHAM, 1965). Its model bypasses one major problem in the description

of electronic systems, namely the interaction term between particles. It creates a non-

interacting system of particles that have exactly the same ground state electronic density

of the interacting system. According to the first Hohenberg-Kohn theorem, both systems

must have the same energy, since they share the same electronic density of the ground

state.

The fictitious non-interacting system is best represented by a Slater determinant, as in

Eq. (2.29). The DFT formalism allow us to write the unknown functional F [n] as

F [n(r)] = U0[n] + T0[n] + Exc[n], (2.44)

where U0[n] and T0[n] are functionals relating the potential and kinetic energy, respectively,

of a non-interacting system. The exchange-correlation (XC) energy Exc cover all unknown

information about the problem, i.e.

Exc[n] = Vee[n]− U0[n] + T [n]− T0[n], (2.45)

where Vee[n] are T [n] the electron-electron interaction and the kinetic energy, respectively,

of the real system.

Having built a system in which particles are decoupled, the solution is quite similar to

the HF method. The orbitals φi are chosen in such a way that the electronic density is

given by

n(r) =
∑
i

|φi(r)|2. (2.46)

The kinetic and potential energies of the system are obtained exactly as in the HF method,

T0[n] = −1

2
〈Φ|∇2|Φ〉 = −1

2

∑
i

∫
φ∗i (r)∇2φi(r)d3r, (2.47)
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and

U0[n] =
1

2

∫∫
n(r)n(r′)

|r− r′|
d3rd3r′. (2.48)

We want to minimize the energy

E[n] = T0[n] + U0[n] + Exc[n] +

∫
Vext(r)n(r)d3r, (2.49)

subject to the normalization restriction to each orbital,

〈φi|φi〉 = 1, (2.50)

which, on its turn, implies that the density is given by

∫
n(r)d3r = N. (2.51)

As in the HF approximation, the minimization of the energy subject to a restriction is

made by Lagrange multipliers, leading to the equation

[
−∇

2

2
+ VKS(r)

]
φi(r) = εiφi(r), (2.52)

where the Kohn-Sham potential VKS is defined by

VKS = Vext + Vxc + VH. (2.53)

XC potentials Vxc, as well as Hartree potentials VH, are obtained by functional derivatives

Vxc =
δ

δn(r)
Exc[n], (2.54)

and

VH =
δ

δn(r)
U0[n] =

∫
n(r′)

|r− r′|
d3r. (2.55)

The Kohn-Sham scheme allows us to solve the problem iteratively. First of all, the

density is initialized with an appropriate value for the system under study, such as a set of

atomic orbitals in an non-interacting system. Then, the Kohn-Sham potential is calculated

and solved from Eq. (2.52) and the density is obtained again. The process is repeated
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until the stopping criteria is reached. Its implementation is simpler than the HF method

because of the absence of a complex calculation such as the Fock operator. Therefore,

DFT calculations are more efficient in terms of computational efforts when compared to

its HF counterpart.

Up to now, however, the XC potential, as well as the expression for the XC energy, are

still unknown. Nevertheless, as stated before, all passages are exact within the Kohn-Sham

scheme. To solve real problems, approximations are necessary, which justifies the creation

of systems which adequately describe the XC term.

2.4.3 Local Density Approximation

The local density approximation (LDA) is a first possible procedure to deal with the

XC indeterminacy. Its solution was proposed by Kohn and Sham back in 1965 (KOHN;

SHAM, 1965). The first deviation from the exact framework is to consider that the XC

energy in an electronic system is identical to that seen in an homogeneous electron gas.

This delocalized model, specially useful for infinite solids with the appropriate boundary

conditions, asks for a more suitable definition of the XC energy Exc[n] in terms of a density

of XC energy exc[n],

Exc[n] =

∫
exc[n]n(r′)d3r′. (2.56)

If we use plane waves — which are uniform electronic densities in space — as orbitals

in Eq. (2.33), we derive an analytical expression to the non-interacting electrons Fock

operator. Thus, the density of exchange energy is given by

ex[n] = −3

4

(
3

π

)1/3

n1/3. (2.57)

The correlation term is more complicated and does not possesses an analytical devel-

opment (ENGEL; DREIZLER, 2011; BECHSTEDT, 2015). Approximations made by

Quantum Monte Carlo simulations (CEPERLEY; ALDER, 1980) or the Random Phase

Approximation are used to fit analytical expressions to this term (PERDEW; ZUNGER,

1981).

The LDA considers all electrons delocalized, but is able to describe surprisingly well

the systems of interest. In solids, for example, the bond lengths are underestimated.

Nevertheless, its accuracy is quite remarkable, with less than 5% of deviation from

measurements (BECHSTEDT, 2015). Energy gaps in semiconductors and insulators,

however, are severely underestimated by LDA. It is not uncommon to find errors superior
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to 50% when these calculations are confronted with experiments (BECHSTEDT, 2015).

2.4.4 Generalized Gradient Approximation

An improvement over LDA can be made if non-local terms are included in the XC

energy functional. Correlation is intrinsically non-local, and is overlooked by LDA when

considered as a power of the density. To better the approximation, the energy expression

is made also a functional of the density gradient, naming this technique “Generalized

Gradient Approximation” (GGA), in a functional such as

Exc[n] =

∫
f [n,∇n]d3r. (2.58)

Initially proposed by Perdew and Yue (PERDEW; YUE, 1986) and later implemented

within the popular functional PBE (PERDEW et al., 1996; PERDEW et al., 1997), the

GGA model has the format (PARR, 1980)

Exc[n] =

∫
n(r)ex[n]Fxc(s)d

3r, (2.59)

where Fxc is an enhancement factor such that, for the homogeneous electron gas,

s =
|∇n|
2kFn

, (2.60)

with

kF = (3π2n)1/3. (2.61)

Beyond the more accurate description when compared to the LDA, thanks to the non-

locality of the functional treatment, the GGA overestimates bond lengths when compared

to measurements. However, no more than 3% of error is found, with a mean error of

up to 0,95% for a set of selected 3D solids (BECHSTEDT, 2015). Just like LDA, the

semiconductor and insulators band gap is underestimated. Its value can be as low as 30%

of the measurements (BECHSTEDT, 2015).

2.4.5 Hybrid functionals

Since both DFT and HF present different advantages and drawbacks, one could think

of performing joint DFT and HF calculations to obtain more accurate results. After all,

HF has an exact exchange, while DFT deals correctly with correlation, which could lead
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to better calculations.

Becke (1993) proposed the use of hybrid functionals, in which the hybrid XC energy

Ehyb
xc is composed by a mixture of the DFT and HF energies, following a linear relationship

such as (FIOLHAIS et al., 2003)

Ehyb
xc = EHF

x + (1− a)(EDFT
x − EHF

x ) + EDFT
c . (2.62)

Becke (1993) introduces the use of the parameter a as 1/2. In the case of a = 1/4, derived

with the variational principle, the hybrid functional PBE0 is obtained (PERDEW et al.,

1996). Although the energy is improved in these systems, the convergence starts to be a

problem in solids due to the long-range integral from HF calculations. Heyd et al. (2003)

came up with the idea of dividing the exact exchange term in two parts: a short-range

part and a long-range one. In this case, the XC energy is written as

EHSE06
xc =

1

4
EHF,sr

x (µ) +
3

4
EGGA,sr

x (µ) + EHF,lr
x + EGGA

c , (2.63)

having µ as an adjustable “screening” parameter, and with “sr” and “lr” standing for short

range and long range, respectively. The XC energy is better represented when non-locality

is included in the exchange energy. This also describes partially quasiparticle effects due

to electronic excitations. This is a reason for the success of hybrid functionals, specially

when its complexity is reduced by means of an artifice such as the one employed in HSE06

(BECHSTEDT, 2015). Mean absolute errors for band gaps of 40 different solids calculated

with HSE, as reported by Janesko et al. (2009) are as small as 0.26 eV, while those

calculated with PBE are about five times larger, equal to 1.13 eV (JANESKO et al., 2009).

As a trade-off, however, HSE06 calculations require more computational time and can be

up to two order of magnitude slower than PBE calculations (LARRSON, 2015).

2.4.6 van der Waals corrections

van der Waals (vdW) interactions are essential to describe 2D materials. Although LDA

and GGA are reasonably successful when calculating solid systems, London dispersions

are not well taken into account due to the short range of the correlation in these methods

(ENGEL; DREIZLER, 2011). Since, in the methods presented, these systems are solved

by a local density, correlation effects are not enough to describe their electronic behavior.

For instance, two atoms separated by a long distance may be almost non-interacting

from a correlation point of view, due to the small wavefunction overlap. However, virtual

excitations, such as ones in vdW interaction, give rise to forces which are not well described

by these methods.
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To solve this problem, Dion et al. (2004) proposed to adjust the correlation energy,

dividing it in two,

Ec[n] = E0
c [n] + Enl

c [n], (2.64)

where both terms on the right-hand side of Eq. 2.64 are non-local correlation energies.

E0
c [n] is a term similar to the LDA one, while Enl

c [n] is responsible by the vdW interaction.

Its format is something like

Enl
c [n] =

1

2

∫∫
n(r)φ(r, r′)n(r′)d3rd3r′, (2.65)

with φ(r, r′) a function dependent of r− r′.

In 2D systems or adsorption of molecules and surfaces, the importance of vdW interac-

tion is necessary to predict adequate distances between systems and binding energies. The

non-locality obtained by adjusting the correlation energy, therefore, deals adequately with

the vdW interaction and alters stability effects.

2.4.7 Hellmann-Feynman theorem

From the energy minimum regarding structural stability of the systems under study,

we verify whether atomic dynamics are close enough to the stability, thus ensuring their

ground state geometries. Calculating forces acting on atoms, therefore, is a necessary

condition to obtain a relaxed geometry in terms of internal stresses. In this case, the

Born-Oppenheimer approximation should be discarded until an atomic configuration that

minimizes the forces is found.

The Hellmann-Feynman theorem from quantum mechanics states that, given a nor-

malized wavefunction Ψλ dependent of a parameter λ, which is an eigenstate of the

hamiltonian Ĥλ, the derivative of the expected value of the energy with respect to λ is

given by (ENGEL; DREIZLER, 2011)

d

dλ
〈Ψλ|Ĥλ|Ψλ〉 = 〈Ψλ|∂Ĥ

λ

∂λ
|Ψλ〉. (2.66)

If we adopt the positions of the atomic nuclei as parameters, Eq. (2.27) is then used

as starting point for the calculation of forces on each atom. Mathematically,

F = −∇Rk
(E[n] + Enucleus-nucleus[n]), (2.67)
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where Enucleus-nucleus[n] is the repulsion energy between nuclei. Developing the Eq. (2.67)

based on Eq. (2.27), we have

F = −
∫
n(r)

Zk(Rk − r)

|Rk − r|3
d3r +

∑
j

∑
k 6=j

ZkZj(Rk −Rj)

|Rk −Rj|3
. (2.68)

Equation (2.68) allows the calculation of atomic forces as function of the electronic

density of the ground state and the positions of the other atoms. A relaxation algorithm

is necessary to accordingly predict the equilibrium geometry of the system. First, the

electronic density is calculated using the known techniques. Then, forces are obtained

using Eq. (2.68). After adequate displacements are made in atomic positions, which are

subtly designed to not raise instabilities on the algorithm nor let the convergence become

too slow, a new geometry is found. From this new geometry, a new electronic density of

the ground state is found, restarting the iterative process until convergence is reached.

2.4.8 Projector-Augmented Wave

Although several approximations are made, DFT solutions still are rather costly from

a computational point of view. Even when the procedures explained so far are employed,

the description of solids leads to problems such as:

• The singularity of the Coulomb potential renders too large the number of plane

waves necessary to describe it adequately, specially when compared to non-singular

potentials. The rapid oscillation of plane waves close to the atomic nuclei requires a

high truncation energy in Eq. (2.22).

• Heavier elements in the periodic table require more electrons to be simulated,

rendering simulations more costly and complex.

Several methods try to solve this problem, such as the linearized augmented plane wave

method (LAPW) (SINGH; NORDSTROM, 2006) or the plane-augmented wave method

(PAW) (BLÖCHL, 1994; KRESSE; JOUBERT, 1999). In both methods, the problem of

the plane waves describing the wavefunction is firstly solved by determining a sphere with

radius rc around the atoms. Inside these spheres, the wavefunction oscillates rapidly in

space due to the Coulomb potential. Outside these spheres, the wavefunction is smoother

and can easily be described using plane waves.

In PAW, electrons closer to the nucleus (called “core”) do not contribute to chemical

bonds. Only valence electrons are responsible by these bondings. Therefore, it is possible

to suppose a frozen core hypothesis to introduce a screening in the nucleus potential and

leading to an effective potential to the system. This potential is then called pseudopotential.
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Since states closer to the nucleus are not relevant to chemical bonds between atoms, it is

possible to modify the pseudopotentials to obtain smoother wavefunctions close to them.

However, they should be still identical outside this region.

The method consists in transforming the wavefunctions |Ψ〉 in pseudo-functions |Ψ̃〉
related by a transformation T̂ such that (BLÖCHL, 1994)

|Ψ〉 = T̂ |Ψ̃〉. (2.69)

By hypothesis, |Ψ〉 and |Ψ̃〉 differ only for regions distant by, at most, rc from the atoms

that make the crystal. In this case, it is possible to divide the transformation T̂ in a sum

of the identity operator with the transformations T̂Rk
, where Rk is the position of the

atomic site k. Therefore,

T̂ = Î +
∑
k

T̂Rk
. (2.70)

It is possible to expand the functions |Ψ〉 e |Ψ̃〉 in terms of the all-electron basis |ψi〉
and |ψ̃i〉, respectively, where |ψ̃i〉 = |ψi〉 for r > rc and the generic index i designate the

angular and magnetic quantum numbers, as well as the atomic sites Rk. These bases

are similar to partial waves in the region external to rc. From this decomposed form and

additional conditions, it is possible to show that the transformation T̂ can be written as

(BLÖCHL, 1994)

T̂ = 1̂ +
∑
i

(
|ψi〉 − |ψ̃i〉

)
〈p̃i|, (2.71)

with 〈p̃i| the projection function of the pseudo-function |Ψ̃〉 at the pseudo-orbital |ψ̃i〉,
obeying the condition 〈p̃i|ψ̃j〉 = δij. Therefore, the true wavefunction can be written from

Eqs. (2.69) and (2.71) as (BLÖCHL, 1994)

|Ψ〉 = |Ψ̃〉+
∑
i

|ψi〉〈p̃i|Ψ̃〉 −
∑
i

|ψ̃i〉〈p̃i|Ψ̃〉, (2.72)

usually rewritten as

|Ψ〉 = |Ψ̃〉+ |Ψ1〉 − |Ψ̃1〉. (2.73)

The PAW method, therefore, divides the wavefunction in three terms: (i) a pseudo-

wavefunction |Ψ̃〉, related to a pseudopotential and identical to |Ψ〉 for |r−Rk| > rc, for

all k; (ii) a component |Ψ1〉 that corrects the behavior of the wavefunction close to the
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nuclei; and (iii) a component |Ψ̃1〉 that cancel the pseudo-function on the atomic site. It

is worthy of note that the original behavior of |Ψ〉 is recovered by the pseudo-function

thanks to the inclusion of terms (ii) and (iii).

Other quantities of interest in the PAW method are also obtained by the division in

three terms, such as the electronic density n, given by (BLÖCHL, 1994)

n(r) = ñ(r) + n1(r)− ñ1(r), (2.74)

with ñ(r) the pseudo-electronic density and n1(r) and ñ1(r) the electronic and pseudo-

electronic densities of the real function on the atomic site, respectively. It can be shown that

the effective hamiltonian operator acting on pseudo-wavefunctions is given by (BLÖCHL,

1994)

ˆ̃H = T̂ + V̂ef +
∑
i,j

|p̃i〉
(
D̃ij +D1

ij − D̃1
ij

)
〈p̃j|, (2.75)

with V̂ef an effective potential operator and D̃ij, D
1
ij and D̃1

ij elements of division of

n(r) with respect to the functions ñ(r), n1(r) and ñ1(r). Finally, given this effective

hamiltonian, it is possible to obtain properties of interest by solving the Eq. (2.75),

specially by employing the DFT.

2.5 Coincidence lattice method

First of all, 2D heterostructures can generally be fabricated with mismatch of crystal

structures, lattice constants and chemical bonding. However, theoretical investigations

suffer from the problem of incommensurability. During modeling, usually, small 2D

supercells are assumed with a certain stacking, orientation and, in particular, some

strain (KOMSA; KRASHENINNIKOV, 2013; KOLMOGOROV; CRESPI, 2005). Larger

supercells, therefore with a reduced influence of these effects, increase the numerical efforts

of quantum mechanical calculations within the DFT (KOHN; SHAM, 1965). Hence, a

certain compromise between determination of favorable arrangements and cell size is

required.

In this context, a major question arises: how to simulate van der Waals heterostructures

with minimal computational costs and without incurring into unrealistic simulations due

to commensurability strain? In this section, we present a method developed in this

dissertation which leads to more favorable stackings when one allows for specific interlayer

twists. This enables theoretical studies to explore deeper possibilities within vdW-bonded

systems, effects due to interlayer twist or Moiré patterns despite limited computational
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resources (WECKBECKER et al., 2016). Heterostructures tailored to match experimental

data can also benefit from the technique, and theoretical structures can be easily created

to emulate real-world samples.

2.5.1 Methodology

We assume that the atomic geometries, i.e., the 2D Bravais lattices and the atomic basis,

of the 2D crystals forming a bilayer heterostructure are known. Furthermore, we assume

that the two layered systems are arranged in energetically favorable atomic positions

despite their crystal structure, lattice constant and bonding mismatches. In a first step, ab

initio calculations of the total energy should not be performed to determine the relative

positions of the two crystal lattices. Rather, we start from two isolated 2D Bravais lattices

with given lattice constants (from ab initio calculations or measurements) and follow the

idea to construct a coincidence lattice with a larger unit cell from a common Bravais

sublattice (BECHSTEDT; ENDERLEIN, 1988). The physical principle of this idea is the

realization of a joint lattice that leaves the energy of the bilayer system smaller by enhanced

bonding at the interface when compared to the general orientations and translations of

the two isolated crystals.

We denote the primitive basis vectors of the Bravais lattices of the 2D crystals a and b

by

Ra = m1a1 +m2a2,

Rb = n1b1 + n2b2,
(2.76)

in which mi, ni ∈ Z, i = 1, 2 and ai and bi are the primitive vectors for each of the lattices.

They are characterized by one or two lattice constants of the 2D crystal and the type of

the 2D Bravais lattice (KITTEL, 2004). Linear combinations of these vectors with integer

coefficients yield all lattice points of the corresponding 2D Bravais lattice. The relationship

between these vectors and the unit cell area is given by

Sa = |a1 × a2|,

Sb = |b1 × b2|.
(2.77)

The primitive basis vectors ãi, b̃i of the coincidence lattice can be constructed by

arbitrary linear mappings, denoted by the 2× 2 matrices M̂a and M̂ b, taking into account
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all possible scalings and rotations

[
ãT

1

ãT

2

]
= M̂a

[
aT

1

aT
2

]
,[

b̃
T

1

b̃
T

2

]
= M̂ b

[
bT

1

bT

2

]
,

(2.78)

where vT is a line vector, i.e., the transposed vector of v.

In contrast to surface physics (BECHSTEDT, 2003), we restrict ourselves here to the

case in which all elements from these transformation matrices are integer numbers in

order to obtain sublattices of the original 2D Bravais lattices. Therefore, the areas of the

corresponding unit cells are

|ã1 × ã2| = det M̂a|a1 × a2|,

|b̃1 × b̃2| = det M̂ b|b1 × b2|.
(2.79)

In surface physics (BECHSTEDT, 2003) one speaks about a superstructure or a

reconstruction of the original surface layers, characterized by a M̂ matrix. Instead of the

matrix notation introduced in equation (2.78), in most cases it is more convenient to use

the so-called Wood notation (WOOD, 1964), which relates the supercell vectors {ãi,b̃i} to

the original ones {ai,bi} by means of a scaling and rotation denoted as

(
|ã1|
|a1|
× |ã2|
|a2|

)
Rφa,(

|b̃1|
|b1|
× |b̃2|
|b2|

)
Rφb,

(2.80)

with

φa = arccos

(
ã1 · a1

|ã1||a1|

)
,

φb = arccos

(
b̃1 · b1

|b̃1||b1|

)
.

(2.81)

Rotations and displacements of original Bravais lattices, therefore, may generate sublat-

tices, which may be equal in the commensurate case or almost equal in the incommensurate

case. The latter situation may be transformed into a commensurate case by considering

the two 2D crystals slightly strained. In the commensurate limit, a coincidence lattice is
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defined by the same primitive basis vectors on both sides of the heterointerface

ã1 = b̃1,

ã2 = b̃2,
(2.82)

which gives identical supercells on both sides with the same area

|ã1 × ã2| = |b̃1 × b̃2|. (2.83)

Such supercell contains one coincidence lattice site.

To determine this supercell, we have to find two matrices M̂a and M̂ b that fulfill the

conditions (2.82) and consequently (2.83) as

M̂a

[
aT

1

aT
2

]
= M̂ b

[
bT

1

bT

2

]
. (2.84)

The desired solution is the one which minimizes the area (2.83) of the supercell. In the

incommensurate case, one requires that the conditions (2.82), (2.83) and (2.84) approxi-

mately match, so that a small strain should be applied to one or both 2D materials to

obtain a commensurate situation.

In principle, one would have infinite solutions for supercells, but only use a single one

which has a minimum area. Therefore, it is possible to determine the two matrices M̂a

and M̂ b and, consequently, the desired supercell for the lattices by solving the equations

(2.78), (2.83) and (2.84).

In a practical approach, it is sufficient to solve this problem as a system of diophantine

equations through considerations which simplify the problem for computational solutions.

To derive that simpler form, let θ = φb − φa be the relative rotation angle between these

two lattices. As we have a degree of freedom for the angle of these planar lattices due the

invariance of the conjoint Bravais arrangements to rotation, i.e., a simultaneous rotation

of both lattices would not interfere with the relative distances of each point of the Bravais

lattice with respect to all others points in the lattice, it would be redundant specify two

angles, one for each original lattice. Then, we can write a rotation matrix M to perform a

relative rotation for only one of the two 2D crystals as

M =

[
cos θ sin θ

− sin θ cos θ

]
. (2.85)

We have to fulfill the requirement described in equation (2.82), which is equivalent

to solve the equation (2.84). Since M̂a and M̂ b take into account scaling and rotation,
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we could solve this equation in two steps: first by fixing a given angle θ (and therefore

the matrix M) and second by stating the equivalence between equation (2.84) and the

coincidence Ra = MRb, recurring to the notation from equation (2.76). If this coincidence

occurs for at least three non-collinear points, this assures the existence, given the angle θ,

of a supercell for the heterostructure. That is equivalent to find two non-zero and linearly

independent solutions (m1,m2, n1, n2), (m′1,m
′
2, n

′
1, n

′
2) ∈ Z4 to the equation Ra = MRb,

which can be rewritten using a linear system notation, introduced here as

[a1 a2]︸ ︷︷ ︸
A

[
m1

m2

]
︸ ︷︷ ︸

m

= M [b1 b2]︸ ︷︷ ︸
B

[
n1

n2

]
︸ ︷︷ ︸

n

,

Am = MBn.

(2.86)

The desired solution is often the one which minimizes the area of the supercell, i.e.,

the vectors m and m′ for which the area |(Am)× (Am′)| is minimum. That is analogous

to simply finding the minimum ratio |m×m′| between the area of the supercell and the

area of the unit cell. In this case, |m| and |n| are related to the size of the supercell

compared to the size of the unit cell of the first and second 2D crystal, respectively.

Using multiples of the original unit cells (e.g. a 2× 2 supercell) for each one of the layer

crystals would be equivalent to multiply the original solution m by a valid integer number.

Multiplying the solution (m1,m2, n1, n2) by any non-zero integer would also return a

solution for the same problem. That means, rotation and displacement of original Bravais

lattices are both taken into account, just like the case described in the more general

approach. The use of coincidence lattices for the simulation corresponds to the application

of non-primitive unit cells in terms of the original Bravais lattice. It, therefore, does not

affect the electronic properties of each individual 2D crystal. The band gap and density of

states remain unchanged. Only the band structure is modified due to its folding onto a

correspondingly smaller Brillouin zone. The interaction between the individual 2D crystals

in a heterostructure may give rise to modifications of the electronic properties.

As fluctuations in computed lattice parameters deduced using ab initio calculations

would almost always lead to an incommensurate case of matching, we define a tolerance

related to the maximum strain we would like to apply to each of the materials, in order to

turn it into a commensurate case. These solutions are given by |Am−MBn| < Tolerance.

In this case, the strain could be distributed between the two materials for optimal

simulations according to the sensitivity of each one to an applied strain. It is also useful to

limit the investigation of the supercells using an integer cutoff Nmax as a stopping criterion

and hence limit the size of the supercells. More importantly, the θ angle must be specified

as a parameter in this approach to impose a supercell creation with these specifications.
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FIGURE 2.1 – Matching of the hBN Bravais lattice (green crosses) and the MoSe2 lattice
(blue circles) (a) without rotation and (c) rotating both lattices by 19.1◦ against each
other. The original monolayer 1× 1 unit cells are drawn with solid lines while the resulting
supercell is shown with dashed lines. Atomic representations (perspective view) of the
coincidence lattice method for MoSe2 on top of hBN (b) without any rotation and (d)
laterally rotated are also given. Molybdenum atoms are portrayed in blue, selenium atoms
in yellow, boron atoms in green and nitrogen in purple.

The application of the described method is useful not only to study the changes in the

electronic structure with the rotation angle by using the smallest supercell, but also in

cases in which the rotation does not play a significant role. In this latter case, it may lead

to higher optimizations when comparing to the supercell creation which does not consider

the possibilities of rotations.

Good examples for illustration of the method are heterostructures made by two

hexagonal 2D crystals, characterized by lattice constants aa and ab, in which the resulting

coincidence lattice should also be hexagonal with a lattice constant |m|aa = |n|ab. To

better illustrate the method, let us design a supercell of the bilayer heterostructure of hBN

and molybdenum diselenide (MoSe2), as depicted in Figure 2.1. With this example, we

demonstrate the existence of a supercell of these two 2D crystals which is smaller when

considering a relative rotation of 19.1◦ in comparison with a vanishing rotation between the

two lattices. The latter would imply a supercell containing 59 atoms if both 2D compounds

are biaxially strained by an absolute value of 0.73% (compressive for hBN and tensile for

MoSe2). On the other hand, applying a rotation leads to a smaller supercell, containing

only 26 atoms, created with a smaller necessary strain with an absolute value of 0.33%

(also compressive for hBN and tensile for MoSe2) in order to make the two 2D systems
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commensurate.

To this point, no considerations about total energy are made, only predictions for the

resulting supercell and coincidence lattice. Therefore, for a more precise description of

their energetics, the resulting heterostructures such the ones displayed in Figs. 2.1c and

2.1d should be investigated with respect to their actual energies and resulting electronic

(band) structures by means of ab initio simulations based on total energy and electronic

structure methods.

2.6 Computational Details

First-principles simulations in this work are made using the software Vienna Ab-initio

Simulation Package (VASP) (KRESSE; FURTHMÜLLER, 1996a; KRESSE; FURTH-

MÜLLER, 1996b), within the PAW method (BLÖCHL, 1994; KRESSE; JOUBERT, 1999)

to generate the wavefunctions and pseudopotentials. The software performs integrations

in the 1BZ to obtain functions of interest by means of a sampling,

∫
1BZ

f(k)d3k ≈
∑
k

wkf(k), (2.87)

where wk is a weight over the k-points chosen in the sampling. The way with which this

sampling is made is by means of Monkhorst-Pack grids (MONKHORST; PACK, 1976)

centered at the Γ = (0,0,0) point of the 1BZ. Throughout the work, this k-point mesh is

set as at least 11× 11× 1.

The plane wave truncating parameter for the kinetic energy is given, within VASP, by

a parameter named ENCUT. In this work, this ceiling to the plane waves energy is fixed

at 500 eV.

Convergence criteria are such that structural relaxations occur until Hellmann-Feynman

are minimized to values inferior to 1 meV/Å. The stopping criterion for the self-consistent

Kohn-Sham cycle is such that the total energy variation, as well as the energy of the

eigenvalues, is inferior to 10−5 eV.

Several functionals are employed throughout the work. Excited states are described

with the functional GGA-PBE (PERDEW et al., 1996; PERDEW et al., 1997) within

the DFT and with the hybrid functional HSE06 (HEYD et al., 2003; HEYD et al., 2006).

vdW interaction is described with the functional optB86b (KLIMEŠ et al., 2011), given

its superior capability to describe structural parameters of the systems when compared to

its peers (KLIMEŠ et al., 2011; BJÖRKMAN, 2014).

VASP uses, in its description, periodic boundary conditions. To simulate 2D crystals,
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the repetition of 2D sheets in the out-of-plane directions is made, potentially leading

to long-range interactions between them. One way to prevent spurious effects on the

simulation is to vary the out-of-plane lattice vector, thus inserting a vacuum separating the

monolayers. Its optimal value is obtained by a careful convergence in the perpendicular

direction. Although a very large vacuum reduces the interaction between adjacent layers,

an excessive length leads to a larger number of plane waves in the system. The increase

of the vector perpendicular to the monolayer leads to a shorter Brillouin zone. This, on

its turn, requires a larger number of plane waves due to its high frequency. The vacuum

length used in this work is at least 15 Å long, enough to separate adjacent layers by at

least 4 monolayers.



3 Prediction of coincidence lattices

3.1 Motivation

In order to construct coincidence lattices and obtain heterostructure properties of the

2D crystals on top of each other, we need a unique database for the isolated 2D materials of

interest. Experimental lattice constants suffer from different preparation and measurement

techniques (KLIMEŠ et al., 2011; BJÖRKMAN, 2014). Theoretical lattice constants are

available for the majority of 2D materials of interest for this work (BJÖRKMAN, 2014),

which are essentially hexagonal lattices with one lattice constant. However, the coincidence

lattice method asks for an unified dataset. Thus, we have to repeat the calculations

considering the same numerical approach with respect to XC functional energy cutoff and

k-point sampling. After investigating the 2D monolayers and their lattice parameters, we

employ the coincidence lattice method to find favorable lattices to be analyzed. Then,

we need to refine the atomic geometries to discuss consequences on the energetics and

electronic structures of the heterostructures. In this chapter, only the case of isolated

monolayers and the prediction of coincidence lattices will be discussed. Using the database

here refined, we validate the coincidence lattice method by comparing its results with

available data from experiments and theoretical calculations. Finally, a set of interesting

heterocombinations is shown for low-cost computational simulations and physical analysis.

3.2 Monolayer 2D materials

To obtain the structural parameters for the isolated sheet materials, we have employed

the optB86b functional to minimize deviations from the experimental lattice parameters

(KLIMEŠ et al., 2011; BJÖRKMAN, 2014). This allows reasonable predictions of het-

erostructures, which are not influenced by fluctuations of measured values by different

groups and can be fully relaxed using one and the same method. It is important to mention

that the actual lattice parameters influence the electronic structure, as if the crystals are

virtually strained when simulated; for instance, smaller lattice constants could lead to

larger quasiparticle band gaps and vice versa (GUZMAN; STRACHAN, 2014).
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Here, we focus mainly on heterostructures made by two hexagonal sheet crystals.

Thereby, apart from the flat monolayers graphene and hBN, we investigate 2D crystals

consisting of triple atomic layers such as TMDCs and group-IV dichalcogenides. Results

for combination of such hexagonal crystals with rectangular ones, e.g. phosphorene, are

discussed later. The triple-layer systems occur in different polymorphs, mainly 1T and

2H, which represent respectively octahedral (CdI2-like) or trigonal prismatic coordination

(ZHUANG; HENNIG, 2013). Phase transitions between them, sometimes accompanied by a

semiconductor-metal transition as in MoS2, may happen (LIN et al., 2014). We choose here

the most stable phase of a TMDC according to (ZHUANG; HENNIG, 2013). In the case of

the Sn dichalcogenides, we use the energetically favorable 1T phase (WEN et al., 2015), due

to its experimental availability. We should remark, however, that as far as we know, WTe2

and TaTe2 have not been observed experimentally in the phase here investigated. This is

due to the existence of a more stable configuration in a distorted 1T phase (LUO et al.,

2015; LEE et al., 2015), which also alters the electronic properties of these materials. Yet,

in this work, this phase transition is not taken into consideration, leading to simulations and

coincidence lattice predictions for the theoretical 2H conformation phase with hexagonal

Bravais lattices.

Results for the relaxed, isolated 2D materials are presented in Table 3.1. The lattice pa-

rameters are in excellent agreement with the bulk experimental values and the interchange

between underestimation/overestimation has been predicted in a previous work (BJÖRK-

MAN, 2014). For better structural characterization of the neutral triple atomic layers, in

Table 3.1 we also list the bond length between a metal (M) atom in the central atomic

layer and a neighboring chalcogen (X) atom in a layer above or below the central one. The

expectation that the GGA-like XC functional optB86b gives slightly overestimated lattice

constants is not only fulfilled for graphene and hBN but also for dichalcogenides with VIA,

VIIA and IVB elements from the periodic table. The dichalcogenides of transition metal

atoms from the groups IVA and VA, however, show the opposite behavior.

For studies beyond finding coincidence lattices, such as the influence of these superstruc-

tures on the electronic properties, e.g. band alignments in corresponding heterostructures,

characteristic band structure parameters of the isolated 2D crystals are also given in Table

3.1 and in Fig. 3.2. Quasiparticle effects are approximately simulated using the non-local

exchange-correlation functional HSE06 (HEYD et al., 2003; HEYD et al., 2006). We use

the HSE06 approach despite the seemingly underestimation of the quasiparticle shifts

(BECHSTEDT, 2015) with respect to calculations in the framework of the GW approach

(QIU et al., 2013). For a given transition metal atom there is a clear trend with the

chalcogen atom. The fundamental gaps (in the case of a semiconducting phase) become

smaller along the column S → Se → Te. The 3d, 4d and 5d transition metal cations have

also a significant influence. In the case of group VB elements and for Ti there is a clear
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TABLE 3.1 – Structural and electronic properties of selected monolayer 2D crystals.
The lattice parameter (a) and the bond length (dMX) are calculated with the optB86b
functional, whereas the band gap (Eg) is obtained from a subsequent HSE06 calculation.
The ionization energy (I) and electron affinity (A) are referred to the vacuum level.
Experimental lattice parameters (aexp) are taken from the collection from Björkman (2014),
Gronvold et al. (1960), Madelung et al. (1998). The most stable polymorph according to
Zhuang e Hennig (2013), 1T or 2H, is studied.

a (Å) aexp (Å) dMX (Å) Eg (eV) A (eV) I (eV)
Graphene 2.467 2.456 1.42 0 4.330 4.330
hBN 2.512 2.510 1.45 5.79 0.941 6.735
HfS2 (1T) 3.626 3.635 2.55 2.03 4.925 6.956
HfSe2 (1T) 3.734 3.748 2.67 1.18 4.829 6.008
HfTe2 (1T) 3.920 3.957 2.88 Semimetal 4.670 4.670
MoS2 (2H) 3.164 3.162 2.41 2.25 4.025 6.270
MoSe2 (2H) 3.301 3.289 2.54 1.95 3.735 5.685
MoTe2 (2H) 3.528 3.518 2.73 1.57 3.558 5.123
NbS2 (2H) 3.340 3.310 2.49 Metal 6.202 6.202
NbSe2 (2H) 3.641 3.442 2.62 Metal 5.847 5.847
NbTe2 (2H) 3.663 3.680 2.81 Metal 5.150 5.150
PtS2 (1T) 3.566 3.542 2.40 2.64 4.355 6.992
PtSe2 (1T) 3.728 3.727 2.53 1.91 4.218 6.129
PtTe2 (1T) 3.988 4.026 2.70 1.08 3.913 4.990
SnS2 (1T) 3.667 3.648 2.59 2.36 4.955 7.315
SnSe2 (1T) 3.831 3.811 2.73 1.38 5.112 6.493
TaS2 (2H) 3.321 3.364 2.48 Metal 6.024 6.024
TaSe2 (2H) 3.449 3.476 2.63 Metal 5.432 5.432
TaTe2 (2H) 3.674 – 2.80 Metal 5.026 5.026
TiS2 (1T) 3.375 3.409 2.42 0.47 5.559 6.029
TiSe2 (1T) 3.499 3.536 2.55 Semimetal 5.213 5.213
TiTe2 (1T) 3.705 3.777 2.76 Metal 4.777 4.777
VS2 (1T) 3.153 3.221 2.34 Metal 5.482 5.482
VSe2 (1T) 3.305 3.358 2.48 Metal 5.256 5.256
WS2 (2H) 3.182 3.153 2.43 2.29 3.782 6.073
WSe2 (2H) 3.296 3.282 2.54 2.11 3.325 5.430
WTe2 (2H) 3.527 – 2.73 1.52 3.395 4.918
ZrS2 (1T) 3.650 3.662 2.57 1.85 5.138 6.989
ZrSe2 (1T) 3.768 3.770 2.69 1.10 4.996 6.091
ZrTe2 (1T) 3.926 3.952 2.90 Semimetal 4.839 4.839

tendency for a metallic behavior independent of the 1T or 2H polymorph. We also list the

electron affinity A and the ionization potential I for the 2D crystals, given by
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A = εvac − εc, (3.1)

I = εvac − εv. (3.2)

The description of the surface barriers of the 2D crystals with respect to the vacuum level

εvac has been determined as the plateau of the electrostatic potential between the material

slabs (BECHSTEDT, 2003). Their values will be used later to determine natural band

discontinuities between two 2D crystals via a vacuum-level alignment for the purpose of

comparison.

Differences between the ionization potential and the electron affinity characterize the

fundamental quasiparticle energy gaps

Eg = I − A, (3.3)

in which excitonic effects are not taken into account. The optical and quasiparticle band

gaps differ by the exciton binding energy, as shown in Fig. 3.1. In 2D semiconductors

and insulators, strongly-bound excitons are observed, leading to pronounced differences

between the two aforementioned band gaps.

Eg
opticalEg

QP

Ev

Ec
Eb

exciton

FIGURE 3.1 – Depiction of the quasiparticle energy gap (EQP
g ) and the optical energy

gap (E ótico
g ), which differ by the exciton binding energy (E éxciton

b ). Energies from the VBM
(Ev) and the CBM (Ec) are also shown.

All calculations resulting in Table 3.1 have been performed using primitive unit cells of

the 2D crystals. Later, in the case of bilayer heterostructures with coincidence lattices,

however, larger non-primitive unit cells are investigated. As a consequence, also in the

limit of vanishing interlayer interactions, smaller Brillouin zones are considered, resulting

in folded band structures.
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FIGURE 3.2 – Conduction and valence band edges calculated within HSE06 for all semiconductor 2D crystals displayed in Tab. 3.1. The
colored bar edges represent the valence band maximum and the conduction band minimum for each monolayer, while the Dirac cone vertex
characterizes the Fermi level for graphene. All energies are given in eV and are taken with respect to the vacuum level.
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3.3 Validation of the coincidence lattice method

Using the calculated lattice parameters in Table 3.1 for the investigated monolayer 2D

materials and the procedure described in the coincidence lattice method section, we predict

the coincidence lattices of almost strain-free 2D crystals in vdW bonded heterostructures.

Special care is taken for the supercell of the coincidence lattice, which is expressed by a

superstructure of each of the two 2D crystals combined. Essentially the results are presented

using the Wood notation in the form shown in Eq. (2.80) whenever the heterostructure

is formed by two hexagonal lattices. In these cases, the heterointerface can be described

using the common surface physics representation. That denotation is dropped when we

deal with rectangular lattices, which are better described with the original matrix notation

from Eq. (2.78). Then, the construction of the supercell is possible just by applying a

commensurability strain and stacking both sheet crystals following the orientation shown,

similar to the specifications in surface physics (BECHSTEDT, 2003).

In the majority of combinations, each heterostructure possesses a small strain, which is

related to the conversion of its incommensurate matching into a commensurate one by

modifying the original lattice parameters by their relative value to obtain approximate

solutions of equation (2.86). In the case of the hexagonal lattices, this value represents the

biaxial strain which has to be applied to the primitive basis vectors of both monolayers

if this strain is assumed to be distributed equally in magnitude to both layers. This

information can be easily retrieved if we have the solution (m,n) from equation (2.86),

which gives us the length of the supercell vectors relative to the original vectors. Therefore,

the biaxial strain ε = εx = εy is obtained straining both compounds to match the same

supercell lattice parameter, i.e., from

(1 + ε)|Am| = (1− ε)|Bn|,

ε =
|Bn| − |Am|
|Bn|+ |Am|

.
(3.4)

The application of the strain can be conditioned, when creating the supercell accordingly,

to the elastic constants of each separated sheet crystal. In this way, more sensitive materials

could be submitted to a smaller strain in order to minimize changes in the band structure

of the constituents of the resulting heterostructure.

The results of the coincidence lattice method described above for all the combinations

of hexagonal crystals given in Table 3.1 are summarized in Table S1 of the Supporting

Information from Koda et al. (2016). Despite our limitations to a biaxial strain ε < 0.01

and an unit cell size of the heterostructure with a number of atoms N ≤ 100 in Table S1

(KODA et al., 2016), more than 700 different combinations described by pairs of Wood

notations for the two crystals forming the heterosystems are listed. This variety of bilayers
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is too large to discuss here. In order to demonstrate the applicability of the general

procedure, we first focus on the discussion of heterostructures reported experimentally or

in other theoretical works. Thereby, the strain in these vdW-bonded heterostructures is

only discussed based on the lattice constants given in Table 3.1. Furthermore, in a few

more cases we also discuss supercell sizes with N > 100, in order to compare the size

of the derived supercells with experimentally observed Moiré patterns, which represent

long-range periodicities in the real space. These patterns can easily be treated within

the proposed approach. Our predictions for such already studied systems are listed in

Table 3.2. In general, the presented supercells show agreement with those results obtained

by other, experimental and theoretical, methods adopted in previous papers concerning

structural terms. No total energy calculations, however, have been performed for these

bilayer systems. All predictions are based on the coincidence lattice method.

Superior examples for the success of the coincidence lattice method are explored. Indeed,

the Moiré pattern predicted for a twisted (θ = 3.3◦ in Table 3.2) bilayer of graphene is in

agreement with experimental findings (BRIHUEGA et al., 2012). The Moiré pattern and

its supercell are represented in Fig. 3.3. The calculated long-range periodicity with 1202

carbon atoms in the supercell gives a lattice constant of 4.27 nm, in good agreement with

the measured value of 4.3 nm (BRIHUEGA et al., 2012). In Table 3.1, a similar agreement

is found for graphene on hexagonal BN assuming a strain-free situation, despite the fact

that the lattice constant of the supercell is much larger, equal to 13.8 nm (SLOTMAN et

al., 2015). Applying the coincidence lattice method with two different strain parameters,

we find a perfect agreement with another theoretical work (SLOTMAN et al., 2015). We

also find that a smaller pattern could be formed if a small strain is allowed in both 2D

crystals. Other experimental results for the graphene/hBN system can be explained by

the coincidence lattice method. Allowing larger cells of coincidence lattices, our method

predicts a Moiré wavelength of 12.4 nm for an interlayer twist of 0.5◦, very similar to

experimental values around a length of 12.3 nm (TANG et al., 2013; WANG et al., 2016a).

A reasonable agreement with the size of the formed superlattice can be also noted for the

MoS2/WSe2 heterobilayer, in which the measurement range is of four to six times the

lattice constants of the monolayers (FANG et al., 2014). The calculated lattice constant

of 1.45 nm is close to the value derived from the experiment. Coincidences motivated

by experimental results are also found for the bilayer MoS2 (HUANG et al., 2014). The

bilayer MoS2 twisted by 27.8◦ has a perfect coincidence lattice, due to the equivalence of

the lattice parameters, with 78 atoms inside the supercell. The two values are in agreement

with the analysis made by Huang and coworkers (HUANG et al., 2014). The experimental

stacking with a twist of 51.5◦ can be also explained within the coincidence lattice method

and calculated lattice parameters, but only with a induced 2.44% strain on each layer.

In addition to the comparison with measured data, one can also compare with supercells
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FIGURE 3.3 – Theoretical Moiré pattern for a twisted bilayer graphene rotated by 3.3◦

with respect to each other. The lattice parameter of the unit cell, represented in blue
dashed lines, is 4.27 nm, in agreement with the experimental result (BRIHUEGA et al.,
2012). Carbon atoms are depicted as gray circles, and their spatial distribution leads to
bright spots, indicating atoms aligned in the stacking direction, and darker regions, where
atoms from one layer fill the empty spots from the other.

applied in total energy calculations. For the bilayer heterostructures studied in Refs. Komsa

e Krasheninnikov (2013), Wang et al. (2015), we predict different possibilities with varying

supercell size, biaxial strain and twisting angle. Corresponding results are also listed in

Table 3.2. The graphene/MoS2 heterobilayers from Ref. Wang et al. (2015) demonstrate

that the size of the proposed heterostructures is almost the same in terms of relative scaling

for each rotation angle. Differences between the two predicted strains can be attributed to

lattice optimizations, whose deviations result in varying lattice mismatches. Finally, the ab

initio predictions for bilayer heterosystems of MoS2 with other TMDCs but also graphene

and hBN (KOMSA; KRASHENINNIKOV, 2013) are in agreement with the assortment

of supercells derived by our method. However, the coincidence lattice method also finds

smaller cells with reasonable strains and less atoms inside the resulting supercell, also as

a result of variation of the optimized lattice parameters and the assumption of equally

distributed strain.

3.4 Favorable coincidence lattices

For further illustration of the coincidence lattice method, a selected set of our findings

for commensurable heterostructures with small strains and supercell sizes are listed in

Table 3.3. All combinations reported in this table are a subset from the more than 700 cases

reported in Table S1 from Koda et al. (2016). All heterostructures analyzed throughout

this work are displayed in Tab. 3.3 or, in the case of phosphorene-based heterostructures,

in the text.

The coincidence lattices predicted for combinations of two 2D hexagonal crystals in

Table 3.3 illustrate the huge variety of possibilities for investigating heterobilayers made
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TABLE 3.2 – Coincidence lattice predictions of supercells for systems studied in the
literature (KOMSA; KRASHENINNIKOV, 2013; BRIHUEGA et al., 2012; WANG et al.,
2015; HUANG et al., 2014; FANG et al., 2014). The column labeled as layer 1/2 relates
the original monolayer unit cell in Wood notation (BECHSTEDT, 2003; WOOD, 1964) to
the supercell used in the heterostructure, rotated by an angle θ with respect to each other.
The first compound shown in the heterobilayer column is denoted as layer 1. The predicted
number N of atoms inside the supercell and the equally-distributed biaxial strain ε also
characterize the building of the supercell. All lattice parameters used were the ones from
this work’s optimizations. The ± sign indicates a tensile strain used on the layer 1 and a
compression strain on the layer 2, and vice-versa for the ∓ sign.

Heterobilayer Layer 1 Layer 2 θ N ε (%)
Experimental bilayer graphene Moiré patterns (as in Ref. Brihuega et al. (2012)):

Gr/Gr (
√

300×
√

300) R 30.0◦ (
√

301×
√

301) R 3.3◦ 3.3◦ 1202 ±0.08

Gr/Gr (
√

91×
√

91) R 27.0◦ (
√

91×
√

91) R 27.0◦ 6.0◦ 364 ±0.00

Gr/Gr (
√

37×
√

37) R 25.3◦ (
√

37×
√

37) R 25.3◦ 9.4◦ 148 ±0.00

Theoretical Moiré patterns of graphene on top of hBN (as in Ref. Slotman et al. (2015)):

Gr/hBN 56× 56 55× 55 0.0◦ 12322 ±0.00
Gr/hBN 37× 37 36× 36 0.0◦ 5330 ∓0.47

Experimental WSe2/MoS2 heterobilayer (as in Ref. Fang et al. (2014)):

WSe2/MoS2 (
√

19×
√

19) R 23.4◦ (
√

21×
√

21) R 10.9◦ 12.5◦ 120 ±0.46

Theoretical graphene/MoS2 heterobilayers (as in Ref. Wang et al. (2015)):

Gr/MoS2 (
√

21×
√

21) R 10.9◦ (
√

13×
√

13) R 13.9◦ 3.0◦ 81 ±0.45

Gr/MoS2 (
√

43×
√

43) R 7.6◦ 5× 5 7.6◦ 161 ∓1.12

Gr/MoS2 (
√

39×
√

39) R 16.1◦ 5× 5 16.1◦ 153 ±1.32

Gr/MoS2 (
√

7×
√

7) R 19.1◦ 2× 2 19.1◦ 26 ∓1.55

Gr/MoS2 (
√

21×
√

21) R 10.9◦ (
√

13×
√

13) R 13.9◦ 24.8◦ 81 ±0.45

Gr/MoS2 8× 8 (
√

37×
√

37) R 25.3◦ 25.3◦ 239 ∓1.26

Experimental MoS2 bilayers (as in Ref. Huang et al. (2014)):

MoS2/MoS2 (
√

13×
√

13) R 13.9◦ (
√

13×
√

13) R 13.9◦ 27.8◦ 78 ±0.00

MoS2/MoS2 (
√

39×
√

39) R 16.1◦ (
√

43×
√

43) R 7.6◦ 51.5◦ 246 ±2.44

Theoretical heterobilayers with MoS2 (as in Ref. Komsa e Krasheninnikov (2013)):

MoS2/WS2 1× 1 1× 1 0.0◦ 6 ±0.28

MoS2/hBN (
√

13×
√

13) R 13.9◦ (
√

21×
√

21) R 10.9◦ 3.0◦ 81 ±0.45

MoS2/MoTe2 4× 4 (
√

13×
√

13) R 13.9◦ 13.9◦ 87 ±0.25

MoS2/MoSe2 (
√

13×
√

13) R 13.9◦ (
√

12×
√

12) R 30.0◦ 16.1◦ 75 ±0.12

MoS2/Gr 4× 4 (
√

27×
√

27) R 30.0◦ 30.0◦ 102 ±0.64

Our predictions for smaller systems among the ones from Ref. Komsa e Krasheninnikov (2013):

MoS2/Gr (
√

13×
√

13) R 13.9◦ (
√

21×
√

21) R 10.9◦ 3.0◦ 81 ∓0.45

MoS2/hBN (
√

12×
√

12) R 30.0◦ (
√

19×
√

19) R 23.4◦ 6.6◦ 74 ∓0.05

MoS2/MoTe2 3× 3 (
√

7×
√

7) R 19.1◦ 19.1◦ 48 ∓0.84

of graphene and transition metal/group-IV dichalcogenides without great computational

efforts. Intriguing investigations of TMDCs heterobilayers are also feasible with reduced

numerical cost. The characteristic twist angles shown in the table, e.g. 0.0◦, 30.0◦ and

19.1◦, are due to the matching of the smaller lengths possible between two lattice points

in a hexagonal lattice (e.g. see Fig. 2.1). Most trivial cases, like combinations of the type

(1× 1) R 0◦, are excluded in this succinct version of the table. Rotations with redundant
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angles are also not shown. Since the rotation of a hexagonal lattice by multiples of 60◦ is

symmetry conserving, we only investigate relative rotations that lie within the interval

[0◦, 30◦], as rotating the hexagonal cell by 30◦ + ϕ, ϕ ∈ [0◦,30◦], is equivalent to rotating

the cell by −30◦ + ϕ.

TABLE 3.3 – Favorable predictions of combinations of hexagonal crystals based on the
coincidence lattice method. The “Layer 1/2” column relates the original monolayer unit
cell to the supercell used in the heterostructure, rotated by an angle θ with respect to
each other. The first compound shown in the heterobilayer column is denoted as layer 1.
The predicted number N of atoms inside the supercell and the equally distributed biaxial
strain ε also characterize the building of the supercell. The ± sign indicates a tensile strain
applied on the layer 1 and a compressive strain on the layer 2, and vice versa for the ∓
sign. Only a set of the supercells available from this work are displayed.

Heterobilayer Layer 1 Layer 2 θ N ε (%)

Gr/MoSe2 (
√

7×
√

7) R 19.1◦ 2× 2 19.1◦ 26 ±0.57
Gr/SnS2 3× 3 2× 2 0.0◦ 30 ∓0.45
Gr/SnSe2 3× 3 2× 2 0.0◦ 30 ±1.73

Gr/WSe2 (
√

7×
√

7) R 19.1◦ 2× 2 19.1◦ 26 ±0.49
Gr/ZrS2 3× 3 2× 2 0.0◦ 30 ∓0.69

Gr/ZrSe2 (
√

7×
√

7) R 19.1◦ (
√

3×
√

3) R 30.0◦ 10.9◦ 23 ∓0.01

hBN/MoSe2 (
√

7×
√

7) R 19.1◦ 2× 2 19.1◦ 26 ∓0.33

hBN/MoSe2 (
√

12×
√

12) R 30.0◦ (
√

7×
√

7) R 19.1◦ 10.9◦ 45 ±0.18
hBN/MoSe2 4× 4 3× 3 0.0◦ 59 ∓0.73

hBN/SnSe2 (
√

7×
√

7) R 19.1◦ (
√

3×
√

3) R 30.0◦ 10.9◦ 23 ∓0.08

HfS2/MoS2 (
√

3×
√

3) R 30.0◦ 2× 2 30.0◦ 21 ±0.35
HfS2/SnS2 1× 1 1× 1 0.0◦ 6 ±0.56
HfS2/ZrS2 1× 1 1× 1 0.0◦ 6 ±0.33

MoS2/SnS2 2× 2 (
√

3×
√

3) R 30.0◦ 30.0◦ 21 ±0.22

MoS2/ZrS2 2× 2 (
√

3×
√

3) R 30.0◦ 30.0◦ 21 ∓0.02

MoSe2/SnSe2 2× 2 (
√

3×
√

3) R 30.0◦ 30.0◦ 21 ±0.25

SnS2/WS2 (
√

3×
√

3) R 30.0◦ 2× 2 30.0◦ 21 ±0.10
SnS2/ZrS2 1× 1 1× 1 0.0◦ 6 ∓0.23

SnSe2/WSe2 (
√

3×
√

3) R 30.0◦ 2× 2 30.0◦ 21 ∓0.33
SnSe2/ZrSe2 1× 1 1× 1 0.0◦ 6 ∓0.83

It is important to note that no information about the stacking order or in-plane

translations are made in Tables 3.1, 3.2, and 3.3, as we start from the primitive hexagonal

Bravais lattices and do not take the atomic basis of a given 2D crystal into account.

Moreover, the stacking order could alter the final geometry under rotations. For instance,

for graphene-like materials a AA stacking would become a AB stacking order under a 60◦

rotation. Also, fractional planar translations of each monolayer system with atoms could

alter the stability of the heteroconfiguration. Corresponding space-group operation can be

easily done by displacing the atoms inside the original unit cells of the 2D crystals which
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form the bilayer system. Thus, precise conclusions of system stability require total energy

calculations of the complete atomic arrangements having in mind that our listed lattice

matchings do not explore directly the possible stackings because only Bravais lattices are

studied. This is only possible if the atoms are really taken into consideration, as in explicit

total energy calculations.

Hf

Se
P

3.9o

(a) (b)

FIGURE 3.4 – (a) Matching of a HfSe2 hexagonal lattice (red crosses) and a phosphorene
rectangular lattice (gray circles) rotated by 3.9◦ against each other. The original unit cells
are drawn with solid lines and the supercell is described by dashed lines. (b) Supercell
of the heterostructure with atomic basis. Hafnium, selenium and phosphorus atoms are
displayed in red, yellow and gray, respectively.

Until now only combinations of two hexagonal crystals have been investigated. However,

the coincidence lattice method presented above can be applied to arbitrary 2D Bravais

lattices (BECHSTEDT; ENDERLEIN, 1988; KITTEL, 2004). As an example in which

two Bravais lattices with different shape of the primitive cells are used, we inspect the

possibility to build coincidence lattices from a rectangular 2D Bravais lattice and a

hexagonal one using the approach suggested here. The rectangular lattice was adopted

from a 2D phosphorene crystal (LIU et al., 2014), whose orthogonal vectors are found to

have the lengths of 4.504 Å (armchair direction) and 3.305 Å (zigzag direction) within

the DFT-optB86b total energy optimization described earlier. Many combinations with a

hexagonal 2D crystal are possible. An illustration of the great action of the coincidence

lattice method applied to different Bravais lattices is a heterostructure of HfSe2 on top of

phosphorene, whose Bravais and coincidence lattices are shown in Figure 3.4. In this case,

the HfSe2 layer is rotated by 3.9◦ with respect to the phosphorene armchair orientation and

the commensurability is obtained by applying a non-uniform in-plane strain smaller than

1%. In the case of a rectangular/hexagonal combination, however, the resulting strain is

not biaxial anymore because the shape of the supercell is different from that of the original

ones. Rather, besides different uniaxial strains in x and y direction, a shear strain appears.

One has, therefore, to handle the full 2× 2 in-plane deformation tensor ε̂. Consequently,
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instead of the simplified Wood notation, the representation of the heterojunction basis

asks for the use of the matrix notation, resulting

M̂Ph

[
aT

1

aT
2

]
=

[
1 −5

2 3

][
4.504 Å 0

0 3.305 Å

]
(3.5)

with {a1, a2} the primitive vector basis of the phosphorene rectangular lattice. The

resulting superlattice is characterized by the matrix M̂a from Eq. (3.5).

In this dissertation, we also explore the case of phosphorene stacked on top of MoSe2

and WSe2. This coincidence lattice leads to a transformation matrix for the phosphorene

layer represented by

M̂Ph

[
aT

1

aT
2

]
=

[
5 0

0 1

][
4.504 Å 0

0 3.305 Å

]
. (3.6)



4 Influences of stacking and rotation

on band alignments

4.1 Motivation

Despite the feasible preparation of vdW heterostructures by means of exfoliated 2D

layers from vdW-bonded three-dimensional layered crystals, resizing of the two lattices,

their relative orientation, stacking, and strain effects are capable of changing the electronic

properties of 2D crystals (WANG et al., 2015; ZANDE et al., 2014). These influences

become more important when considering the epitaxial growth of one layer on the other

one, e.g. the vdW epitaxy of TMDC monolayers on graphene for which a preferential

orientation among the layers have been found (SHI et al., 2012). Effects such as stacking,

interlayer twist and incommensurability may induce changes into structural and electronic

properties of the system (WOODS et al., 2014; SHI et al., 2012). Therefore, structure-

induced effects on the interface formation and the electronic structure alignment cannot

be overlooked.

For the determination of the actual atomic geometry in a bilayer heterostructure, the

presented coincidence lattice method has to be combined with DFT total energy calculations

using the constructed supercells listed in Tables 3.2 and 3.3. First, to analyze effects of

stacking on vdW heterostructures, we apply the combined methods to heterobilayer sulfide

systems for three examples, also listed in Table 3.3: (i) a simple, almost lattice-matched

heterostructure of HfS2 and ZrS2, to illustrate the effect of stacking on the binding energy

and interlayer distance, (ii) a heterostructure built from MoS2 and HfS2 rotated by 30◦

against each other, and (iii) a similar heterostructure made by MoS2 and ZrS2 rotated by

30◦ against each other.

Stacking is not the only structural factor that may influence the energetics of vdW

heterostructures, however. Due to the weak interlayer interaction and the 2D nature of

the crystals itself, an additional degree of freedom is found within interlayer twists. Not

all bilayer systems, however, are computationally favorable to be simulated from supercells

with different interlayer twist angles, since coincidence lattices are strongly dependent of
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the lattice mismatch between the monolayer 2D crystals. To understand how does the

interlayer twist influences the electronic properties of a heterobilayer system, we select a

single bilayer to be studied predicted using the coincidence lattice method. In this case,

heterostructures of hBN/MoSe2 twisted bilayer systems are found to be favorable.

Simulations of the structural properties of different stacks of the lattice-matched

heterobilayers are first discussed in Sec. 4.2. Then, effects of the stacking on the electronic

properties of the materials are investigated in Sec. 4.3. Afterwards, the same structural

and electronic analysis is made for the lattice-mismatched TMDC bilayers, as well as

the reasons behind the modification of their properties 4.4. Then, we proceed to the

investigation of interlayer twist on vdW heterostructures. Simulations of the structural

properties of hBN/MoSe2 are given in Sec. 4.5, followed by an analysis of the influences of

the interlayer twist on the electronic properties of the bilayers in Sec. 4.6.

4.2 Effects of stacking on structural properties of bi-

layers

The simplest case investigated is the almost lattice-matched HfS2 and ZrS2 heterobilayer

system. In order to test the strain influence on isolated layers, we studied the maximum

0.66% biaxial strain on HfS2. However, no significant changes have been observed in

the electronic properties of this material, as expected from previous studies (GUZMAN;

STRACHAN, 2014). Therefore, only weak strain-induced modifications are expected for

the behavior of the bilayer system. We investigated four different stackings possible for the

HfS2/ZrS2 bilayer arrangement with 1T-structure layers, T, C7, C27 and AA (KOŚMIDER;

FERNÁNDEZ-ROSSIER, 2013), thereby keeping the original 1× 1 translational symmetry

(refer to Table 3.3). The influence of the stacking on interlayer separation, in-plane

translations, and binding energy is of interest. The stacking geometries (top and side

views) are depicted in Fig. 4.1a. The energetics of the bilayer system versus the interlayer

distance and the relative lateral displacement of the two 2D crystals are illustrated in Fig.

4.1b and Fig. 4.1c, respectively.

The stability for bilayer systems throughout this work is investigated first by varying

the interlayer distance and obtaining the energy as a function of the separation while

keeping the atoms fixed in their positions within the monolayers. The binding energy Eb

is given by

Eb =
(E1 + E2)− Ehet

Asupercell

, (4.1)

in which Ehet is the total energy of the heterobilayer for a given interlayer distance, E1 and



CHAPTER 4. INFLUENCES OF STACKING AND ROTATION ON BAND
ALIGNMENTS 67

E2 are the energies of the strained and isolated layers 1 and 2 that form the heterostructure

considering their atomic positions, and Asupercell is the area of the supercell. Therefore, no

contribution due to the elastic energy is included in the binding energy, and the binding

energy curve only takes into account the contact energy to analyze effects of rotation into

the weak vdW binding.

In the case of the lattice-matched heterostructures, the plot of binding energy versus

distance between HfS2 and ZrS2 in Fig. 4.1b show that the stackings AA, C7 and T are

more stable than the C27 configuration. This results in a smaller interlayer distance of

about 3.0 Å compared to the 3.5 Å in the C27 case. However, despite the fixed coincidence

lattice, also the relative lateral atomic arrangements influence the stability of the bilayer

systems. Small in-plane displacements executed, keeping constant the interlayer distance of

AA and C7 stackings of the two 2D crystals 1T-HfS2 and 1T-ZrS2, demonstrate in Fig. 4.1c

the local stability of these arrangements, contrary to the C27 one. The total energy curves

do not exhibit pronounced minima and the stackings are not very rigid. The T stacking

can be turned into a AA stacking with a significant displacement in the [1̄100] direction,

which also lowers the equilibrium interlayer distance (compare the two structures in Fig.

4.1a) and explains the absence of a local energy minimum for this stacking. Total force

calculations indicate that repulsion between close sulfur atoms make the C27 configuration

unstable against in-plane shifts in the [1̄100] direction. The calculated binding energies

lie between 15.6 meV/Å2 and 22.2 meV/Å2, values which are very reasonable energies

for vdW-bonded TMDCs bilayers (BJÖRKMAN et al., 2012). The stability of even the

least energetically favorable stacking, therefore, is in agreement with the success of the

preparation of such vdW-bonded heterostructures in several experiments. The weak vdW

bonding and the formation of coincidence lattices allow the easy preparation of stacked

heterostructures from exfoliated 2D materials despite mismatch in the lattice constants,

bonding and even crystal structure.

4.3 Effects of stacking on electronic properties of bi-

layers

The influence of the actual stacking and atomic geometry of the heterostructure on the

electronic structure has been studied by means of the band structure and the alignment

of the electronic states of the two isolated 2D crystals in the heterocombination. For

illustration of this geometric influence, the corresponding band structures are calculated

for the four stackings of HfS2/ZrS2. As an example, that of the AA stacking is displayed

in Fig. 4.2a. Using a projection technique, the band structures of HfS2 and ZrS2 in the

heterostructure are extracted and presented in different colors. This technique allows us to
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FIGURE 4.1 – (a) Four different stackings investigated for the HfS2 and ZrS2 heterostruc-
ture. Zirconium, hafnium and sulfur are depicted in green, red and yellow, respectively,
and the dashed lines detail the supercell edges. (b) Total energy of the supercell for the
different stackings, showing a stable configuration for each one of them. (c) Total energy
of the supercells on their own equilibrium interlayer distance for small displacements in
the [1̄100] direction.
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derive the local energy gap Eg, the valence band maximum (VBM or negative I) at Γ, and

the conduction band minimum (CBM or negative A) at M in the BZ of the two materials

for each given stacking, strain and, hence, the vdW interactions. The corresponding results

are summarized in Table 4.1. The stacking and bilayer influences follow from a comparison

with the corresponding quantities of the freestanding 2D crystals in Table 3.1. Indeed, the

values Eg, A and I are influenced by the heterocombination. We have to point out that a

similar influence due to stacking in Table 4.1 has been recently observed experimentally

for the interlayer twist in the graphene/MoS2 system (JIN et al., 2015). The differences

in the CBM and VBM values in Table 4.1 define the true band discontinuities between

material 1 and 2,

∆Ev = VBM(2)− VBM(1),

∆Ec = CBM(1)− CBM(2)
(4.2)
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HfS2
ZrS2

FIGURE 4.2 – (a) Band structure of HfS2/ZrS2 heterostructure with AA stacking projected
onto each layer calculated with HSE06. Contributions from HfS2 are shown with red
circles and from ZrS2 are displayed with green triangles. The size of the marker indicates
the relative contribution from each monolayer to the total band structure. (b) Orbital
character of the bands states of pristine HfS2. (c) Influence of different HfS2/ZrS2 stackings
on the heterobilayer band structures.

in the heterostructure. They can be compared with the natural band discontinuities

∆Enat
v = I(1)− I(2),

∆Enat
c = A(2)− A(1),

(4.3)

applying the vacuum level alignment (BECHSTEDT, 2003; MÖNCH, 2004) and the

characteristic energies from Table 3.1. The band discontinuities characterize a type I (II)

heterostructure by ∆Ev ·∆Ec > 0 (∆Ev ·∆Ec < 0).

The energy differences in the band gaps and positions of band extrema (see Table 4.1)

and, hence, bands discontinuities are inferior to of 0.10 eV between different stackings,

suggesting only a little charge transfer through the interface between the two sheet crystals

HfS2 and ZrS2. However, this trend is not monotonous. This observation is supported
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TABLE 4.1 – Characteristic electronic energies of HfS2 and ZrS2 in a vdW-bonded
heterostructure with interface calculated with HSE06. The projection technique illustrated
in Fig. 4.2a is used to extract values for the individual 2D crystals. The conduction
band minimum (CBM) and valence band maximum (VBM) are taken with respect to the
vacuum level. The band gap (Eg) is the energy difference between the CBM and VBM
for each monolayer in the heterojunction. The energies from isolated monolayers are also
shown for the ease of comparison.

HfS2 ZrS2

Stacking CBM (eV) VBM (eV) Eg (eV) CBM (eV) VBM (eV) Eg (eV)
Monolayer -4.925 -6.956 2.03 -5.138 -6.989 1.85

AA -4.951 -7.049 2.10 -5.144 -6.970 1.83
C7 -4.944 -7.040 2.10 -5.157 -6.971 1.81
T -4.887 -7.035 2.15 -5.201 -6.965 1.76

C27 -4.785 -6.922 2.14 -5.064 -6.859 1.80

by the almost unchanging electronic properties of the two materials when comparing the

values in Tables 3.1 and 4.1. Thereby, the influence of the most stable AA, C7 and T

stackings and the details of the atomic geometry on the VBM positions is negligibly small.

The main effect of the heterostructure are the absolute shifts of the VBM of HfS2 (ZrS2)

of about 0.08 (0.02) eV toward lower (higher) energies with respect to the freestanding

situations. The opposite behavior is found for the CBM. As a consequence, the gap of HfS2

(ZrS2) is opened (shrunk) compared to the isolated situation along the row AA, C7 and T.

These small shifts, however, have important consequences for the predicted heterostructure

behavior. In comparison to the type II expectation for the pristine monolayers with the

natural band discontinuities ∆Enat
v = −33 meV and ∆Enat

c = 213 meV from Table 3.1,

the real junctions change from type II to type I due to vdW interactions and the small

valence band offset already visible from the natural band alignment. For instance, in the

AA case, band discontinuities ∆Ev = 79 meV and ∆Ec = 193 meV occur. This fact is

accompanied by an increase in the band gap of HfS2 and decrease in the band gap of ZrS2

in the heterostructure.

For the purpose of better understanding the influence of interlayer interactions in band

alignments, we have inspected the formation of the bands from the original HfS2 and ZrS2

monolayers. Considering the similarities shared by these two TMDCs and perceiving that

their bands are generated within the same crystal structure, we depict the nature of the

bands and their orbital character only for HfS2 in Fig. 4.2b. The formation of the bands

for ZrS2 is analogous and hence not explicitly shown. It is possible to explain the almost

invariance of the band gap and band discontinuities in the heterobilayer recognizing the

predominance of localized cation d orbitals in the CBM and in-plane anion px + py states

in the VBM, which overlap less with the states from the other layer in contrast to the pz
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orbitals. In fact, the greatest alterations are seen near the BZ boundary, in which the

predominance of pz orbitals in the valence band affects more the electronic properties of the

vdW-bonded heterostructure and hence interlayer separation and stacking order. Stackings

in which pz orbitals prevail in the band formation, such as phosphorene or graphene,

suffer pronounced changes in the electronic structure due to these interlayer interactions

(PADILHA et al., 2015). We also observe a mixture of orbitals at the conduction band

minimum near the M point, made predominantly from dz2 and dyz orbitals from the cations.

As the stacking goes from the most stable configuration to the least stable one, i.e., from

AA to C27, we increase the repulsion between these orbitals from each layer, thus slightly

modifying the fundamental band gap of each 2D crystal. The T stacking, however, leads

to the larger shifts in the band gaps due the smaller distance between each layers cations

(Hf or Zr) and the sulfur anions. These shifts are more directly shown in Table 4.1 and

depicted in Fig. 4.2c.

Despite the weak vdW interactions between the two layered crystals do not significantly

change the band gaps of each layer constituting the heterointerface, transitions between

heterostructure types may happen through their direct contact if the natural band line-

ups are characterized by only small band offsets. Interaction-induced changes in the

valence or conduction band created by interlayer interactions and orbital overlaps can

surmount these natural band alignments and force the transition between a type II to a

type I heterostructure or vice-versa, depending on the sensitivity of each layer to orbitals

overlapping and charge transfer. Modulation of these properties via external factors,

however, such as piezoelectricity (HUANG et al., 2015b), electric field (HUANG et al.,

2015a) or interface decoupling (FANG et al., 2014) may also be employed to fine tune the

interface properties.

Mb1

M
b 2

a 1

a2

30o

(b)

Mo

S

S

Hf

(a)

FIGURE 4.3 – (a) Matching of a MoS2 lattice (blue crosses) and a HfS2 lattice (red circles)
under a relative rotation of 30◦ and (b) the supercell generated in this case. Molybdenum,
hafnium and sulfur atoms are depicted in blue, red and yellow, respectively.
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4.4 Effects of stacking on lattice-mismatched bilayers

The same kind of total energy optimizations, electronic band structure calculations and

electronic structure investigations has also been applied to the vdW-bonded HfS2 or ZrS2

(
√

3×
√

3) R30◦ on MoS2 (2× 2) heterosystem (see Table 3.3). As a supercell in real space,

i.e., a non-primitive unit cell of the original crystal lattice, is used, the resulting reciprocal

space vectors shrink with respect to the original ones. This leads to band structures

folded onto the small Brillouin zone of the coincidence lattice, but without changes in the

fundamental electronic properties of each isolated monolayer. The coincidence lattice and

the atomic geometry resulting in the HfS2/MoS2 case are presented in Fig. 4.3. The two

heterocombinations are not lattice-constant matched and, therefore, are good examples

for application of the coincidence lattice method to construct supercells in the first step.

In the subsequent total energy calculations of the atomic geometries, we have assumed

that the entire strain appears in the MoS2 2D crystal. Only a few electronic changes are

observed, e.g. the band gap of MoS2 changing from 2.25 eV to 2.31 eV while keeping its

direct gap character at K. This increase in the MoS2 gap is due the small compressive

strain and has also been predicted in previous studies (GUZMAN; STRACHAN, 2014).

The vdW coupling of the two layers lowers the total energy of the supercell and a stable

configuration is found with an interlayer distance of 3.329 Å for the HfS2/MoS2 system

and 3.299 Å for the ZrS2/MoS2 system, respectively, with a binding energy of 20 meV/Å2

in both cases, as shown in Fig. 4.4a. The total energy of the layer stacking does not

change by values larger than 1 meV when lateral atomic displacements are made in any

lateral direction. Thus, the heterostructures are independent of any relative translation

of the two atomic layers against each other, as long as the coincidence lattice remains

fixed. Comparing with the larger energy variations predicted for other MoS2-including

heterosystems (BJÖRKMAN et al., 2012), we conclude that the two studied heterobilayers

are stable with a given coincidence lattice but rather invariant against planar translations.

The two systems are examples in which the lattice mismatch creates a spatially distributed

stacking arrangement, leading to an energy gain due to the interface binding regardless

their relative lateral positions.

The electronic properties of the two heterostructures are displayed in Figs. 4.4b and

4.4c. We observe a direct character of the MoS2 band gap, while the indirect band

gap of the HfS2 (ZrS2) suffers a reduction of 0.1 eV. We find a valence band offset of

∆Ev = 0.67 eV (0.68 eV) and a conduction band offset of ∆Ec = −0.97 eV (−1.09

eV) for the HfS2/MoS2 (ZrS2/MoS2) system. The comparison with the natural band

discontinuities ∆Enat
v = 0.65 eV/∆Enat

c = −0.86 eV (MoS2/HfS2) and ∆Enat
v = 0.69

eV/∆Enat
c = −1.07 eV (MoS2/ZrS2) from Table 3.1 shows that the two heterostructures

preserve the natural band alignments of the individual materials given in Table 3.1, i.e., a

type II heterocharacter despite the relative rotation imposed on the supercell simulated
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and the vdW bonding. The small difference between the natural band discontinuities and

the values obtained from the simulated interface in the HfS2/MoS2 heterojunction is due

the small strain induced in MoS2 needed to compose a commensurate system.
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FIGURE 4.4 – (a) Binding energy of the MoS2 on top of HfS2 and ZrS2 per unit area versus
the interlayer distance. For each equilibrium positions, band structures projected onto each
monolayer are given for the (b) MoS2 and HfS2 and (c) MoS2 and ZrS2 heterostructure
calculated with HSE06 for the lowest-energy arrangements. Relative sizes of markers
indicate percentual composition of each band from each material.

The projected band structures for both simulated heterointerfaces in Figs. 4.4b and

4.4c do not only show the character of the band gaps in the k-space for the “isolated”

2D crystals, but they also clearly indicate the indirect character of the band gaps of the

heterostructure in real space. While the CBM appears at M in the HfS2 or ZrS2 layer,

the VBM at K is defined by the MoS2 system. The projection technique illustrates the

low influence of vdW interactions on the electronic structures of these heterostructures by

the very localized band states, which do not indicate reasonable state mixing or electron

transfers. The latter phenomena occurs only at symmetry points where the band states

are constituted mainly by pz orbitals, as in the case of the heterostructure band originated

from the valence band states of HfS2 or ZrS2. This band is composed with significant

contributions from both layers and undergo a transition between the M and K points. In

the band structures from Figs. 4.4b and 4.4c, this is evidenced by the shrinkage of the

circles, i.e. the percentage of orbitals from the HfS2 or ZrS2 layer, and the increase of the

size of blue triangles. Conduction bands, whose character is based predominantly on d

orbitals, do not withstand appreciable changes.

4.5 Effects of rotation on structural properties of bi-

layers

Exactly as performed for the TMDC heterobilayers, we start from the DFT-optimized

2D crystals and their Bravais lattices. According to predictions from Chapter 3, if a

hBN/MoSe2 heterobilayer would be constructed without taking rotations into account, a

(4× 4) hBN and (3× 3) MoSe2 supercell could be built if both layers were subjected to a
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biaxial strain of 0.73%, compressive for hBN and tensile for MoSe2. Furthermore, a supercell

with 59 atoms would have to be simulated. Creating a supercell of a (
√

7×
√

7) R19.1◦

hBN on (2× 2) MoSe2, however, reduces the strain to make the system commensurate to

an absolute value of 0.33% on both layers, still compressive for hBN and tensile for MoSe2.

This supercell contains 26 atoms inside itself and is depicted in Fig. 4.5a. To further

expand investigations concerning rotations, a (
√

12 ×
√

12) R30.0◦ hBN on (
√

7 ×
√

7)

R19.1◦ MoSe2 supercell can be created to minimize the strain necessary to make the system

almost commensurate, as a biaxial strain as small as 0.18% on both layers would be enough

to create the supercell. This last system is still smaller than the aligned heterobilayer

supercell, with 45 atoms to be taken in consideration, and is represented by Fig. 4.5b.

MoSe2 hBN

(a) 19.1º

(b) 10.9º

Mo
Se
B
N

FIGURE 4.5 – Coincidence lattices and atomic representation for the MoSe2/hBN hetero-
bilayer for interlayer twist angles of (a) 19.1◦ and (b) 10.9◦. Blue (green) hexagons with
solid (dashed) lines depict MoSe2 (hBN) Bravais lattices, respectively, while dark blue,
light blue, light green and dark green circles depict molybdenum, selenium, boron and
nitrogen atoms, respectively. Coincidence lattices are highlighted with green hexagons as
a guide to the eye.

We simulate the last two systems, designated by their relative interlayer twist angle

of 19.1◦ and 10.9◦, due to their lower strain and size compared to the aligned system.
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In order to preserve the electronic properties of the strain-sensitive MoSe2 (GUZMAN;

STRACHAN, 2014), such as its direct band gap, we apply all strain on hBN. This leads

to biaxial strains on this layer of -0.67% (0.37%) for the 19.1◦ (10.9◦) rotated system. The

applied strain has small influences on electronic properties of hBN. This commensurability

strain shifts the CBM upwards (downwards) by 0.05 eV (0.04 eV) and the VBM downwards

(upwards) by 0.02 eV (0.01 eV) for the -0.67% (0.37%) strain case. The tensile strain of

0.37% on hBN also leads to a indirect to direct band gap transition.

For each of the two interlayer twist angles investigated, a minimum of energy is found,

as shown in Fig. 4.6. Then, letting the heterobilayers with an interlayer distance that

minimizes the energy of the systems, i.e. their most stable configuration, atomic positions

are relaxed. Both systems are almost identical when considering their binding energy

curves, with a binding energy of 21.2 meV/Å2 (21.1 meV/Å2) for a relative rotation angle

of 19.1◦ (10.9◦). These values are reasonable for molybdenum diselenides (BJÖRKMAN et

al., 2012). Interlayer twists do not induce significant changes in the equilibrium distance

of the bilayer system because of the planar structure of hBN, for which no preferential

stacking is found within the heterobilayer. Nevertheless, vdW interactions assure the

stability with the same binding energy regardless of the interlayer twist angle.
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FIGURE 4.6 – Binding energy curves for the MoSe2/hBN heterobilayer system for interlayer
twist angles of 19.1◦ (solid black line) and 10.9◦ (dashed red line). The equilibrium distance
for the 19.1◦ (10.9◦) rotated system is 3.44 Å (3.48 Å) and the binding energy for the most
stable configuration is 20.9 meV/Å2 (21.1 meV/Å2) if no relaxation in atomic positions is
performed.
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4.6 Effects of rotation on electronic properties of bi-

layers

For both heterobilayers on their respective equilibrium positions, band structures are

calculated within the DFT using the functional GGA-PBE and then projected onto atomic

sites, being represented with colors to allow better interpretations of band formations, as

depicted in Fig. 4.7. Projected bands from each monolayer differ from the ones of their

1× 1 cells due to band foldings that occur onto the first Brillouin zone (1BZ) when using

a supercell to calculate band structures. In order to understand band foldings in arbitrary

monolayer supercells, let k be a point in the 1BZ, written as a linear combination of a

reciprocal lattice vector basis (b1,b2) as

k = k1b1 + k2b2. (4.4)
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FIGURE 4.7 – Projected band structures for the MoSe2/hBN heterobilayer system with
an interlayer twist angle of (a) 19.1◦ and (b) 10.9◦ calculated with GGA-PBE. Blue
triangles and green circles depict contributions from MoSe2 and hBN, respectively, to
the specific eigenvalue for each k-point. Greater relative contributions are represented by
bigger markers. The vacuum level of the MoSe2 side is set as the reference and the red
line identifies the top of the valence band.

We start from the three-dimensional vector basis (a1, a2, a3) and use the definition of

reciprocal lattice vectors from Ashcroft and Mermin (ASHCROFT; MERMIN, 1976),

b1 = 2π a2×a3

a1·(a2×a3)

b2 = 2π a3×a1

a1·(a2×a3)

. (4.5)

The 2D Bravais lattice requires only two vectors to be described. Therefore, a3 may be

adopted as [0 0 1]T and the definitions from equation 4.5 reduced to two dimensions by
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simplifying the cross product. This leads to


b1 = 2π

detA

 a2y

−a2x


b2 = 2π

detA

−a1y

a1x

 , (4.6)

in which

A =
[
a1 a2

]
=

[
a1x a2x

a1y a2y

]
. (4.7)

Finally, the reciprocal lattice vectors can be written as

B =
[
b1 b2

]
=

2π

detA

[
a2y −a1y

−a2x a1x

]
= 2πA−T. (4.8)

Suppose the Bravais lattice symmetry is preserved with a linear transformation, i.e. an

operation M is applied to both direct lattice vectors a1, a2. The new lattice vectors are,

therefore, described by

Ã = MA =
[
ã1 ã2

]
=
[
Ma1 Ma2

]
, (4.9)

and the reciprocal lattice is transformed into

B̃ = 2π(MA)−T = 2πM−TA−T. (4.10)

Therefore, the coordinates of the point k after the change of basis, denoted here by k̃,

k̃ = k̃1b̃1 + k̃2b̃2 = B̃

[
k̃1

k̃2

]
, (4.11)

are calculated by

[
k̃1

k̃2

]
= B−1MTB

[
k1

k2

]
. (4.12)

When the methodology from Eqs. 4.4 to 4.12 is employed to calculate the symmetry

points for the supercells, it becomes clear that both the K and M points of the 1 × 1

hexagonal BZ are folded onto Γ for a (
√

12×
√

12)R30◦ hexagonal supercell. An immediate
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consequence is that the direct band gap of monolayer (
√

12×
√

12)R30◦ hBN on K is folded

onto Γ. Other relevant symmetry foldings for supercells used in this work are described

in Table 4.2. Therefore, the use of monolayer supercells necessary for the construction of

heterostructure cells may change the presentation of band structures when comparing with

the original ones due to folding. Analysis of electronic properties must be done having in

mind that original monolayer supercells lead to different foldings when band structures

are plotted, and that this procedure does not interfere with electronic properties of each

material. On the other hand, since coincidences between two Bravais lattices define unit

cells for heterostructures, band structures for the interface such as the ones depicted in

Fig. 4.7 should not be interpreted as folded. Rather, no redundancy is presented within

these band structures and no further simplifications are allowed.

TABLE 4.2 – Folding symmetry for 1BZ points in hexagonal supercells. “Original point”
corresponds to the symmetry point as seen in a 1 × 1 cell. When the linear operation
described in the “Supercell” column is applied to the unit system, the original point is
folded onto the 1BZ according to the relationship shown in the “Folded onto point” column.

Supercell Original point Folded onto point

1× 1
K K
M M

2× 2
K K
M Γ

(
√

7×
√

7) R19.1◦
K K
M M

(
√

12×
√

12) R30◦
K Γ
M Γ

For both simulated systems, the direct band gap of MoSe2 is retained and does not

deviate from the value of 1.50 eV obtained by simulation of the isolated monolayer. This

illustrates an important advantage for the use of hBN as a substrate for optoelectronic

applications using this TMDC. On the other hand, electronic properties of hBN differ

when rotation is included. An analysis of the heterostructure bands by means of orbital

composition indicates an out-of-plane overlapping of pz orbitals from the hBN layer with

dxz and dyz orbitals from MoSe2 layer. Interlayer interactions, therefore, may decrease the

band gap projected onto hBN due to the formation of hybrid bands with contributions of

both monolayers. However, an interlayer twist of 19.1◦ keeps sharper distinctions between

hBN and MoSe2 conduction bands in the k-space, as can be seen in the projected bands

of Fig. 4.7a. This can be compared to the mixed-contributions conduction bands at Γ

in the k-space when an angle of 10.9◦ is imposed to the heterobilayer to assume that

relative rotations can influence electronic properties of the monolayer hBN substrate. The

opposite effect seems to happen to the valence band. The 19.1◦-rotated bilayer presents
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more interlayer overlap, which is seen in Fig. 4.7a next to the K point for energies close to

-5.8 eV. Meanwhile, the hBN valence band for the 10.9◦ system distinguishes itself from

the MoSe2 bands.

The analysis of the density of states (DOS) for both systems agrees with this inferences.

Figure 4.8 shows the DOS calculated for both bilayer heterostructures, from which three

important features can be noted. Firstly, the MoSe2 DOS is not influenced close to the

valence and conduction bands for both heterobilayers, thus underpinning the preservation

of electronic properties of this TMDC upon contact with hBN. Secondly, the conduction

band of hBN can be distinguished from the overlapped states with MoSe2 bands because

of the falling edge followed by a rising edge at -1.25 eV. Evidently, the DOS for hBN

above the CBM should be substantially greater than zero. The same cannot be seen in

the 10.9◦ rotated system, which has a non-zero density of states for energies above -1.50

eV. Furthermore, the magnitude of the DOS for energies close to the CBM of hBN is close

to that from hBN itself, indicating the presence of significant hBN states above -1.50 eV.

Finally, the density of states for the valence band of both systems show that a step-like

DOS for the VBM of hBN in the 10.9◦ system is coherent with the low-interference between

bands. Alternatively, the valence band analysis for the 19.1◦ heterobilayer shows that the

spiky DOS should be consequence of interlayer effects for bands close to this energy.
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FIGURE 4.8 – Density of states for the MoSe2/hBN heterostructure with an interlayer
twist of (a) 19.1◦ and (b) 10.9◦. Gray, blue and green lines depict total states, states from
the MoSe2 and from the hBN layers. The vacuum level of the MoSe2 side is set as the
reference.
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With the electrostatic potential of the vacuum set as the reference for all calculations, it

is possible to make a comparison between the band discontinuities given by the separated

layers (the natural band alignment) and the band offset of the calculated heterostructure.

However, charge transfer effects must be taken into consideration by means of the dipole

step in the vacuum level. In both simulated heterobilayers, the vacuum on the MoSe2

side is taken as reference. With respect to this zero, CBM and VBM of MoSe2 do not

shift when compared to its natural alignments. However, hBN suffers a shift down, as the

VBM shifts downwards by 0.25 eV (0.44 eV) with respect to their VBM for their -0.66%

(0.37%) strained and isolated counterparts simulated within the 19.1◦ (10.9◦) systems. This

shift could also be responsible for enhancing interlayer interactions in both heterobilayers,

specifically for the conduction band, and partly due to the charge transfer between the

two layers. We report a ratio between the conduction and valence band of approximately

80:20 (75:25) for the 19.1◦ (10.9◦) system. Figs. 4.9a,b summarize this findings. These

effects on band discontinuities can be explained by means of charge transfer mechanisms.

By using the differential charge density given by

∆n(z) =

∫∫
nhet(x,y,z) dx dy−∫∫

nMoSe2
(x,y,z) dx dy −

∫∫
nhBN(x,y,z) dx dy,

(4.13)

and the total charge transferred as a function of the z position,

Q(z) =

∫ z

0

∆n(ξ) dξ, (4.14)

a charge transfer analysis can be plotted as in Fig. 4.9c. For both analogous systems,

electrons are transferred from the hBN layer to the MoSe2 layer, creating a dipole in

the interface. Evaluating Q(z) in the interface between hBN and MoSe2, it can be seen

that the charge is negative. This means hBN is depleted from electrons, while MoSe2

receives electrons. Thus, the positive electric charge in hBN shifts down the band edges,

in agreement with the dipole step in the interface.
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FIGURE 4.9 – Band alignments (in eV) calculated with respect to the vacuum level for the
hBN/MoSe2 bilayer when an interlayer twist angle of (a) 19.1◦ and (b) 10.9◦ is taken into
account. The natural band discontinuities for hBN are from the -0.67% (0.37%) strained
monolayers which form the 19.1◦ (10.9◦) heterobilayer. (c) Differential charge density (∆n,
black solid lines) and transferred charge (Q, red dashed lines) for the 19.1◦ bilayer system.
Positions of the hBN and MoSe2 layers are represented with the individual cells. The 10.9◦

system is analogous and is suppressed.



5 Influences of external

perturbations on band alignments

5.1 Motivation

Most important characteristics for heterojunctions are the band offsets at the interface,

especially for band-engineered devices. Comparisons between the natural band discon-

tinuities of 2D crystals, based only on the original electron affinity rule (ANDERSON,

1962; ANDERSON, 1960), and the band lineups in heterosystems demonstrate that the

weak interlayer bonding between the two layers and the formation of quantum dipoles

(TERSOFF, 1984; SCHLAF et al., 1997) may influence the electronic properties of the

constituents of the interface (KANG et al., 2013; WEI et al., 2016; ZHOU; ZHAO, 2016).

The modeling of a realistic heterointerface subject to external perturbation, which takes

into account the influence of long-range stacking orders and vdW-induced structure vari-

ations, could lead to substantial modifications in electronic structures of the materials

in the heterojunction. This turns out to be possible if the coincidence lattice method is

employed to minimize computational costs for vdW heterostructures of interest.

Several heterojunctions have already been experimentally suggested or even prepared

by 2D crystals weakly-bonded with phosphorene (Ph) including graphene/Ph bilayers

(PADILHA et al., 2015), Ph/MoS2 diodes (DENG et al., 2014), and phosphorene en-

capsulated with hexagonal boron-nitride (CHEN et al., 2015). The peculiar sensitivity

from Ph may hold interesting physics regarding band gaps and band offsets, as well as

some clues to tune band alignments within vdW interfaces. In this chapter, we analyze

structural and electronic properties of realistic Ph/MoSe2 and Ph/WSe2 combinations.

Structural properties and the stability of the bilayers is analyzed in Sec. 5.2. The most

stable configurations are then investigated according to their electronic properties in Sec.

5.3. Finally, the behavior of the band alignments and gaps of the systems under external

influences such as pressure and electric field is determined in Sec. 5.4.
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5.2 Structural properties of the bilayers

The simulated structures of the bilayer Ph/MoSe2 are depicted in Fig. 5.1. The

geometry of Ph/WSe2 is similar and, therefore, not displayed. We start from the lattice

parameters, optimized using vdW corrections via the optB86b functional (KLIMEŠ et al.,

2011), aarm = 4.504 Å in the armchair direction and azig = 3.305 Å in zigzag direction for

the phosphorene, and a = 3.301 Å for the hexagonal MoSe2 and a = 3.296 Å for WSe2.

The vdW heterostructure supercell is constructed from non-primitive 5 × 1 (armchair

× zigzag) unit cells of phosphorene and 4 × 1 rectangular unit cells of MoSe2 (WSe2),

resulting in an armchair lattice parameter of 22.519 Å for both supercells. Rotations

of two cells against each other are less favorable, as shown by the coincidence lattice

method. To further investigate structural parameters from these heterobilayer systems,

we first apply the necessary strain to make the phosphorene system commensurate on

the MoSe2 (WSe2) layer. This means that small non-biaxial strains of -1.54% (-1.39%)

in the armchair direction and 0.13% (0.28%) in the zigzag direction are applied to the

materials, leaving the phosphorene intact. This strain slightly changes the MoSe2 (WSe2)

electronic properties by increasing the band gap from 1.95 eV (2.11 eV) to 2.04 eV (2.17

eV) and by allowing a transition from a direct to an indirect band gap, as expected for

a small compressive strain (GUZMAN; STRACHAN, 2014). However, the difference

between direct and indirect band gaps of the TMDC layers is smaller than 0.01 eV (0.02

eV). Hence, changes observed in electronic properties of the strained materials still allow

us to investigate the electronic properties of the heterobilayers without incurring into

large deviations from the freestanding case, even when only one of the heterostructure

constituents is strained to form the commensurate system.

Structural parameters are computed starting with a given interlayer distance in both

bilayer systems by means of total energy calculations. First, the atoms are kept fixed in

their positions within the layer and the distance between the layers is varied. This leads to

a favorable interlayer distance of 3.415 Å (3.506 Å) for the Ph/MoSe2 (Ph/WSe2) system,

in agreement with typical lengths between vdW bonded atoms and layers (KOKOTT et

al., 2014; KOKOTT et al., 2013). Then, the atoms and the volume of the supercell are

allowed to relax until the Hellmann-Feynman forces are smaller than 1 meV/Å . This

leads to a more stable equilibrium configuration, which moves the phosphorene toward

the MoSe2 (WSe2) layer, creating a spatial distribution for the interlayer distance in the

armchair direction, resulting in a bending, as shown in Fig. 5.1c. These out-of-plane

displacements are responsible for a stabilizing effect provided by the weak vdW interaction

in the heterojunction and have been recently theoretically explained (KUMAR et al.,

2015). Atomic displacements occur in the armchair direction, which has been predicted

as being the preferential direction for dislocations due its out-of-plane flexibility (WANG

et al., 2016b). The resulting armchair warping is only observed due to the long-range
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FIGURE 5.1 – Supercell used for simulating the Ph/MoSe2 heterointerface. A (a) top
and (b) side view before structural relaxation depict the flat interface between the two
materials. (c) After minimization of atomic forces, the phosphorene moves toward the
MoSe2 layer. Phosphorus, selenium and molybdenum atoms are represented with gray,
yellow and blue atoms, respectively, and the supercell boundary is displayed by red dashed
lines. (d) Decrease of energy (∆E) of the bilayer system when small relative displacements
are made in the armchair (δx) and zigzag (δy) directions.

periodicity of the supercell in this direction, which is 4 times longer than the TMDC unit

cell. Doubling the supercell length in the armchair direction does not change the warping.

Weak interlayer interactions, therefore, compensate for the strain induced on the structure.
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By comparing Figs. 5.1a and 5.1c, it can be seen that the region in which the interlayer

distance between phosphorene and the TMDC layer is equivalent to an AB stacking order,

while this distance is maximum to the region with an equivalent AA stacking. These local

interlayer distances are compatible with AA and AB-stacked phosphorene layers (ÇAKIR

et al., 2015).

The stability of the heterobilayer systems is further enhanced by expanding the lateral

unit cell, verified by the lowering of their total energy. Joint cells created by relaxing

both structures have an armchair lattice parameter of 22.734 Å (22.740 Å) and a zigzag

lattice parameter of 3.299 Å (3.297 Å) for the Ph/MoSe2 (Ph/WSe2) heterojunction.

The Moiré pattern length calculated for these systems is 21.2 Å, in agreement with the

supercell length for the commensurate system. This corresponds to phosphorene strained

by about 1.0% in the armchair direction and -0.2% in the zigzag direction in both cases.

The armchair strain for MoSe2 (WSe2) is reduced to -0.6% (-0.4%) and the zigzag strain is

negligible in the heterojunction situation. In addition, the phosphorene is bended in the

armchair direction by about 10%. The increased stability by straining phosphorene can

be easily understood when one compares the calculated stress tensor from phosphorene

with that of MoSe2 or WSe2. The natural flexibility of monolayer phosphorene in the

armchair direction (in-plane stiffness of 26 N/m) (ELAHI et al., 2015; WEI; PENG, 2014)

with respect to in-plane strain is superior to that from the studied TMDCs (101 N/m for

MoSe2 and 112 N/m for WSe2) (GUZMAN; STRACHAN, 2014). It lowers the energy of

the combined system and reduces atomic forces.

By varying the interlayer distance, it is possible to infer, from the total energy calcula-

tions, the binding energy of the two systems represented as a gain of total energy per unit

area, more precisely the difference between the energy of the heterobilayer and the energy

of the isolated monolayers. For the flat phosphorene over MoSe2 (WSe2), the binding

energy is 23.4 meV/Å2 (23.8 meV/Å2), which is a reasonable value for bilayer systems

involving TMDCs (BJÖRKMAN et al., 2012). The structural relaxation, which includes

small volume changes, and the bending of the phosphorene, increases the binding energy,

as this favors vdW interactions on the interface. In this case, the binding energy slightly

increases to 24.9 meV/Å2 (25.2 meV/Å2). For the matter of comparison, we calculated

the binding energy for the AB-stacked bilayer phosphorene as being 31.9 meV/Å2. This

demonstrates the stability of the vdW-bonded bilayer system, as with stacking displayed in

Fig. 5.1a and its enhanced binding via out-of-plane displacements. From the lowest energy

configuration, we further moved laterally one layer with respect to the other considering

small relative displacements in the armchair (δx) and zigzag (δy) to make sure we really

found the minimum energy configuration. This local stability is shown in Fig. 5.1d.
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5.3 Electronic properties of the bilayers

Electronic properties of the isolated and bilayer systems were investigated using the

exchange-correlation hybrid functional HSE06 (PAIER et al., 2006b; PAIER et al., 2006a;

HEYD et al., 2003; HEYD et al., 2006). Its spatial nonlocality simulates an important

property of the quasiparticle self-energy. It increases the gaps and interband distances in

comparison to local or semi-local DFT results. Band structures of the bilayer systems are

shown in Figs. 5.2a,b. Small differences between band structures of the flat freestanding

and warped phosphorene over MoSe2 (WSe2) are due to strain effects on phosphorene

created by volume relaxation. The local direct band gap of phosphorene increases from

1.54 eV in the strained and isolated monolayer to 1.72 eV (1.72 eV) when put in contact

with MoSe2 (WSe2) due to vdW interactions and orbital overlapping in the interface. The

increase in the band gap at Γ can be explained by the high sensitivity of the phosphorene

conduction band minimum (CBM), created primarily by pz orbitals, upon contact with

other atomic layers. In our case, the overlap of MoSe2 (WSe2) dz2 and pz orbitals with

those from the phosphorene layer defines about 13% (12%) of the orbital character of the

joint conduction band. On the other hand, the top of the valence band overlaps little with

the TMDC layer, with 4% (3%) of contribution from MoSe2 (WSe2), shifting down the

VBM level and further opening the gap. This shift occurs only in regions in the k-space

where the conduction band of phosphorene is generated by pz orbitals, and this relative

overlap agrees quantitatively with the band gap increase experienced by the phosphorene

layer and is observed for other heterostructures containing phosphorene (HU; HONG, 2015;

PADILHA et al., 2015; YOU et al., 2016; HUANG et al., 2015b).

The second minimum in the phosphorene conduction band is originally only 0.26 eV

above the global conduction band minimum. However, the uniaxial strain in the armchair

direction reduces this difference, as also predicted theoretically from other work (PENG et

al., 2014). Since it is produced by px and py orbitals, it does not suffer an energy increase

when put in contact with the TMDC layer. However, this second minimum experiences a

strong orbital overlap with the MoSe2 layer due to charge transfer and band superposition,

as shown by the relative contributions from different layers to the conduction band in

Fig. 5.2a. At about 0.70 Γ-Y, the CBM has a composition of 36% Ph and 64% MoSe2,

thus showing that the probability density to find an electron with an energy equal to the

heterobilayer CBM is greater within MoSe2. This balance of overlapping is only observed

when quasiparticle effects are taken into account, since local or semi-local DFT calculations

show that the second minimum in the conduction band is made by 64% phosphorene and

36% MoSe2.

This discussion raises a quantum-mechanical criterion to define a band edge of vdW

interfaces within hybrid systems. We define band edges as local energy minima (maxima)
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near the gap in the k-space, which belong to the crystal where the probability density

to find the electron (hole) with this specific energy is maximum. If such a definition,

including the orbital character of the band edges, is possible, one can still introduce “real”

band discontinuities in the electronic band structure of heterosystems, even if they are

not well energetically separated. Since band discontinuities can also be represented by

states localized at the two sides of the interface. This interpretation, derived from the

electron (hole) wavefunction, allows the analysis of hybrid structures by localizing the

electron (hole), instead of simply relying on the natural band discontinuities. It is also

coherent with cases in which little orbital overlap is seen and helps to define a standard to

vdW heterostructures with overlapping electronic properties.

The energy separations of the band edges at both sides of the heterointerface can be

interpreted as “natural” band discontinuities or offsets. By setting the vacuum level as

reference for the electrostatic potential, natural band discontinuities are calculated and

compared with the real ones for both studied systems. These results are summarized in

Figs. 5.2c,d. Band offsets for both heterobilayers, calculated with the criterion discussed

above, deviate from their natural band discontinuities up to 0.2 eV. Hybridization leads to

a considerable change in band lineups (black lines in Fig. 5.2c,d) for Ph/MoSe2, in which

the heterostructure experiences a type I to type II transition. Ph/WSe2 systems preserve

the type I of the heterostructure expected from the natural band discontinuities, since band

superpositions do not affect directly the phosphorene CBM. Shifts in band levels are further

enhanced by charge transfer between the two layers. By comparing the vacuum level from

both sides of the interface, a potential barrier is observed due to the formation of a dipole

on the interface. In both systems, the TMDC layer is depleted from electrons, which

shifts downwards its bands with respect to the vacuum level, while phosphorene receives

electrons and becomes negatively charged. For Ph/MoSe2 (Ph/WSe2), the calculated band

offsets are given by ∆Ev = 0.30 eV (0.09 eV), the VBO, and ∆Ec = 0.11 eV (0.35 eV),

the CBO.

Influences of quasiparticle (QP) corrections on the direct or indirect band gaps of

phosphorene within the heterostructures have also been investigated. Besides the gap

differences, which indicate large QP openings for both the TMDC and Ph, also the natural

band discontinuities in HSE06 ∆Ev = 0.30 eV (0.09 eV) and ∆Ec = 0.11 eV (0.35 eV)

vary compared to ∆EDFT
v = 0.31 eV (0.16 eV), and ∆EDFT

c = 0.21 eV (0.44 eV) for the

Ph/MoSe2 (Ph/WSe2) heterostructure.
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FIGURE 5.2 – Band structures of (a) Ph/MoSe2 and (b) Ph/WSe2 heterostructures.
Contributions from phosphorus atoms are shown with red circles and from the MoSe2

(WSe2) monolayer are displayed with blue (green) triangles. The size of the symbols
specifies the relative contribution from each monolayer to the band formation. The top of
the phosphorene valence band is used as energy zero. Band alignments of (c) Ph/MoSe2 and
(d) Ph/WSe2 heterostructures with respect to the vacuum level. Results for freestanding
and combined 2D crystals are displayed. All energies are shown in eV.

5.4 Effects of external factors on the heterostructure

electronic properties

One way to tune the sensitive electronic properties from phosphorene is through the

piezoelectric effect and charge redistribution in the heterointerface, which have been

reported both theoretically (HUANG et al., 2015b) and experimentally (RODRIGUES et

al., 2015; ZHU et al., 2014) for 2D crystals and other vdW heterostructures. By changing

the vdW distances in stacks, it is possible to vary the band gaps from the constituents of

the heterostructure due to the modification of the interlayer interaction. We displaced the

MoSe2 (WSe2) layer up to ±0.4 Å from the equilibrium distance in the warped phosphorene

configuration. The corresponding uniaxial pressure along the interface normal direction

drastically affects the direct band gap of phosphorene, as summarized in Fig. 5.3 for the

Ph/MoSe2 system. The direct band gaps increase when the layers in the heterostructure

are put closer, due to more intense interlayer interaction and orbital overlapping. The

same physical reason is responsible for shrinking the direct band gap in phosphorene when

the two layers have a larger distance than the equilibrium one. Increasing the separation

between the two layers leads, asymptotically, to the isolated monolayer case. This is also



CHAPTER 5. INFLUENCES OF EXTERNAL PERTURBATIONS ON BAND
ALIGNMENTS 89

observed in the Ph/WSe2 heterobilayer system . On the other hand, the band gaps of

the MoSe2 and WSe2 layers decrease when the heterobilayer is compressed and increase

with the layer separation. This modulation can significantly affect the direct gap of the

heterobilayer, which is an interesting feature for optoelectronic sensors and devices, as well

as tune band offsets and transport properties by employing mechanical pressure.

FIGURE 5.3 – Band structures for the Ph/MoSe2 heterobilayer when the vdW gap length
is (a) reduced by 0.4 Å, (b) kept constant and (c) increased by 0.4 Å with respect to
the equilibrium position. Red and blue markers depict orbital contributions from the
phosphorene and MoSe2 layers, respectively. The top of the valence band is taken as
reference.

Another possibility to tune band alignments at the Ph/MoSe2 or Ph/WSe2 interfaces

is to apply a vertical external electric field parallel to the stacking direction. This leads

not only to a band alignment, but also a heterostructure character depending on the

magnitude of the electric field. For both cases, we analyzed small electric fields ranging

from −0.4 V/Å to 0.4 V/Å with steps of 0.1 V/Å. Figure 5.4 illustrates how electronic

properties of Ph/MoSe2 are influenced by an electric field. When a field is applied in

the −z direction, the CBO of the heterostructure increases while reducing the VBO. The

charge redistribution imposed by the external electric perturbation leads to a band shift,

which can also be interpreted as a bias in the Fermi level on each side of the interface. In

the case of the field in the −z direction, this occurs due to the depletion of electrons from

Ph by the external electric field, shifting its bands downwards. The opposite behavior of

the band offsets happens for MoSe2 and WSe2. The MoSe2-derived conduction band at

about 0.70 Γ–Y moves down in energy while the Ph one shifts toward the vacuum level.

As a consequence, a joint band with partial Ph and MoSe2 character appears. For higher

field strengths, the Ph/MoSe2 heterostructure returns to a type I character due to this

controlled interaction. The crossing point with the vanishing CBO is near −0.1 V/Å, in

which the electron wavefunction displays about 50% probability to find an electron when

projected onto each layer.

For the Ph/MoSe2 (Ph/WSe2) system, two transitions between heterostructure types
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FIGURE 5.4 – Band structures for the Ph/MoSe2 heterobilayer when an electric field of
(a) -0.3 V/Å, (b) 0.0 V/Å and (c) +0.3 V/Å is applied in the z direction. The ratios
∆Ec/(∆Eg) and ∆Ev/(∆Eg) are also given. Red and blue markers depict bands formed
by orbitals from the phosphorene and MoSe2 layers, respectively. The top of the valence
band of each combined system is taken as reference.

are observed for electric fields close to −0.35 V/Å and −0.5 V/Å (−0.1 V/Å and 0.35

V/Å) when considering band offsets defined by direct gaps. Fig. 5.5 also demonstrate the

relevance of quasiparticle corrections when calculating band offsets, since DFT calculations

do not correctly describe the band hybridization and transitions between heterostructure

types under the application of electric fields when examined closely with HSE06 calculations.

The former also underestimates the slope of the band offsets with respect to the applied

vertical field when compared to the latter. The possibility to control band alignments in

heterostructures by vertical fields and enhancement of orbital overlap is fascinating. It

paves the way to control carrier injection from one subsystem to another. This broadens

possibilities for the construction of field-effect transistors with channels made from atom-

thick layers. Moreover, the controlled type II character with electron-hole separation across

the heretointerface makes both Ph/MoSe2 and Ph/WSe2 bilayers suitable for photovoltaic

applications.
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6 Validity of the Anderson rule

6.1 Motivation

The central electronic quantities for the action of a vdW heterojunction between two

semiconducting 2D crystals are the band offsets or discontinuities between conduction

and valence bands. They influence the transport and charge equilibrium processes of

such interfaces (HONG et al., 2014; ZHU et al., 2015; ROY et al., 2016). Nevertheless,

the majority of predictions are based on so-called natural band discontinuities between

2D crystals, mainly based on the original electron affinity rule (ANDERSON, 1962;

ANDERSON, 1960), i.e., on the vacuum level alignment. The weak interlayer vdW

bonding between two atomically thin crystals together leads to a low hybridization of

electronic states and the formation of quantum dipoles (TERSOFF, 1984; SCHLAF et al.,

1997), as demonstrated in previous chapters.

So far in this work, we have presented a method to predict favorable vdW-bonded

stacks of 2D crystals, using it to simulate vdW heterostructures. Several phenomena that

arise in these interfaces have been demonstrated, and their effects on band alignments

for technological applications should not be overlooked. Therefore, it is necessary to fully

understand the limitations of the largely used Anderson rule and the motives behind its

failures. In this chapter, we comprehensively analyze band offsets of ten vdW heterostruc-

tures based on tin dichalcogenides in order to verify the validity of the Anderson rule. In

Sec. 6.2, natural band discontinuities are interpreted and compared with measurements

from the literature. Then, in Sec. 6.3 we study the effects of stacking on structural and

electronic properties of realistic vdW heterostructures built with these crystals. Band

alignments are then discussed in Sec. 6.4. Finally, using the thorough information from

this dissertation, the validity and limitations of the Anderson rule are discussed in Sec.

6.5.
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6.2 Natural band alignments

We start from the optimized geometries of 11 freestanding 2D crystals optimized

according to Chapter 3, with their band discontinuities depicted in Fig. 6.1. The absolute

values give the electron affinities A and ionization energies I as in Eq. (3.1). Neglecting

interface states, defect levels, charge transfer at a real interface, the electron affinity rule of

Anderson (ANDERSON, 1960; ANDERSON, 1962; BECHSTEDT; ENDERLEIN, 1988)

can be used to estimate the natural band discontinuities from Eq. (4.3).

Figure 6.1 shows clear chemical trends. With the increase of the anion size from S to Se,

both the electron affinities and ionization energies decrease. The only exception appears

comparing the conduction band edges of SnS2 and SnSe2. The quasiparticle gaps Eg of the

dichalcogenides vary between 1.1–2.4 eV, indicating semiconducting behavior. The gap

values, as well as the I and A values of freestanding 2D crystals, are comparable with those

derived from one-shot GW calculations starting from DFT-PBE Kohn-Sham eigenvalues

for MS2 and MSe2 (M = Zr, Mo, W) (ROUT et al., 2014). The GW gaps are slightly larger

than the HSE06 ones because of the somewhat smaller (larger) A (I). However, the trends

among the resulting natural band discontinuities from Eq. (4.3) but also their absolute

values are rather similar. The observation of comparable band offsets in GW and HSE

have been made also for other 2D materials (LIANG et al., 2013). For SnS2 and SnSe2,

the gaps are slightly smaller than values for bulk 3D crystals from similar calculations

(SUN et al., 2015) and much closer to the measured gaps of 2.07 and 0.97 eV (DOMINGO

et al., 1966). The optical gap of SnSe2 flakes on SiO2/Si substrate has been measured to

be 1.73 eV (ZHOU et al., 2015). The work function of graphene I = A = 4.33 eV is in

reasonable agreement with other theoretical (ROUT et al., 2014; GIOVANNETTI et al.,

2008) and experimental results (OSHIMA; NAGASHIMA, 1997). The electron affinity,

ionization energy and fundamental gap reported for bulk SnS2 and SnSe2 (ROBERTSON,

1979) are also not too far from our computed values.

The variety of band alignments within the Anderson affinity rule demonstrate that

the majority of heterostructures based on SnS2 and SnSe2 are from type II for the chosen

crystals in Fig. 6.1 because of their large A and I values, at least for MoS2, MoSe2,

WS2, and WSe2. For the WSe2/SnSe2 heterostructure, the type-II finding is in agreement

with photoemission data (ROY et al., 2016). Only the “natural” values ∆Ec = 1.78 eV

and ∆Ev = −1.06 eV are somewhat larger. Predictions for the heterojunctions of SnS2

or SnSe2 with HfS2, ZrS2, and ZrSe2 are difficult, since the natural band offsets ∆Ec

(SnS2) and ∆Ev, as well as ∆Ec (SnSe2), are small and may even vary with respect to the

sign. For hBN, the situation is difficult since ∆Ev changes the sign with the anion in the

dichalcogenide. While hBN/SnS2 is a type-II system, hBN/SnSe2 clearly shows a type-I

character. Most interestingly is the formation of an ohmic contact between graphene and
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the tin chalcogenides, since this kind of interface is critical for low-resistance contacts

for 2D electronic devices. In summary, natural alignments, however, may be not enough

to describe band offsets within vdW heterostructures. Hence, we simulate a series of

combinations of 2D crystals in heterojunctions to predict and analyze systematically how

does stacking influences the band discontinuities.
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FIGURE 6.1 – Conduction and valence band edges calculated within HSE06 for the 2D
crystals under study. The colored bar edges represent the valence band maximum and the
conduction band minimum for each monolayer, while the Dirac cone vertex characterizes
the Fermi level for graphene. All energies are taken with respect to the vacuum level.

6.3 Real heterostructures

To investigate the formation of interfaces between tin chalcogenides, graphene, boron

nitride and the selected TMDCs, we analyze favorable heterostructures. We apply the

coincidence lattice method to predict low-energy arrangements of the 2D systems with

less than 2% of strain necessary to make an almost commensurate heterobilayer system

and number of atoms up to 30 inside the supercell. Thereby, the lateral unit cells, as well

as the rotation of the two crystals, are varied. The case of Gr/SnSe2 is an exception, in

which the system is forced to be commensurate at an angle of 0◦ to ensure a reasonable

comparison with its SnS2 counterpart. From then on, each heterostructure is constructed

by applying an almost vanishing biaxial strain to the constituents, as given in Tab. 6.1.

We keep MoS2, WS2, MoSe2 and WSe2 unstrained due to their stiffness to biaxial strains

when compared to SnS2 and SnSe2 (GUZMAN; STRACHAN, 2014). Graphene is strained

to preserve the electronic properties of SnS2 and SnSe2. In the other cases, the strain

is distributed over both monolayers, compressive for one and tensile for the other. This

strain distribution gives rise to small variations in electronic properties of the junctions.

Then, the interlayer distance between the two layers is varied until an energy minimum is
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found. Finally, the system is relaxed to minimize atomic forces. The resulting binding

energy Eb of the two layers is calculated as in Eq. 4.1.

For all investigated heterobilayers, stability is found and structural parameters are

derived. In the 10 cases listed in Tab. 6.1, the bilayers gain energy due to the interaction

between the 2D crystals by vdW bonds, as demonstrated by the magnitude of the binding

energy and the interlayer distance. As a rule of thumb, interlayer distances d12 around 3

Å are observed. The vdW binding Eb hardly varies around 20 meV/Å2. For the particular

HfS2/SnS2, ZrS2/SnS2, and ZrSe2/SnSe2 heterobilayers, the AA stacking is chosen to be

simulated due to its enhanced stability and greater binding energy. This has been already

shown for interfaces of HfS2 and ZrS2 in this work and explains the smaller interlayer

distance of these systems within the trend as well. For the other systems, typical vdW

distances and binding energies are achieved, as well as a spatial distribution of the bilayer

stacking due to the supercell.

TABLE 6.1 – Combinations of 2D crystals with SnS2 and SnSe2 obtained using the
coincidence lattice method. The layer 1/2 column relates the original monolayer unit cell
to the supercell used in the heterostructure, denoted according to the Wood notation
(WOOD, 1964). The first compound shown in the heterobilayer column is denoted as layer
1. The biaxial strains ε1/ε2 applied to the layers 1/2 to make the system commensurate
also characterize the building of the supercell. The relaxed heterobilayer has an interlayer
distance of d12 and a binding energy of Eb.

Heterobilayer Layer 1 Layer 2 ε1 (%) ε2 (%) d12 (Å) Eb (meV/Å2)
Gr/SnS2 3× 3 2× 2 -0.91 0.00 3.38 20.1
HfS2/SnS2 1× 1 1× 1 0.57 -0.56 2.97 21.1

MoS2/SnS2 2× 2 (
√

3×
√

3) R 30.0◦ 0.00 -0.37 3.32 20.0

WS2/SnS2 2× 2 (
√

3×
√

3) R 30.0◦ 0.00 0.20 3.34 18.7
ZrS2/SnS2 1× 1 1× 1 0.23 -0.23 2.94 21.3
Gr/SnSe2 3× 3 2× 2 3.53 0.00 3.46 18.6

hBN/SnSe2 (
√

7×
√

7) R 19.1◦ (
√

3×
√

3) R 30.0◦ -0.08 0.08 3.42 18.3

MoSe2/SnSe2 2× 2 (
√

3×
√

3) R 30.0◦ 0.00 -0.50 3.42 19.0

WSe2/SnSe2 2× 2 (
√

3×
√

3) R 30.0◦ 0.00 -0.66 3.44 18.9
ZrSe2/SnSe2 1× 1 1× 1 0.84 -0.82 3.00 22.2

For the optimized structural parameters, we calculate electronic properties for all

selected heterobilayers. Quasiparticle corrections are approximately included via the

hybrid functional HSE06. This not only compensates for a typical underestimation of

the DFT band gaps, but describes important hybridization between the layers in a more

precise manner, as discussed in Chapter 5. Since band alignments may be quite sensitive

to hybridization and interlayer interactions, the methodology adopted ensures an accurate

determination of the electronic properties for the heterostructures under investigation.

The reference level for the electronic structures is adopted as the energy plateau in the

vacuum region of the plane-averaged electrostatic potential, as already used in Fig. 6.1 for
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the isolated 2D crystals. However, since a charge transfer may occur, dipole corrections

are applied to satisfy the periodic boundary conditions for the supercell in the stacking

direction. This leads to the formation of two different vacuum levels, each relative to a

side of the interface. Therefore, a step in the vacuum level is adopted for the interface,

with height directly related to the magnitude of electrons transferred from one 2D crystal

to the other.

Band structures for the heterobilayer systems are displayed in Fig. 6.2, in which

the reference is taken as the largest vacuum potential for the interface. The bands are

projected onto atomic sites and the contributions of an entire 2D layer is computed. This

representation, depicted by markers with different colors in Fig. 6.2, allows us to determine

the local energy gap and band discontinuities for each material in the heterostructure. The

size of the markers is proportional to the contribution of each crystal to the joint band

structure. Since the interface is atomically-thin, the band structure analyzed in the BZ

determines the properties of the junction itself.

6.4 Band alignments

To predict the electronic properties of heterostructures for application in electronic

and optoelectronic devices, it is indispensable to know the alignment of bands from one

material to another. Using the projection technique described earlier and the criterion to

determine band edges when hybridization is concerned from Chapter 5, we plot the band

diagrams for the heterobilayers. This allows us to understand, from a physical point of

view, the relationship between the conduction band minima (CBMs) and valence band

maxima (VBMs) from the isolated monolayers and the band offsets of the real interface.

Figure 6.3 displays the energy diagrams of the studies vdW interfaces, together with their

dipole potential step and isolated band schemes aligned via the vacuum level. Since a

commensurability strain has been subject to the 2D crystals, we include the small shifts of

the bands of the strained isolated monolayers into the energy diagrams. This allows us to

decouple strain effects from the interlayer interactions and restrict our analysis solely to

interfacial effects.

To derive chemical trends within the interface, the electronic structure results are

displayed in Figs. 6.2 and 6.3. We start with the heterobilayers containing graphene,

presenting a metallic behavior. Then we discuss the insulating hBN over SnSe2, while

finally discussing the semiconductor heterojunctions with TMDCs.

In the simulated Gr/SnS2 and Gr/SnSe2 vdW heterostructures, we first observe from

Figs. 6.2a,b that the linear band dispersion of graphene is preserved in the heterobilayer

system. The Gr Dirac cones, however, appear above the CBM of SnS2 and SnSe2. Therefore,
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FIGURE 6.2 – Band structures calculated with HSE06 for 10 heterobilayer. The size of
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shown with respect to the highest vacuum level from each heterostructure. The top of the
valence band for semiconductor systems (Fermi level for systems with graphene) is shown
with an horizontal light blue line.
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FIGURE 6.3 – Band alignments for each of the 10 heterobilayers under study. The natural
band discontinuities for a 2D crystal are represented with colored lines, while the black
solid lines at the center of each heterostructure diagram depict the heterojunction band
offsets upon contact. The vacuum dipole step is shown in gray, and the colors of each
material are specified within the legend of each diagram. In (j) and (k), a hybridization
is found within the band edges, and the percentages represent the contribution of each
monolayer to the formation of the band minima.
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these contacts gives rise to significant charge transfers, creating a dipole potential of the

order of 0.4 eV, leading to a vacuum level step and p-doping of the graphene layer. The two

effects drastically change the work function of the bilayer, resulting in a metallic behavior.

This work function modulation has been observed experimentally and reported in an

earlier theoretical work (ROUT et al., 2014). In several devices, the formation of an ohmic

contact, such as the one obtained for Gr/SnS2 or Gr/SnSe2, is preferred. The rectification

induced by a Schottky barrier is an impediment to create vdW heterostructure devices

with good electric contacts. These interfaces present an alternative for manufacturing

Ohmic contacts in 2D semiconductor devices (ALLAIN et al., 2015).

Another 2D crystal used in vdW heterostructure devices is hBN. Its insulating properties

make it useful for electronic barriers. By stacking a monolayer hBN on SnSe2, we observe

that the electronic properties of both materials are almost preserved, as displayed by the

band structures in Fig. 6.2c and the band alignments of the systems in Fig. 6.3c. Only

minor changes are observed in the electronic properties of hBN. These modifications of

the insulating substrate have been also predicted for other TMDCs/hBN interfaces, as

shown in Chapter 4 and experimentally observed for Gr/hBN heterostructures (PAN et al.,

2016). Although the hBN/SnSe2 bilayer is a type-I heterostructure, its valence band offset

(VBO) is pretty small in both approaches shown in Fig. 6.3c. The large gap discontinuity

∆Eg = EhBN
g − ESnSe2

g mainly results in a large conduction band offset (CBO), showing

that the hole confinement on the SnSe2 side is not very effective. A mutual polarization of

the two materials across the interface results in an electrostatic dipole. Its magnitude is

compatible with those at interfaces with MoSe2 (see Chapter 4).

SnS2 and SnSe2 have been largely used for vdW heterostructure devices as underlying

substrate layer for the growth of TMDCs (ZHANG et al., 2014). Hence, it is useful to

understand the effects underlying the band alignments for these systems. Heterostructures

made by MoS2 and WS2 with SnS2 show band offsets very close to their natural ones

because of the vanishing interface dipole. The band offsets of ∆Ec = 0.9 or 1.2 eV and

∆Ev = −1.1 or -1.4 eV vary less than 0.1 eV when compared to the ones predicted

by the strained monolayer situation. Thus, interfacial coupling almost preserves the

local direct band gaps. Nevertheless, the joint electronic properties of the systems may

indicate some changes, e.g. indirect band gaps in real space across the interface as for

TMDC/SnS2 systems. Only a small charge transfer occurs on the interface, as indicated by

the vanishing vacuum step. These heterostructures are of type II for both MoS2/SnS2 and

WS2/SnS2. The absolute values of ∆Ec and |∆Ev| are of the order of 1 eV. This guarantees

a spatial charge separation between the electrons and holes on the interface. Experimental

results support our findings regarding the heterostructure type and interfacial coupling.

Measurements for the stacked few-layer MoS2, WS2, and WSe2 grown on SnS2 microplates

indeed indicate the existence of a weak interaction within the interface, leading even to a
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new peak in the photoluminescence spectrum (ZHANG et al., 2014). In the case MoS2

on SnS2 this photoluminescence peak has been shown to be from electronic coupling and

charge separation of MoS2 and SnS2 in the interface, suggesting a type-II heterostructure

(LI et al., 2016). This fact is supported by the quenching of the strong excitonic emission

peak of freestanding MoS2.

Heterobilayers of MoSe2 and WSe2 on SnSe2 are quite similar to the their sulfide

analogous (see Figs. 6.3e and g). Small changes are observed in the band alignments but

still a vanishing dipole step is found, suggesting weak electroinc polarization between the

layers. Both heterostructures are of type-II with band offsets of about ∆Ec = 1.4 or 1.8

eV and ∆Ev = −0.8 or -1.0 eV. However, the extremely small indirect gap between the

WSe2 VBM and the SnSe2 CBM across the heterointerface almost tends to the properties

of an broken-gap heterostructure. Experimental results agree with this heterostructure

type predictions (ARETOULI et al., 2016; ROY et al., 2016), with some differences

in the reported offsets. Small discrepancies are found for the band gaps of WSe2 and

SnSe2 when compared to measurements, ranging between 1.3–1.6 eV and 0.8–1.0 eV,

respectively (ARETOULI et al., 2016; ROY et al., 2016). This is due to two facts: (i) the

study of approximate quasiparticle gaps in contrast to the optical gaps from spectroscopic

measurements and (ii) the dependence of the band gap of these 2D crystals on the number

of atomic layers studied. Our results for a CBO of 1.8 eV and a VBO of 1.0 eV for the

WSe2/SnSe2 interface slightly deviate from the experimental values. Excitonic bound

states make the optical gaps smaller than the quasiparticle ones due to the strong exciton

binding. It has to be eliminated to extract band offsets from optical data. Furthermore,

experiments usually report data for few-layer crystals, such as a 3–6 WSe2 layers (ROY

et al., 2016). The thickness influence and the excitonic effects make the results for the

studied monolayer case slightly different from the experimental environment explored in

the literature (ARETOULI et al., 2016; ROY et al., 2016). These effects explain the

smaller CBO of 1.1–1.6 eV and a VBO of 0.8 eV for experimental studies (ARETOULI et

al., 2016; ROY et al., 2016) when compared to our results. Nevertheless, the vanishing

gap at the WSe2/SnSe2 interface suggests application in tunneling field-effect transistors

(ROY et al., 2016), while MoSe2/SnSe2 heterobilayers with pronounced type-II character

may arouse interest for solar cells and high-performance field-effect transistors (CHEN et

al., 2017).

Most interestingly are the HfS2/SnS2, ZrS2/SnS2 and ZrSe2/SnSe2 heterostructures

when phenomena at the band edges are considered. Due to the small lattice mismatch

of these systems (< 2%), it is possible to simulate them as commensurate 1× 1 systems

by applying a biaxial strain to the crystals. This is not unrealistic though, since similar

constraints have been observed experimentally for other vdW heterostructures (WOODS

et al., 2014). This kind of commensurability have also been enforced while modulating the
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interlayer distance between the 2D crystals (YANKOWITZ et al., 2016).

The three heterojunctions in Figs. 6.3i, j, and k have stacking patterns which lead to

different stabilities (KOŚMIDER; FERNÁNDEZ-ROSSIER, 2013). We investigate the

most stable of them, namely, the AA stacking. The smallest interlayer distances among

the studied systems below 3 Å (see Tab. 6.1) lead to stronger binding energies Eb. This

distance decrease is related to stronger interlayer interaction and orbital overlap, which

may also tune the electronic properties of the materials, especially their band gaps and

band offsets, e.g. by the piezoelectric effect (ZHU et al., 2014; WU et al., 2014). In

the ZrSe2/SnSe2 and HfS2/SnS2 heterostructures, for example, the wavefunction overlap

drastically changes the lowest conduction bands of the heterojunctions. The almost

degenerate states forming the conduction band edges are lifted. According to the molecular

orbital theory, the hybridization of the band states of opposite layers in this contact leads

to two different energy levels related to bonding and antibonding combinations. Since

both layers have a significant contribution to the formation of the joint conduction bands,

the definition of a CBO is difficult. In a quantum mechanical sense, the electrons in these

bands are delocalized throughout the interface. This fact suggests to derive a zero CBO for

these systems. Electrons can freely move in any direction without facing an energy barrier.

Theoretical calculations for a HfSe2/SnS2 heterostructure (SU et al., 2017) are in agreement

with our results. On the other hand, in Figs. 6.2i and 6.3i, the ZrS2/SnS2 junction exhibits

only a weak hybridization when compared to its counterparts in Figs. 6.3j, 6.3k, 6.3j, and

6.3k. The conduction band minimum is formed by 70% of ZrS2 contributions, which allow

a proper definition of a band offset using the quantum mechanical criterion of the highest

probability to find an electron on one side of the heterointerface.

While the conduction band is modified by a strong hybridization between the 2D crystals,

at least in the latter cases, the uppermost valence band of these three heterosystems are

only slightly affected. This is due to the fact that the in-plane orbitals px and py from the

sulfur and selenium anions, responsible for the formation of the valence bands of all five

monolayers constituting the three heterointerfaces, remain unaffected upon contact between

the layers. By contrast, the conduction bands of ZrS2, ZrSe2 and HfS2 are composed

mainly by dz2 , dxz and dyz orbitals from the metal atom and pz orbitals from the anion,

and tend to hybridize upon out-of-plane contacts. The conduction bands of SnS2 and

SnSe2 are composed mainly by spherically symmetric s orbitals and, therefore, are hardly

influenced by the neighboring layers.
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6.5 Anderson rule

Having in mind the importance of band offsets for the construction of heterojunction

devices, the formulation of trends regarding band alignments is necessary, in addition to the

explicit values given in Fig. 6.3. A heuristic technique commonly applied to semiconductor

interfaces is the electron affinity rule, known as the Anderson rule (ANDERSON, 1962;

ANDERSON, 1960). According to this rule, the CBO in a semiconductor heterojunction

has to be taken directly from the difference between the electron affinities, while the VBO

is obtained by the CBO and the quasiparticle (not optical) band gaps of the materials (Eq.

(3.3)). In three-dimensional semiconductor heterostructures, stronger mixed covalent-ionic

chemical bonding occurs at the interface, which turns the Anderson rule into a rough

approximation to describe the junction (BECHSTEDT; ENDERLEIN, 1988). On the

other hand, since weak vdW interaction is responsible for the stability of vdW stacks of

2D crystals, the electron affinity rule should be fulfilled for these heterostructures (CHIU

et al., 2017). Based on our results, we analyze this expectation in detail below.

We start with cases in which the electron affinity rule in Eq. (4.3) is obviously fulfilled,

i.e., where the band alignment in the heterostructure (central part of each panel in Fig.

6.3) can be explained by the “natural” band positions (left and right parts of each panel).

The superposition of group VIB metal dichalcogenides, such as MX2 (M = Mo, W and

X = S, Se) with SnX2, nearly preserves the natural band alignments, with shifts smaller

than 0.1 eV in the real heterojunctions. The small dipole potential step in the interface

indicates a small charge transfer between the monolayers. The lattice mismatch between

the original 1× 1 Bravais lattices up to 15% and the difference between their polymorphs

(2H for the TMDCs, 1T for the tin dichalcogenides) are impediments to a commensurate

1 × 1 stacking. The extremely dense coincidence lattices also lead to small interlayer

distances. Despite the maximum coincidence and the almost vanishing strain (see Tab.

6.1), interlayer interactions are hindered due to the larger distances between the layers.

The chemically dissimilar band compositions leave the monolayers almost intact. Small

amounts of charge transfers are found, forming only vanishing dipole steps in the vacuum

level (see Fig. 6.3).

When hBN is put into contact with SnSe2, the heterostructure CBO = 4.4 eV differs

from the natural CBO (∆Ec = 4.2 eV) using the electron affinity rule, by almost 0.2

eV. Although no impact is observed on the electronic properties of SnSe2, the insulating

hBN layer has modified band edges upon the contact. The large gap of hBN hinders

hybridization between the layers, even if its band edge orbital character is mainly pz on

both sides of the interface. The large CBO keeps the SnSe2 CBM almost identical to the

one observed in the monolayer case, while the VBM from both crystals suffer from the

small VBO. While the electron affinity rule is a reasonable approximation for systems such
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as the hBN/SnSe2 one, it does not account for the physical interaction across the interface.

In the case of graphene on SnX2 the Anderson rule is violated by about 0.4 eV, because

of the metallic behavior of the heterostructures. Since the Fermi level of undoped monolayer

graphene is above the CBM for both tin dichalcogenides under investigation, a large amount

of charge is transferred. In both cases, the p-doping of graphene is responsible for drastic

shifts in band alignments.

Also, heterostructures made with group IV-B TMDCs and SnX2 violate the Anderson

rule, even although crystals are only weakly bonded by vdW interaction. One observes

a strong hybridization resulting in vanishing CBOs in two cases. This fact seems to be

in contrast to the simplicity of the atomic geometries of these heterointerfaces. These

heterostructures are made by almost lattice-matched 2D crystals (see Tab. 6.1).Therefore,

they can be simulated as 1× 1 commensurate systems, leading to small interlayer distances

for the AA stacking. This small interlayer distance enhances the conduction state hy-

bridization and dramatically changes the electronic properties of the studied heterosystems.

This also happens in the case of phosphorene combined with TMDCs, as shown in Chapter

5.

To validate the above hypothesis, we simulate the same three heterostructures, with

exactly the same stacking, but with a larger interlayer distance. Compared to the

equilibrium distances d12 in Table 6.1, the interlayer distances are increased to values

above 3 Å, to 3.32 Å for HfS2/SnS2, 3.34 Å for ZrS2/SnS2 and 3.41 Å for ZrSe2/SnSe2.

The electronic properties are calculated again using the same methodology. The resulting

band alignments are displayed in Fig. 6.4. Comparing these results with those for

the most stable arrangements, the vanishing dipole potential steps in Fig. 6.4 and

hybridization-induced splittings of the conduction bands for ZrSe2/SnSe2 show that the

electron affinity rule is indeed better fulfilled for the zirconium-based dichalcogenides on

top of tin-based dichalcogenides. The increase of the interlayer distance reduces the vdW

interaction and hybridization between both layers. The zero CBO in the equilibrium

ZrSe2/SnSe2 heterostructure is replaced by a well-defined CBO for larger interlayer distance

in heterostructures. Each 2D crystal hybridizes less with the other layer, leading to 69%

SnSe2 contribution to the formation of the joint conduction band. Shifts of about 0.05 eV in

the conduction band edges are related to the lift of band degeneracy and the accompanying

reduction of hybridization. These effects cannot be ignored in the equilibrium vdW

heterostructures, as in the case of HfS2/SnS2. Comparing Fig. 6.4c with Fig. 6.3k, we

observe that the shifts in the valence band almost vanish when a larger interlayer distance

is applied to the system. However, contrary to what is observed in the heterostructures of

zirconium and tin dichalcogenides, the CBO does not vanish in the HfS2/SnS2 case. The

conduction band edges still shift with respect to the situation in the isolated cases. The

increase of the interlayer distance, nevertheless, decreases the interlayer interaction. In
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the three cases studied, the magnitude of charge transfer is smaller, as evidenced by the

almost zero dipole step in the vacuum potential.

The results of our analysis are in agreement with the requirements of the Anderson rule

(BECHSTEDT; ENDERLEIN, 1988). For the 2D bilayer heterostructures, we highlighted

the three main requirements for the validity of the rule: (i) the orbital overlap should be

negligible; (ii) the interlayer interaction should vanish and not be enhanced by external

influences, such as electric fields or pressure; and (iii) the natural band positions should

be energetically far from each other, so that state hybridization across the interface is

supressed upon the contact. In summary, there is a clear tendency that the Anderson rule

is fulfilled for vdW bilayer heterostructures with an accuracy of about 0.1 eV. However,

in cases where band states localized at opposite sides of the heterointerface are almost

energetically degenerate, strong hybridization effects may occur. The accompanying band

splittings may violate the rule. This knowledge on vdW bilayer heterostructures may help

the band structure engineering for 2D electronic and optoelectronic devices.
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FIGURE 6.4 – Band alignments for (a) ZrS2/SnS2, ZrSe2/SnSe2 and HfS2/SnS2 het-
erostructures with increased interlayer separation (see text). Colored solid lines depict the
natural band discontinuities from each monolayer, while the solid black lines represent the
band discontinuities upon contact of the systems. The percentage represents the relative
contribution of each monolayer to the formation of the band indicated.



7 Conclusions

In summary, the study of vdW heterostructures is challenging both from experimental

and theoretical approaches. The incipient environment of this work lies within 2D crystals

and their stacks as potential technologies to electronic and optoelectronic devices. We first

present a general method for finding small supercells of heterostructures made from 2D

materials for studying heterostructures. Based on the idea of the existence of a coincidence

lattice in the context of 2D Bravais lattices, we calculate vdW-bonded heterostructures

among TMDCs, group-IV dichalcogenides, graphene and hBN using the results of the

coincidence lattice method and taking the atoms in account. The method starts from

non-primitive unit cells of each sheet crystal in the heterocombination, which correspond

to superlattice geometries due to the reconstruction in surface physics and can therefore be

described by either the matrix or Wood notation. Within the coincidence lattice method,

a system of diophantine equations has to be solved to find optimized lattice geometries of

bilayers. The optimization criterion is to find small joint supercells with only an almost

vanishing in-plane strain in the two 2D crystals. We validate this approach by comparing

its results with those of already studied systems by showing its compatibility with simpler

procedures. As an interesting fact, Moiré patterns found experimentally for van der

Waals-bonded bilayer systems could be explained by coincidence lattices. We find a large

set of interesting coincidence lattices and corresponding supercells using rotations and

strain to transform the original combination into a commensurate one. We demonstrate

how the small supercells can be applied to simulate real heterojunctions of two sheet

crystals.

The coincidence lattice method is then employed to investigate the underlying properties

of band alignments on vdW heterostructures. To understand the effects of stacking on

structural and electronic properties of the systems, we investigate three heterostructures

made from the TMDCs HfS2, ZrS2 and MoS2 using the predicted small supercells, within

ab initio total energy and electronic structure methods in more detail. For the three

explored combinations, we show that the heterostructures are indeed stabilized by vdW

interaction. The coincidence lattices filled with the atoms really lead to flat local minima

on the total energy surface. The resulting stacking and repulsive effects lead to small

influences on the final electronic structure. More importantly, the individual electronic



CHAPTER 7. CONCLUSIONS 106

properties are almost preserved upon contact of the two constituent materials, which

certify the promising characteristics from van der Waals heterostructures. Nevertheless,

the small interactions between the two 2D crystals in the heterostructure may still change

the heterostructure from type II to type I.

Afterwards, we ask whether interlayer twist can affect the electronic properties of

the systems. To do so, we expand the application of the method for investigating vdW

heterostructures with interlayer twist and supercells requiring low computational efforts.

The coincidence lattice method is again employed to simulate MoSe2/hBN heterobilayers

with small supercells and taking interlayer twists of 19.1◦ and 10.9◦ into account. Small

strains were applied to the hBN layer to make the system commensurate, slightly modifying

natural band discontinuities. Both systems have almost equal binding energy and are

stabilized by weak vdW interactions. Electronic properties are simulated for both rotated

systems. The direct band gap of MoSe2 is preserved upon contact with hBN, demonstrating

great potential for optoelectronic applications. Electronic structure for hBN suffer from

interlayer interactions and orbital overlaps. DOS for both systems are calculated and agree

with the analysis of bands in k-space. Charge transfer between the two layers indicate

the formation of a dipole in the interface, responsible for shifting band discontinuities

and creating a potential barrier between the two layers. Thus, interlayer interactions and

twists play a role in slight modulations of the hBN substrate, but electronic properties of

MoSe2 are kept unchanged.

Then, effects of interlayer interactions and external perturbations on heterostructure

band alignments are made for two heterobilayers of Ph/MoSe2 and Ph/WSe2. We demon-

strate that the systems are stable upon contact and that an interlayer structural bending

of 10% is observed in Ph due to vdW interactions. By calculating electronic structures

within the approximate quasiparticle picture HSE06, we found an increase of 0.18 eV in the

phosphorene band gap and a pronounced orbital overlap, which changes the heterostructure

type within Ph/MoSe2 and favors an indirect gap transition in Ph/WSe2. A definition of

band offset for hybridized systems is proposed, according to which band discontinuities

are analyzed together within charge transfer and hybridization mechanisms. Significant

differences between band offsets calculated with DFT and HSE06 demonstrate the im-

portance of quasiparticle corrections within vdW heterostructures. Electronic properties

of the heterobilayers are tuned via application of and external pressure and electric field.

We demonstrate the sensitivity of the heterostructures to an external pressure, which

modulates band alignments and local direct gaps by up to 0.15 eV for uniaxial vertical

strains smaller than 13%. Moreover, electric fields smaller than 0.4 eV/Å can tune the

band alignments and control the hybridization between the systems. Whereas strain

modulates the band gaps and band offsets in a monotonic way, electric fields along the

combined systems can also change the heterostructure character from type I to type II.
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The studied heterobilayer systems may be useful for applications in optoelectronics and in

FET devices.

Finally, we comprehensively analyze ten different tin dichalcogenides-based vdW het-

erostructures made from 11 different 2D crystals to validate the Anderson rule for band

offsets in heterojunctions. We found atomic geometries for the heterobilayers which

minimizes the total energy within the DFT, showing that all systems are stable upon

contact and that the interlayer distance between the systems tends to the commensurability

of the stack for increased lateral unit cells. Electronic structures are calculated for all

heterosystems. From them, band alignments have been derived and compared to their

natural band offsets, obtained by vacuum-level alignment and measurements, showing

good agreement. Trends among these heterointerfaces have been observed, and their

potential applications to device fabrication are emphasized. An Ohmic contact is formed

between graphene and SnX2 (X = S, Se), leading to a p-doping of the graphene layer. The

insulating properties of hBN are slightly changed upon contact with SnSe2, while the latter

remains almost unchanged. Molybdenum and tungsten dichalcogenides underly small

variations, such as band shifts with respect to their isolated monolayer band edges, when

stacked over SnX2, but their band offsets are mostly unaffected. Zirconium dichalcogenides

and HfS2 over SnX2 interact more strongly with each other, leading to larger shifts in the

band offsets between the layers and an important orbital overlap, which gives rise to a

zero conduction band offset in the most stable stacking. We also investigated the validity

of the electron affinity rule, which works quite accurately for all studied systems except

for group-IVB TMDCs on monolayer SnX2 substrates. In latter cases, we investigated the

effect of the interlayer separation, demonstrating that the commensurability of the systems

play an important role in the interlayer interaction and state hybridization between the

2D crystals. The increase of the interlayer separation changes the band offsets toward

the natural band discontinuities and reduces the hybridization between the layers. We

observed an important feature regarding the degeneracy of energy levels, demonstrating

its capability to shift the conduction band minimum of the heterobilayer system by the

hybridization-induced band splitting.

The knowledge of trends on band alignments and electronic properties of bilayers, as

well as the almost validity of the Anderson rule for the studied cases, may guide the way

for predicting the action of novel electronic and optoelectronic devices. Together with

a theoretical and sound method to analyze vdW heterostructures, this work has major

contributions to the scientific community in the area of physics, chemistry and engineering

to develop a whole new dimension of materials.
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ÇAKIR, D.; SEVIK, C.; PEETERS, F. M. Significant effect of stacking on the electronic
and optical properties of few-layer black phosphorus. Physical Review B, v. 92, n. 16,
p. 165406, 2015. 85

CEPERLEY, D. M.; ALDER, B. Ground state of the electron gas by a stochastic method.
Physical Review Letters, v. 45, n. 7, p. 566, 1980. 39

CHEN, P. et al. Annealing tunes interlayer coupling and optoelectronic property of bilayer
SnSe2/MoSe2 heterostructures. Applied Surface Science, v. 419, p. 460–464, 2017. 100

CHEN, X. et al. High-quality sandwiched black phosphorus heterostructure and its
quantum oscillations. Nature Communications, v. 6, 2015. 82

CHHOWALLA, M. et al. The chemistry of two-dimensional layered transition metal
dichalcogenide nanosheets. Nature Chemistry, v. 5, n. 4, p. 263–275, 2013. 24

CHIU, M.-H. et al. Band alignment of 2D transition metal dichalcogenide heterojunctions.
Advanced Functional Materials, v. 27, n. 19, 2017. 102

DAS, S. R. et al. Low-frequency noise in MoSe2 field effect transistors. Applied Physics
Letters, v. 106, n. 8, p. 083507, 2015. 24

DEAN, C. R. et al. Boron nitride substrates for high-quality graphene electronics.
Nature Nanotechnology, v. 5, n. 10, p. 722–726, 2010. 23

DENG, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n
diode. ACS Nano, v. 8, n. 8, p. 8292–8299, 2014. 82

DION, M. et al. Van der Waals density functional for general geometries. Physical
Review Letters, v. 92, n. 24, p. 246401, 2004. 42

DOMINGO, G.; ITOGA, R.; KANNEWURF, C. Fundamental optical absorption in SnS2
and SnSe2. Physical Review, v. 143, n. 2, p. 536, 1966. 93

DUFFERWIEL, S. et al. Exciton-polaritons in van der Waals heterostructures embedded
in tunable microcavities. Nature Communications, v. 6, 2015. 24



BIBLIOGRAPHY 110

ELAHI, M. et al. Modulation of electronic and mechanical properties of phosphorene
through strain. Physical Review B, v. 91, n. 11, p. 115412, 2015. 85

ENGEL, E.; DREIZLER, R. M. Density functional theory: an advanced course.
Berlin: Springer Science & Business Media, 2011. 39, 41, 42

FANG, H. et al. Strong interlayer coupling in van der Waals heterostructures built from
single-layer chalcogenides. Proceedings of the National Academy of Sciences,
v. 111, n. 17, p. 6198–6202, 2014. xv, 59, 61, 71

FEI, R.; YANG, L. Strain-engineering the anisotropic electrical conductance of few-layer
black phosphorus. Nano Letters, v. 14, n. 5, p. 2884–2889, 2014. 24

FIOLHAIS, C.; NOGUEIRA, F.; MARQUES, M. A. A primer in density functional
theory. Berlin: Springer Science & Business Media, 2003. v. 620. 41

GEIM, A.; GRIGORIEVA, I. Van der Waals heterostructures. Nature, v. 499, n. 7459, p.
419–425, 2013. 24

GEIM, A. K.; NOVOSELOV, K. S. The rise of graphene. Nature Materials, v. 6, n. 3,
p. 183–191, 2007. 23

GIOVANNETTI, G. et al. Doping graphene with metal contacts. Physical Review
Letters, v. 101, n. 2, p. 026803, 2008. 93

GRONVOLD, F.; HARALDSEN, H.; KJEKSHUS, A. On the sulfides, selenides and
tellurides of platinum. Acta Chemica Scandinavica, v. 14, n. 9, p. 1879–1893, 1960.
xv, 55

GUZMAN, D. M.; STRACHAN, A. Role of strain on electronic and mechanical response
of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study.
Journal of Applied Physics, v. 115, n. 24, p. 243701, 2014. 53, 66, 72, 75, 83, 85, 94

HEYD, J.; SCUSERIA, G. E.; ERNZERHOF, M. Hybrid functionals based on a screened
coulomb potential. The Journal of Chemical Physics, v. 118, n. 18, p. 8207–8215,
2003. 41, 51, 54, 86

HEYD, J.; SCUSERIA, G. E.; ERNZERHOF, M. Erratum: “hybrid functionals based on
a screened coulomb potential”[J. Chem. Phys. 118, 8207 (2003)]. The Journal of
Chemical Physics, v. 124, n. 21, p. 219906, 2006. 51, 54, 86

HOHENBERG, P.; KOHN, W. Inhomogeneous electron gas. Physical Review, v. 136,
n. 3B, p. B864, 1964. 35

HONG, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures.
Nature Nanotechnology, v. 9, n. 9, p. 682–686, 2014. 92

HU, T.; HONG, J. Anisotropic effective mass, optical property, and enhanced band gap in
BN/Phosphorene/BN heterostructures. ACS Applied Materials and Interfaces, v. 7,
n. 42, p. 23489–23495, 2015. 86

HUANG, L. et al. Electric-field tunable band offsets in black phosphorus and MoS2 van
der Waals p-n heterostructure. Journal of Physical Chemistry Letters, v. 6, n. 13, p.
2483–2488, 2015. 71



BIBLIOGRAPHY 111

HUANG, L. et al. Strain induced piezoelectric effect in black phosphorus and MoS2 van
der waals heterostructure. Scientific Reports, v. 5, 2015. 71, 86, 88

HUANG, S. et al. Probing the interlayer coupling of twisted bilayer MoS2 using
photoluminescence spectroscopy. Nano Letters, v. 14, n. 10, p. 5500–5508, 2014. xv, 59,
61

JANESKO, B. G.; HENDERSON, T. M.; SCUSERIA, G. E. Screened hybrid density
functionals for solid-state chemistry and physics. Physical Chemistry Chemical
Physics, v. 11, n. 3, p. 443–454, 2009. 41

JARIWALA, D. et al. Emerging device applications for semiconducting two-dimensional
transition metal dichalcogenides. ACS Nano, v. 8, n. 2, p. 1102–1120, 2014. 24

JIN, W. et al. Tuning the electronic structure of monolayer graphene/MoS2 van der
Waals heterostructures via interlayer twist. Physical Review B, v. 92, n. 20, p. 201409,
2015. 69

KANG, J. et al. Band offsets and heterostructures of two-dimensional semiconductors.
Applied Physics Letters, v. 102, n. 1, p. 012111, 2013. 82

KING, S. W. et al. Valence and conduction band offsets at amorphous hexagonal boron
nitride interfaces with silicon network dielectrics. Applied Physics Letters, v. 104,
n. 10, p. 102901, 2014. 23

KITTEL, C. Introduction to Solid State Physics. Hoboken: Wiley, 2004. 24, 46, 63
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4. MATUSALÉM, F.; KODA, D. S.; BECHSTEDT, F.; MARQUES, M.; TELES, L.

K. Deposition of topological silicene, germanene and stanene on graphene-covered

SiC substrates. Scientific Reports, v. 7, n. 1, p. 15700, 2017.

5. GUILHON, I.; KODA, D. S.; MARQUES, M.; TELES, L. K. A new perspective

for approximate quasiparticle correction for 2D materials energy gap calculations.

Physical Review B, in press, 2017.

6. KODA, D. S.; BECHSTEDT, F.; MARQUES, M.; TELES, L. K. Trends on band

alignments: Validity of Anderson rule in SnS2- and SnSe2-based van der Waals

heterostrutures. Submitted to Physical Review B, 2017.



Annex B - Participations in

conferences

1. KODA, D. S.; BECHSTEDT, F.; MARQUES, M.; TELES, L. K. Coincidence Lat-

tices of 2D Crystals for Optimal van der Waals Heterostructures. Poster presentation.

In: INTERNATIONAL CONFERENCE ON SUPERLATTICES, NANOSTRUC-

TURES AND NANODEVICES, 19., Hong Kong, 2016. Winner of the Outstanding

Poster Award.

2. KODA, D. S.; BECHSTEDT, F.; MARQUES, M.; TELES, L. K. Coincidence Lat-

tices and Interlayer Twist for Optimal van der Waals Heterostructures. Poster

presentation. In: INTERNATIONAL CONFERENCE ON SOLID FILMS AND

SURFACES, 18., Chemnitz, 2016.

3. TELES, L. K; BECHSTEDT, F.; MARQUES, M.; GUILHON, I.; KODA, D. S.;

PELA, R. R.; MATUSALEM, F. Deposition, alloying and stacking of 2D honey-

comb materials: a view from first principles. Invited talk. In: INTERNATIONAL

CONFERENCE ON SOLID FILMS AND SURFACES, 18., Chemnitz, 2016.

4. KODA, D. S.; BECHSTEDT, F.; MARQUES, M.; TELES, L. K. Band Offsets

Engineering for van der Waals Heterostructure Devices. Contributed talk. In: APS

MARCH MEETING, New Orleans, 2017. Bulletin of the American Physical

Society, v. 62, 4. ed.

5. KODA, D. S.; BECHSTEDT, F.; MARQUES, M.; TELES, L. K. Interfaces between

two atomically thin layers: structure and electronic properties. Contributed talk. In:

INTERNATIONAL CONFERENCE ON THE FORMATION OF SEMICONDUC-

TOR INTERFACES, 16., Hannover, 2017.

6. KODA, D. S.; TELES, L. K. Propriedades Eletrônicas de Materiais Bidimension-
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