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THERMODYNAMICAL, ELECTRONIC, AND

OPTICAL PROPERTIES OF 2D HEXAGONAL

DISORDERED SYSTEMS

Ivan Guilhon Mitoso Rocha

Thesis Committee Composition:

Prof. Dr. Homero Santiago Maciel President - ITA
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“Mas a Fama, trombeta de obras tais,
Lhe deu no Mundo nomes tão estranhos

De Deuses, Semideuses, Imortais,
Indigetes, Heróicos e de Magnos.

Por isso, ó vós que as famas estimais,
Se quiserdes no mundo ser tamanhos,

Despertai já do sono do ócio ignavo,
Que o ânimo, de livre, faz escravo.

E ponde na cobiça um freio duro,
E na ambição também, que indignamente

Tomais mil vezes, e no torpe e escuro
V́ıcio da tirania infame e urgente;

Porque essas honras vãs, esse ouro puro,
Verdadeiro valor não dão à gente:

Melhor é merecê-los sem os ter,
Que possúı-los sem os merecer.”

— Luis de Camões



Resumo

O estudo de materiais bidimensionais (2D) tem atráıdo grande atenção tanto da

academia como da indústria. Nos últimos anos, a comunidade cient́ıfica investigou diversos

materiais 2D, entre os quais podemos destacar o grupo de materiais semelhantes ao grafeno

compostos por elementos da famı́lia IV-A, como siliceno e germaneno, ou estruturas de

favo de mel feitas de átomos que pertencem a famı́lias III e V-A, como o nitreto de boro

hexagonal, ou mesmo os dicalcogenetos de metais de transição. Uma grande diversidade

de comportamentos eletrônicos pode ser observada nesses materiais e novos dispositivos

baseados neles encontram-se em fase de desenvolvimento.

Pode-se produzir materiais com propriedades ajustadas para otimizar o desempenho

de novos dispositivos. As ligas semicondutoras tridimensionais (3D) foram amplamente

aplicadas nesse sentido como forma de obter bandgaps de energia ajustáveis, o que é

conhecido como engenharia de bandgap. Da mesma forma, o uso de ligas de materiais 2D

poderia aumentar o potencial de aplicações destes materiais, oferecendo a possibilidade de

modulação de suas propriedades eletrônicas. Contudo, sob certas condições as ligas podem

sofrer efeitos de separação de fase, levando a diferentes propriedades eletrônicas e ópticas.

Dessa forma, o estudo de ligas semicondutoras 2D e de sua estabilidade termodinâmica

é de grande valia. Neste trabalho, realizamos importantes estudos pioneiros sobre as

propriedades estruturais, eletrônicas, ópticas e termodinâmicas das ligas binárias com

base em elementos da famı́lia IV-A, bem como da liga feita de grafeno e nitreto de boro

hexagonal. Exploramos também a possibilidade de ajuste das propriedades de materiais

2D através de funcionalização parcial da folha de grafeno com grupos adsorventes, como

no caso do óxido de grafeno.

Para realizar essas investigações, combinamos os cálculos ab initio baseados na teoria

funcional da densidade com uma abordagem estat́ıstica baseada em uma expansão de

clusters, conhecida como aproximação quase-qúımica generalizada (GQCA, do inglês

Generalized Quasi-Chemical Approximation), para levar em conta a desordem estrutural e

qúımica do sistema. Propomos ainda um método de cálculo da entropia que não requer

argumentos combinatórios e permite que a aplicação da GQCA para camadas atômicas

funcionalizadas.



viii

O comportamento das propriedades f́ısicas dos materiais estudados, tais como gaps de

energia, é descrito como uma função de suas composições qúımicas médias e das condições

de crescimento. Quando dispońıvel, comparamos as previsões do nosso modelo com os

resultados experimentais dispońıveis. Diferentes condições de estabilidade termodinâmica

foram verificadas em cada um desses sistemas e suas consequências para as suas respectivas

propriedades f́ısicas são entendidas à luz de efeitos de flutuação da composição e separação

de fases.



Abstract

The study of two-dimensional (2D) materials have attracted great attention from

academia and industry. In recent years, the scientific community has investigated several

2D materials, among which we can highlight graphene-like materials made of IV-A family

elements, like silicene and germanene, or honeycomb structures made of atoms that belongs

to III-A and V-A families, like the hexagonal boron nitride, or even the transition metal

dichalcogenides (TMDC). A big diversity of electronic behaviors can be observed and novel

devices based on these novel materials are being developed.

One may produce materials with tailored properties to optimize the performance of new

devices. Three-dimensional (3D) semiconducting alloys have been widely applied as a way

to tune the energy band gaps, which is known as bandgap engineering. Similarly, the use

of 2D materials alloys may expand application possibilities of these materials by allowing

property modulation. However, under certain conditions the alloys may experience phase

separation effects, leading to different electronic and optical properties. In this way, the

study of 2D semiconductor alloys and their thermodynamical stability owns a great value.

In this work we performed important and pioneers studies on the structural, electronic,

optical and thermodynamic properties of binary alloys based on IV-A family elements,

as well as the alloy made from graphene and hexagonal boron nitride. We also explored

tailoring of 2D materials properties by partial funcionalization of the graphene sheet with

adsorbent groups, as in case of graphene oxide.

To perform these investigations, we combine ab initio calculations based on density

functional theory (DFT) with a statistical approach based on a cluster expansion, known

as generalized quasi-chemical approximation (GQCA), to account for the system structural

and chemical disorder. We proposed an approach to entropy calculation that does not

require combinatoric arguments and enables the GQCA application to functionalized

sheets.

The behavior of the physical properties of these materials, such as energy gap, is de-

scribed as a function of their average compositions and growth conditions. When available,

experimental results are compared with our model predictions. Different thermodynamic

stability conditions have been verified in each one of these systems and their consequences
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on the alloy physical properties are understood in the light of composition fluctuation and

phase separation effects.
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1 General Introduction

1.1 Motivation

The study of two-dimensional (2D) materials is an exciting field that has received a

great amount of interest from both academia and industry after the isolation of graphene

from graphite through mechanical exfoliation (NOVOSELOV, 2004). The great importance

of this achievement gave to Geim and Novoselov the Physics Nobel Prize in 2010 and

there were very optimistic expectations that technology would be arriving to an ‘Age of

Graphene’ (FLYNN, 2011). This 2D material is formed by a unique atomic layer with

sp2-hybridized carbon atoms distributed in a planar honeycomb structure, as depicted in

Fig.1.1. The world-wide attention has emerged from graphene exceptional mechanical,

electronic and thermal properties, which are closely related to the linear energy-momentum

dispersion at the Dirac point (ALLEN, 2010).

FIGURE 1.1 – Planar honeycomb structure of graphene.

However, large scale high-quality graphene synthesis is a big challenge. The best quality

graphene samples are still obtained by mechanical exfoliation, although this process is

limited to flakes smaller than 1mm length with unfeasible reproductivity in large scales

(ALLEN, 2010; YI; SHEN, 2015). The current more popular solutions to this problem are the

chemical vapor deposition (CVD) on transition metals substrates (SUTTER, 2008; REINA,
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2009) and chemical exfoliation, which isolate graphene oxide sheets in a graphite sample

through Hummers’ method.

There are still other obstacles to be surpassed in order to turn possible the generalized

graphene application in novel devices. One key feature that makes the use of graphene

unlikely in high-performance integrated logic circuits as a planar channel material is the

absence of a band gap (NOVOSELOV et al., 2012). Another limitation of its application in

electronics is the difficult integration into the current Si-based technology. These facts

have triggered the search for other 2D atomically thin crystals, such as monolayers of

hexagonal boron nitride (h-BN) (PACILE et al., 2008), transition metal dichalcogenides

(TMDs) (ROLDAN et al., 2014), such as molybdenum disulfide (MoS2) (AYARI et al., 2007),

and many others materials (SUZUKI; YOKOMIZO, 2010; KOSKI; CUI, 2013; SAHIN et al., 2009;

SUZUKI, 2015; ZHANG et al., 2017). There are now a vast variety of materials that make

electronic devices entirely based on 2D materials possible (MIRO et al., 2014).

A common feature in devices is the use of three-dimensional (3D) alloys, which allows

to vary the band gap between the values of the endcomponents. Considering the 2D

group-IV materials, it is natural to try to tailor the electronic properties by alloying

the elements with different compositions. This increases the potential to modulate the

electronic structures and to widen possible actual applications. Such a concept has been

already realized for 2D TMDs. 2D-TMD alloys, such as Mo1−xWxS2 (CHEN et al., 2013;

RIGOSI et al., 2016), Mo1−xWxSe2 (ZHANG et al., 2014), MoS2(x)Se2(1−x) (LI et al., 2014a),

WS2(x)Se2(1−x)(DUAN et al., 2016) , and CoMoS2 (LI et al., 2015) that have been synthesized

recently for the study of continuous tunable optical properties. Recently, Wei et al. (WEI

et al., 2014) discussed the phase stability of mixed single-layer TMDs, showing that the

different alloyed TMDs have great distinct stability and electronic structures.

A strong effort has been invested to study graphene-like 2D materials composed of

other group-IV elements. It has been demonstrated that 2D sheets of Si and Ge, referred

to as silicene and germanene, respectively, exhibit similar properties as graphene, except

for a low buckled structure instead of the planar one (CAHANGIROV et al., 2009). The

honeycomb structures of binary group-IV compounds Si1−xCx, Si1−xGex and Ge1−xCx

have also been reported to have interesting electronic properties. Theoretical predictions

showed an energy gap for an ordered configuration of Ge0.5C0.5, Ge0.5Si0.5 and Si0.5C0.5 of

3.16 eV, 0.285 eV and 3.53, respectively (SUZUKI; YOKOMIZO, 2010). These predictions

indicate that such 2D alloy can exhibit novel properties that are not even a mean value

between the correspondent endcomponents, since graphene, silicene and germanene do not

exhibit significant energy bandgap values.

Among other several possibilities, hexagonal boron nitride (h-BN) is a natural candidate

to be combined with graphene in a 2D alloy, since both sheet crystals possess a flat

honeycomb structure while the lattice constant mismatch only amounts to 2%(LIU, 2013).
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In contrast to graphene, which has no energy gap, h-BN is a dielectric with a wide energy

band gap of about 6 eV (PACILE et al., 2008) due to the very ionic B-N bond and the

broken symmetry between the two sublattices in h-BN. Alloying these two 2D materials

allows, in principle, a very wide range for changing the energy gap.

Alloying methodologies are not the only possible approach to obtain tunable physical

properties through chemical composition control. Due the sensibility of 2D materials to

the adsorption of functional groups, oxidation, hydrogenation, and halogenation processes

(LOH et al., 2010; PUMERA; WONG, 2013; POH et al., 2013) have been proposed to overcome

graphene’s zero-gap limitation. These materials can be synthesized through chemical

treatment of graphene samples and are natural candidates to chemically tunable graphene-

compatible platforms for future applications.

As demonstrated, 2D alloys and functionalized graphene-based materials have a great

potential in order to be incorporated inside future electronic and optoelectronic devices

based on 2D materials. Reliable simulation approaches beyond the investigation of

restricted few “guessed” nonrandom structures (NI et al., 2014; D’SOUZA; MUKHERJEE, 2015;

KAN et al., 2011; MAZZONI et al., 2006) or the stoichiometric ordered configurations (SUZUKI;

YOKOMIZO, 2010; SAHIN et al., 2009) are demanded to study the non-trivial structural

disorder exhibited by these materials. Another important feature that requires further

investigation is the influence of composition fluctuation and phase segregation on the alloy

properties. Despite the fact that some theoretical approaches have been used only to

predict phase separation in such systems (YUGE, 2009; MAZZONI et al., 2006; AZEVEDO,

2006), the exact influence of these effects on the alloy physical properties is still an open

question.

There are some important answers that we would like to answer in this work: (i)

How can one tune energy band gaps of disordered 2D systems by varying their average

chemical compositions? (ii) Would such systems exhibit homogeneous phases or phase

decomposition? (iii) How is the influence of phase separation and local composition

fluctuations on theirs physical properties?

A statistical methodology based on generalized quasi-chemical approximation (GQCA)

(CHEN; SHER, 1995) has been successfully applied to describe the physical properties of

several 3D alloys (MARQUES et al., 2003; TELES et al., 2000; TELES et al., 2001; TELES et

al., 2002; PELA et al., 2011). In this work, we present a pioneer, rigorous and systematic

theoretical study of 2D alloys and propose its generalization to functionalized sheets,

considering several different local atomic configurations and a statistical average to make

theoretical predictions about their thermodynamic, structural, electronic and optical

properties and how they depend on the system average chemical composition.
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1.2 Objective

This main goal of this work is to provide theoretical predictions to important 2D

disordered systems as first-principles calculations, giving trustworthy information about

their structural, thermodynamic, electronic and optical properties based on a statistical

approach that accounts for different possible atomic arrangements.

The adopted methodology is easily applicable to other disordered systems and results

can be systematic refined by different cluster size choices. Such approach can be a powerful

tool in the design of materials with tuned properties by controlling their growth condition

and average chemical composition.

1.3 Organization

A general introduction is contained in chapter 1, here we discuss the scientific context

where this work comes in. We also make a brief review of available literature of the subject

and discuss about the possibility of designing an alloy to a specific application on novel

devices. The main goals and organization of this work are also explained.

Chapter 2 presents the theoretical background of the used methodology. In this chapter

we introduce the Hartree-Fock method to calculate electronic structure, the density

functional theory (DFT), and different approximations to the exchange and correlation

functionals as well. Different alternatives to improve the description of excited states

depending physical properties are presented. At last, we describe the theoretical approach

to account the disorder effect within the Generalized Quasi Chemical Approximation

(GQCA) and how it can be extended to 2D functionalized sheets.

Chapter 3 is dedicated to show the results obtained for two-dimensional alloys consti-

tuted by elements from group IV such as Si1−xCx, Ge1−xSix and Ge1−xCx. Our calculations

predict very distinct behavior for each alloy, Ge1−xSix is characterized for being a random

alloy at typical growth temperature and the thermodynamical is expected for the whole

composition range, Ge1−xCx present a completely opposite behavior, having a huge critical

temperature and predicting very small solubilities, finally an ordered phase is predicted

for Si1−xCx and it is in agreement with recent experimental findings. We investigated the

causes of such distinct behaviors and the role of growth temperature to the ordered phase

stability in Si1−xCx. At last structural and electronic properties are predicted and the

influence of thermodynamics on these results is elucidated.

Chapter 4, in its turn, is dedicated to the (BN)1−x(C2)x 2D alloy obtained from

graphene and hexagonal boron nitride. This system is studied with a reduced sample

set from a ternary alloy made from boron, carbon and nitrogen atoms. The tendency to
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phase decomposition verified in experiment is obtained and our predictions for solubilities

is consistent with the experimental data. Different scenarios for phase segregation are

discussed and the electronic and optical properties that follow from them are described.

The statistics considering both the phase separation and the composition fluctuation

are applied on calculated absorbance spectra. Experimental results are qualitatively

reproduced by our model.

Chapter 5 presents a detailed investigation about graphene oxide under distinct envi-

ronment conditions applying the GQCA extension to 2D functionalized sheets proposed in

chapter 2. Based on experimental findings, we study the effects of adsorption of hydroxyl

and epoxy groups on the carbon basal sheet. The effect of simultaneous oxidation of

both groups process is studied within an analogous theoretical description to a ternary

alloy. The obtained results are compared with experimental data and other theoretical

approaches whenever it is possible.

Finally, in Chapter 6 we highlight the most significant methodological contributions

from this PhD project to the literature. The most distinctive features of each of the

considered 2D systems are also summarized for better comprehension.

In the end we present few appendices and annexes. The appendix A discusses how

the GQCA computational cost scales with the choice of cluster size and other parameters.

The appendix B contains a generalization of GQCA to the grand-canonical ensemble that

naturally arises from the novel formalism proposed in chapter 2. This topic will be further

discussed in future works and it is specially interesting to realistic descriptions of 2D

functionalized sheets. Finally, annexes A and B respectively present lists of published

works in periodic journals and participations in scientific events, where partial results of

this PhD project were presented to scientific community.



2 Theoretical Background

2.1 Electronic structure calculation

The problem of exact electronic structure calculation of a crystal is intrinsically very

complicated, since it is an interacting many-body problem. The use of quantum mechanics

in this kind of problem is mandatory. However, it is infeasible to solve the Schrödinger

equation for all the interacting electrons and nuclei in the solid. Therefore, reasonable

simplifications are needed to obtain approximated solutions.

In 1998, the austrian scientist Walter Kohn were laureate with the Chemistry Nobel prize

for the development of the Density Functional Theory (NOBEL, 1998), which was extremely

important to the simulations of molecules and solids as the available computational power

increased in the last decades.

Since ab initio computational simulations can provide reliable predictions of different

physical properties, expensive synthesis and characterization experiments with different

materials can be substituted by such methodologies, saving money and time in the research

for new materials with specific desired properties. Another important feature is that the

use of this theoretical approach can provide meaningful information of the phenomena

studied.

In this section, some different theoretical fundamentals will be discussed, including the

ones used in the present work.

2.1.1 Hartree-Fock Method

Consider the problem of describing the dynamics of N electrons, located in ~r1, ..., ~rN

positions, and Nz nuclei, located in ~rN+1, ..., ~rN+Nz positions, distributed in a crystalline

structure. All these charged particles interact by Coulombic forces.

Disregarding the spin-component of the complete wavefunction ΨC(~r1, ..., ~rN+Nz), the

time-independent Schrödinger equation that describe the stationary states of such system

can be written as
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−
N+Nz∑
i=1

~2

2mi

∇2
iΨC(~r1, ..., ~rN+Nz) +

N+Nz∑
i=1

∑
j 6=i

qiqj
4πε0|~ri − ~rj|

ΨC(~r1, ..., ~rN+Nz)

= EΨC(~r1, ..., ~rN+Nz), (2.1)

where ε0 represents the permittivity of vacuum.

Since the nuclei are much heavier than electrons, their dynamics is orders of magnitude

slower than the electronic one. Therefore it is possible to deal with the nuclei and electronic

dynamics separately. This is called adiabatic or Born-Oppenheimer approximation. In this

formalism the interaction between the nuclei and the electrons can be introduced by an

external potential Vext and the number of degrees of freedom of the system decreases from

3(N +Nz) to 3N . The electronic wavefunction Ψ(~r1, ..., ~rN) time evolution is given by

−
N∑
i=1

~2

2m
∇2
iΨ(~r1, ..., ~rN) +

N∑
i=1

∑
j 6=i

e2

4πε0|~ri − ~rj|
Ψ(~r1, ~r2, ..., ~rN)

+
N∑
i=1

Vext(~ri)Ψ(~r1, ..., ~rN) = EΨ(~r1, ..., ~rN). (2.2)

In this situation, the electronic Hamiltonian operator Ĥ can be identified as

Ĥ = −
N∑
i=1

~2

2m
∇2
i +

N∑
i=1

∑
j 6=i

e2

4πε0|~ri − ~rj|
+

N∑
i=1

Vext(~ri). (2.3)

where one can identify the contribution of the kinetic energy of electrons, the Coulombic

electron-electron interaction and the interaction of the nuclei with the electronic distribution

terms, respectively. Henceforth, the atomic system of units, where ~ = 1, e = 1, m = 1

and ε0 = 1
4π

, will be assumed. The equation 2.3 is simplified as

Ĥ = −
N∑
i=1

1

2
∇2
i +

N∑
i=1

∑
j 6=i

1

|~ri − ~rj|
+

N∑
i=1

Vext(~ri). (2.4)

We are specially interested in describing the system ground state, which corresponds

to the minimal total energy. Approximated solutions to the ground state wave function

can be obtained by the variational principle application considering parametrized trial

functions.

Due to the electron-electron interaction, we are dealing with a problem of many
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interacting particles which may not be separated into multiple independent particle

problems nor the exact wave function can be decomposed into a product of orbitals.

However, one may ignore this fact and seek to get an approximation of the Ψ(~r1, ..., ~rN).

We associate each of the N electrons with a particular one-particle state φi(~r) and impose

the antisymmetry property of the exact wave function due to the fact that electrons are

fermionic particles to its spacial component. The approximated wave function can be

written as a Slater determinant

Ψ(~r1, ..., ~rN) =
1√
N !

∣∣∣∣∣∣∣
φ1(~r1) ... φN(~r1)

... ...

φ1( ~rN) ... φN( ~rN)

∣∣∣∣∣∣∣ . (2.5)

In order to minimize the total energy with respect to the occupied orbitals φi(~r), which

must fulfill the normalization constraints, one can use the Lagrange multipliers formalism

and obtain the following set of equations

δ

δφ∗i

[
< Ĥ > −

∑
j

εj (〈φi|φi〉 − 1)

]
= 0, (2.6)

which leads to the well known Hartree-Fock (HF) equations

(
−1

2
∇2 + Vext(~r) + VH(~r)

)
φi(~r) + fF,i[φi] = εiφ(~r), (2.7)

where VH(~r) is the Hartree potential, given by the equation

VH(~r) =

∫
n(~r′)

|~r′ − ~r|
d3r′. (2.8)

and the Fock term fF,i[φi] is given by

fF,i[φi] = −
N∑
j

∫
φi(r

′)φj
∗(r′)

|~r − ~r′|
φj(~r)d

3r′. (2.9)

One can interpret equation 2.7 with analogies with classical physical quantities. The

operator −1
2
∇2 is directly associated with the electron kinetic energy, the external potential

is associated with the electron interaction with the periodic distribution with the nuclei

disposed in a crystalline structure and the Hartree potential comes as a classic Coulombic

interaction. However, the Fock term fF,i[φi] cannot be associated with any classical physical

quantity and represents a pure quantum effect, which is called exchange interaction (PARR,

1989).
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Since fF,i[φi] and VH(~r) depend on all orbitals, a self-consistent approach should be used

to numerically solve this set of equations. The computational cost involved is extremely

high due to the complexity of the term fF,i[φi], which is calculated N times for each

interaction step.

2.1.2 Density Functional Theory (DFT)

The Hartree-Fock (HF) method and its variants obtain an approximated solution to the

problem of electronic structure calculation solving coupled one-body problems subjected to

average potentials (FAZZIO, 1995). Each calculated orbital participates in the potential that

gives rise to the movement of other electrons. Since one-electron orbitals are considered,

it is said that no correlation between different electrons is included in HF method. It is

common to define the correlation energy contribution Ecor as the difference between the

exact energy E and Hartree-Fock energy EHF

Ecor = E − EHF . (2.10)

Furthermore, calculations using this method are generally limited to simple systems,

since this method is very computationally demanding. As we discussed in session 2.1.1,

Hartree-Fock method transforms one problem of N interacting bodies into N coupled

one-body problems. The fact that a different fF,i[φi] term must be calculated for each

one-body problem contributes to the method complexity.

In this scheme, we assume the total wave function Ψ(~r1, ..., ~rN), which depends on

the coordinates of the N electrons, as our key object. However, there is another way to

attack the problem in which the key object is the total electron density n(~r). That is

the density functional theory (DFT), which is mainly founded on two Hohenberg-Kohn

theorems (KOHN, 1965).

The first theorem guarantees that the ground state electronic density n(~r) of a system

of N electrons determines a unique potential that acts on the electron. We will prove this

theorem assuming a system with a non-degenerate ground state, although the theorem

can also be applied to the degenerate case.

Suppose by contradiction that there is a system of N electrons in which the external

potential on the electronic system is not determined uniquely by n(~r). Therefore, there

are two potentials, Vext(~r) and V ′ext(~r), associated with different Hamiltonian operators,

Ĥ and Ĥ ′, with ground states given by the wave functions ψ(~r) and ψ′(~r), respectively,

which generate the same electron density n(~r).

Since ψ(~r) and ψ′(~r) are the ground states of Ĥ and Ĥ ′, respectively, we can write the
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inequalities 2.11 and 2.12.

〈ψ| Ĥ |ψ〉 < 〈ψ′| Ĥ |ψ′〉 (2.11)

and

〈ψ′| Ĥ ′ |ψ′〉 < 〈ψ| Ĥ ′ |ψ〉 . (2.12)

Subtracting one inequality from the other, we find that

〈ψ| Ĥ − Ĥ ′ |ψ〉 < 〈ψ′| Ĥ − Ĥ ′ |ψ′〉 (2.13)

〈ψ|Vext − V ′ext |ψ〉 < 〈ψ′|Vext − V ′ext |ψ′〉 (2.14)

Which is a contradiction, because both sides of the inequality gives the same result

∫
(Vext − V ′ext)n(~r)d3r <

∫
(Vext − V ′ext)n(~r)d3r (2.15)

as we wanted to prove. Thus, the theorem has been proved by reductio ad absurdum.

The second Hohenberg-Kohn theorem guarantees that the density of the ground state

of a system is the one that minimizes the total energy functional E[n] given by

E[n] = F [n] +

∫
n(~r)Vext[n](~r)d3r (2.16)

where F [n] is given by

F [n] = minψ→n 〈ψ| T̂ + V̂ee |ψ〉 = 〈ψ[n]| T̂ + V̂ee |ψ[n]〉 , (2.17)

the minimum value of kinetic energy with electron-electron interaction energy among all

possible antisymmetric wave functions that generate the same electron density. In fact, it

must be true, because if an electronic density does not minimize E[n] then it cannot come

from the ground state.

Since F [n] does not depend on the external potential, it is a universal functional.

Despite this fact, it does not have a known exact explicit expression, but only several

different approximations to the this potential are available in literature.

Based on these two exposed theorems, Kohn and Sham in 1965 were the first to
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present a variational method to the electronic structure calculation of systems of many

particles from which later came to the known Kohn-Sham equations (KOHN, 1965). In this

framework the real system of N interacting electrons is substituted by a fictitious system

of N non-interacting electrons that generates the same electronic density n(~r) of the real

interacting system.

From the first theorem, we can calculate the total energy of the real system from the

electronic density n(~r) of the fictional non-interacting system and the energy functional

E[n]. We can write the universal functional F [n] as a sum of three terms:

F [n] = T0[n] + U0[n] + EXC [n], (2.18)

where the exchange and correlation functional EXC [n] is given by

EXC [n] = Vee[n]− U0[n] + T [n]− T0[n], (2.19)

T0[n] is the kinetic energy of non-interacting electron system, which can be written as

T0[n] = −1

2

N∑
i=1

∫
φ∗i (~r)∇2φi(~r)d

3r, (2.20)

T [n] is kinetic energy of the real interacting electron system,

T [n] = −1

2

∫
ψ∗[n](~r1, ..., ~rN)∇2ψ[n](~r1, ..., ~rN)d3r1...d

3rN , (2.21)

U0[n] is classic electrostatic energy of non-interacting electrons

U0[n] =
1

2

∫
n(~r)n(~r′)

|~r − ~r′|
d3rd3r′, (2.22)

and Vee[n] is the energy of mutual interaction between the electrons in the real system

Vee[n] =
1

2

∑
i 6=j

∫
ψ∗[n](~r1, ..., ~rN)ψ[n](~r1, ..., ~rN)

|~ri − ~rj|
d3r1...d

3rj. (2.23)

The solution of the fictional non-interacting system can be obtained from the so called

Kohn-Sham orbitals {φi(~r)}. Since this set of orbitals is orthonormal, its electronic density
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can be written as

n(~r) =
N∑
i=1

|φi(~r)|2. (2.24)

So it is possible to obtain the equation that determines the orbital Kohn-Sham φi(~r)

simply by using the Lagrange multipliers formalism respecting the constraint of the orbitals

normalization

∫
|φi(~r)|2dr = 1. (2.25)

Therefore, we can state that

δ

δφ∗i

[
E[n]− εi

(∫
|φi(~r)|2dr − 1

)]
= 0. (2.26)

Developing equation 2.26 we arrive to the Kohn-Sham equations,

[
−1

2
∇2 + VH(~r) + VXC(~r) + Vext(~r)

]
φi(~r) = εiφi(~r), (2.27)

where the Hartree potential VH(~r) is given by

VH(~r) =
δU0

δn(~r)
=

∫
n(~r′)

|~r − ~r′|
d3r′ (2.28)

and the exchange and correlation potential VXC(~r) is defined as

VXC(~r) =
δEXC
δn(~r)

, (2.29)

which does not have an exact explicit analytic expression.

These equations determine the Kohn-Sham orbitals φi(~r) of the fictional non-interacting

system and generates the same electronic density n(~r) from the real interacting system.

Observe that, rigorously, the only connection between these two systems is the electronic

density n(~r) and the properties that derived from it, such as the total energy.

Given an electronic charge density, it is possible to calculate the N Kohn-Sham orbitals

independently. Because, unlike the Hartree-Fock problem, the Kohn-Sham equations are

only coupled by the total electronic density.

We can face the Kohn-Sham potential as an average potential that acts on an indepen-

dent electron in the system which includes effects related to the external potential Vext(~r),
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the electrostatic interaction included in the Hartree potential VH(~r) and quantum effects

represented by exchange and correlation potential VXC(~r).

Typically this problem is solved by a self-consistent approach. An adequate approxima-

tion is chosen to deal with the exchange and correlation potential and then the algorithm

represented by flowchart of Figure 2.1 is executed.

In the next sessions, different approximations to the exchange and correlation potential

are discussed.

Start from an 

arbitrary charge 

density

Calculate the 

Kohn-Sham potential

Calculate new 

one-electron orbitals

Calculate the 

new charge density

Charge density 

is converged?

No

Yes

End

FIGURE 2.1 – Flowchart of the algorithm used in the self-consistent solution of the
Kohn-Sham equations.

2.1.3 Local Density Approximation (LDA)

The exchange and correlation potential gathers the major complexity of the interaction

between electrons and many different approximations have been proposed to obtain reliable

prediction by computational simulations. One of the most popular approximations is the

Local Density Approximation (LDA).
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The LDA approach approximates the exchange and correlation energy functional Exc

as local functional ELDA
xc . Then, it is possible to define the local exchange and correlation

per particle exc[n] as (PARR, 1989)

ELDA
xc =

∫
exc[n(~r)]n(~r)d3r, (2.30)

where exc[n(~r)] is the exchange-correlation energy per particle of a uniform electron gas of

density n, and thus only depends on the local electronic density n(~r).

Splitting eLDAxc [n(~r)] in exchange and correlation contributions

eLDAxc [n(~r)] = ex[n(~r)] + ec[n(~r)], (2.31)

the ex[n(~r)] can be determined assuming that the infinitesimal volume element can be well

approximated by a uniform electron gas. For the non-spin-polarized case one may write

eLDAx [n(~r)] = −3

4

(
3

π

) 1
3

n
1
3 (~r). (2.32)

The correlation energy contribution does not have an exact explicit expression. Since

the approximation of an electron gas does not include correlation effects, this quantity

estimation must consider other results, such as quantum Monte Carlo calculations (MARTIN,

1980).

2.1.4 Generalized Gradient Approximation (GGA)

Since the local density approximation considers the exchange and correlation effects of

a uniform electron gas for an infinitesimal volume element with electronic density n(~r),

the LDA is, by definition, exact for a homogeneous system, and arbitrarily accurate for

a system of sufficiently slowly varying density. In real systems however, n(~r) is a rather

rapidly varying function of ~r, and any effects of local variations of the electronic density

are neglected in LDA.

One possible way to include corrections associated with electronic density variations

on the exchange and correlation potential is the gradient expansion approximation (GEA)

of the functional

EGEA
xc =

∫
e(1)xc [n(~r)]n(~r)d3r +

∫
e(2)xc [n(~r)]|∇n(~r)|2d3r, (2.33)

however such approximation does not necessary fulfill the sum rule conditions that must
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be satisfied by the exact exchange-correlation potential. Therefore such expansion does

not necessary gives better results than LDA (BECHSTEDT, 2015).

Despite of this obstacle, many groups have worked on the development of generalized

gradient approximations to the exchange and correlation potential considering semi-local

functionals

EGGA
xc =

∫
f [n(~r),∇n(~r)]d3r, (2.34)

designed to fulfill different sum rules and scaling laws. Among the several GGA alternatives

proposed in literature (LEE et al., 1988; PERDEW; YUE, 1986; BECKE, 1988), we considered

in this work the Perdew-Burke-Erzenhof (PBE) (PERDEW et al., 1996) approximation,

which is the one of most popular approaches available in the literature.

In DFT with approximated exchange-correlation functionals, the cancellation is incom-

plete and the remainder is known as self-interaction error. The exact exchange-correlation

energy functional would cancel the self-energy interaction. However, as this functional

is unknown, we are restricted to approximated functionals with nonzero self-interaction

errors. There are several methods to reduce this term, here we cite the hybrid functionals

and the DFT-1/2 method.

2.1.5 Hybrid Potentials

The standard DFT approach, both considering local or semi-local exchange and

correlation potentials, gives predictions for ground-state properties with good accuracy. On

the other hand, ab initio predictions based on DFT of physical properties which depend

on excited states usually do not share the same precision. It is well known, for example,

that energy gap is underestimated by such theoretical approach.

The Hartree-Fock gives an exact solution to the exchange energy, however the effect

that it does not consider, the correlation energy, makes this methodology unable to well

describe chemical bondings (BECKE, 1993) and in the case of solid it usually predicts

overestimated energy gaps (DURIG, 1998).

To solve these problem, exchange and correlation potential approximation combining

Hartree-Fock and Density Functional Theory contribution were proposed. The associated

weight to each contribution depends on the considered approximation to the exchange

correlation potential. Becke (BECKE, 1993) proposed equal weight of 1/2 to each con-

tributions and became known as half-and-half hybrid. On the other hand this choice is

essentially arbitrary and other approximations with different weights have been tested

in order to reproduce the experimental findings (PERDEW et al., 1996; ADAMO; BARONE,
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1999; STEPHENS et al., 1996).

Further investigations on the optimal ratio between the exchange contribution of

GGA-PBE functional and Hartree-Fock method arrived in a ratio of 1:3

EPBE0
xc =

1

4
EHF
x +

3

4
EPBE
x + EPBE

c , (2.35)

which is known as PBE0 (ADAMO; BARONE, 1999).

Such approach for big molecules and solids is computational demanding due the slow

convergence of the Hartree-Fock exchange, specially for metallic materials (HEYD et al.,

2003). Heyd, Scuseria and Ernzerhof proposed a screened Coulomb potential to the

exchange interaction in order to screen the long-range part of the HF exchange and spare

computational effort (HEYD et al., 2003), known as HSE functional.

In this approach, the Coulomb operator in the HF exchange contribution is split into

short-range and long-range components as

1

r
=
erfc(µr)

r
+
erf(µr)

r
, (2.36)

where the error function is given by erf(x) = 2√
π

∫ x
0
e−t

2
dt and the complementary error

function is defined as erfc(x) = 1− erf(x). In this equation, µ is an adjustable parameter

associated with the screening of the Hartree-Fock exchange interaction.

In order to combine good precision with fast convergence, the average between Hartree-

Fock and PBE exchange contributions can be only applied to the short-range (SR) domain,

while the long-range (LR) exchange interaction only considers PBE functional. This

considerations lead to the following exchange and correlation energy HSE hybrid functional

EHSE
xc =

1

4
ESR,HF
x (µ) +

3

4
ESR,PBE
x (µ) + ELR,PBE

x (µ) + EPBE
c . (2.37)

If screening parameter µ = 0, HSE functional is reduced to the PBE0 one, while the

situation µ→∞ it recovers the PBE functional. In the original work, there was shown

that there is only a small dependence between the physical properties predictions and the

screening parameter and the optimal value of µ = 0.3Å−1 was proposed (HEYD et al., 2003).

This first version of the HSE hybrid functional is known as HSE03. Three years later, an

erratum was published reconsidering the optimal screening value to µ = 0.2Å−1 (HEYD et

al., 2006). This second version is known as HSE06, which is the one we used in this work.

Due to the slow convergence of the Hartree-Fock method and the need of calculating

different Fock terms of exchange for each orbital, even hybrid potentials are much more time

consuming than conventional DFT calculations. The solution of screening the Hartree-Fock
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exchange interaction mitigate the problem, but HSE calculations can still demand about

104 more time than DFT calculations (PELA et al., 2015).

2.1.6 DFT-1/2 method

Ferreira, Marques, and Teles, our group leaders, developed the DFT-1/2 methodology,

which is able to correct the energy gap results with similar precision of such conventional gap

correction methods, but with the same computational effort with standard DFT calculations

(FERREIRA et al., 2008; FERREIRA et al., 2011). Recently, Pelá et al. (PELA et al., 2015),

by performing a comparison among DFT-1/2, HSE03, HSE06 and the considered “state

of art” GW calculations, showed that DFT-1/2 present the best compromise considering

accuracy of the results and the computational effort for disordered systems.

The DFT-1/2 methodology is derived in the spirit of Slater-Janak transition-state-

theory (SLATER; JOHNSON, 1972; JANAK, 1978; LEITE; FERREIRA, 1971), solving the

problem of its implementation to the case of infinite solid systems, giving a practical

scheme for band gap calculations of semiconductors (FERREIRA et al., 2008; FERREIRA et

al., 2011).

The Janak’s theorem (JANAK, 1978) states that the derivative of the total energy E(N)

of a system with N electrons with respect to the occupancy number fi of an arbitrary

state α is given by its respective Kohn-Sham eigenvalue

∂E(N)

∂fα
= εα(fα). (2.38)

Combined with the assumption of the linearity of the eigenvalues with the orbital

occupancies (FERREIRA et al., 2011; LEITE; FERREIRA, 1971), one may calculate the

ionization energy I and electron affinity A of an N electron system as

I = E(N − 1)− E(N) = −εv(1/2), (2.39)

and

A = E(N)− E(N + 1) = −εc(1/2), (2.40)

where εv(1/2) and εc(1/2) represent respectively the eigenenergies associated with valence

band maximum and conduction band minimum. A scheme illustrating the half occupation

technique is given in Fig. 2.2.

While the half-occupation scheme provides accurate atomic ionization potentials, it
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Valence

band

Conduction 

band

VBM

CBM

Vacuum level

A

I

FIGURE 2.2 – Half occupation scheme of DFT-1/2 considering self energy corrections on
valence and conduction bands. Half electron is removed from VBM, while half electron is
added to CBM, to corrections on electronic affinity and ionization energy, respectively.

cannot be directly applied to extended crystalline systems. In DFT-1/2 approach the

orbital-dependent self-energy Sα is considered as a quantum mechanical average of a

“self-energy potential” VS(~r)

Sα =

∫
d3rnα(~r)VS(~r) (2.41)

of a Kohn-Sham state α with nα(~r) being its correspondent electronic density. The self-

energy potential VS(~r) is approximately given by the difference between the Kohn-Sham

potentials for the ion and the atom

VS(~r) = −V (−1/2, r) + V (0, r). (2.42)

In crystals the self-energy correction is obtained by subtracting the self-energy potential

VS(~r) from the local part of the atomic pseudopotential or the −2Z/r part of the all-electron

potential. To avoid the penetration of the self-energy coulomb tails into neighbouring

atom sites, the self-energy potentials are trimmered according to ṼS = Θ(r)VS(~r) by a

cutoff function Θ(r)

Θ(r) =

A
[
1− ( r

CUT
)8
]3

if r ≤ CUT

0 if r ≥ CUT
, (2.43)

where A and CUT are constants. A is considered as +1 (plus one) when we are considering

the valence band Vs,v (the removal of half electron) and as −1 (minus one) in the case of
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conduction band Vs,c (the addition of half electron). The value of the CUT parameter is

determined in a variational way to make the band gaps extremal (FERREIRA et al., 2008)

δEQP
g

δṼS(~r)
= 0, (2.44)

without falling back to empirical parameters.

Finally, the following one-particle Kohn-Sham DFT-1/2 equation must be solved

[
−1

2
∇2 + VKS(~r) + Ṽs,v(~r) + Ṽs,c(~r)

]
ϕi(~r) = εiϕi(~r), (2.45)

where Ṽs,v (Ṽs,c) is the trimmed valence (conducting) self-energy potential. Thus the

DFT-1/2 energy gap is directly given by the difference between eigenvalues εc − εv with

the same computational cost as a standard DFT calculation.

2.1.7 Bloch Theorem

There are several different ways of solving the Kohn-Sham equations. Since we want

to describe crystalline systems, we will start discussing the Bloch theorem, which tells us

which form the solutions of the Schrödinger equation must satisfy and also how to index

the solutions.

An arbitrary crystalline system can be described with a Bravais Lattice and a basis.

The symmetries observed in the crystalline structure are preserved both in the electronic

charge density and the Kohn-Sham potential. However, there is no guarantee that this

symmetry holds to the wave function, since it is an imaginary physical quantity.

Consider one particle subjected to the following periodic Hamiltonian operator

Ĥ = −1

2
∇2 + Vext(~r) (2.46)

with Vext(~r) satisfying the following translational periodicity condition

Vext(~r) = Vext(~r + ~R) (2.47)

for all vector ~R that belongs to a Bravais lattice.

The Bloch theorem (FAZZIO, 1995; MARDER, 1976; ASHCROFT; MERMIN, 1960) states
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that the particle eigenstates of the Hamiltonian operator can be written as

ψn~k = ei
~k.~run~k(~r), (2.48)

where un~k(~r) is a periodic function with the same translational symmetry as the external

potential un~k(~r) = un~k(~r + ~R) for all translations ~R that belongs to the Bravais lattice.

This can be verified by expanding the particle wave function Ψ(~r) and the periodic

potential Vext(~r) in a set of plane waves. Considering the Born-Von Karman periodic

contour conditions the wave function can be written as (ASHCROFT; MERMIN, 1960)

Ψ(~r) =
∑
~q

c~qe
i~q·~r. (2.49)

Since Vext(~r) is periodic, it can be expanded in plane waves with wave vectors ~K given

by the reciprocal crystal lattice

Vext(~r) =
∑
~K

U ~Ke
i ~K·~r. (2.50)

The Schrödinger equation ĤΨ(~r) = EΨ(~r) can expanded to the equation

∑
~q

ei~q·~r

(q2
2
− E

)
c~q +

∑
~K

U ~Kc~q− ~K

 = 0, (2.51)

which can only be satisfied if all the expansion coefficients are identically zero. This

equation shows that only the waves which wave vectors ~q differ by one vector ~K of the

reciprocal lattice are coupled. Therefore it is possible to label the following solutions

by one wave vector ~k that belongs to the first Brillouin zone and one integer number

corresponding to the other wave vectors ~k + ~K which are coupled to ~k.

It follows from such coupling that wave functions Ψ~k(~r) can be written as a linear

combination of the correspondent plane waves

Ψ~k(~r) =
∑
~K

cn,~k+ ~Ke
i(~k+ ~K)·~r, (2.52)

factoring ei
~k·~r from the equation we obtain

Ψ~k(~r) = ei
~k·~r
∑
~K

c~k+ ~Ke
i ~K·~r. (2.53)
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Therefore, the solution for the Schrödinger equation subjected to a periodic potential is

Ψ~k(~r) = ei
~k·~ru~k(~r), (2.54)

where u~k(~r) =
∑

~K c~k+ ~Ke
i ~K·~r is a function with the same periodicity than the corresponding

Bravais lattice and the coefficients c~k+ ~K can be calculated imposing null coefficients to the

series written in the equation 2.51.

The Bloch theorem give not only valuable information about the necessary conditions

that must be satisfied by the one-electron wave function in a periodic potential, but also

how to index solutions in terms of one wave vector ~k from the first Brillouin zone and a

integer number. This solution indexing scheme leads to the description of eigenenergy

dispersion as an electronic band structure, which is a fundamental tool to solid state

physics.

2.1.8 Projector Augmented Wave (PAW) method

One natural basis choice to describe the eigenfunctions Ψ~k(~r) of a crystalline system is

a set of plane wave. In general, electronic states localized close to the ionic cores exhibit

strong oscillations. The description of these states would require a dramatically larger set

of plane waves, which implies on significant enhancement of simulations memory and time

consumption. One efficient alternative to overcome this problem and reduce the number of

plane waves needed to obtain good approximations of the wave functions is the Projector

Augmented Wave (PAW) method (KRESSE, 1999; BLOCHL, 1994).

It is known that the chemical properties do not strongly depend on inner electronic

states, only on the valence electrons. Inspired by this chemical insight, the PAW method

(BLOCHL, 1994) divides the space into two regions: the augmented region ΩA, composed

of points which are closer than rc radius from some nuclei in the crystalline structure, and

the interstitial region ΩI , with the remaining part of the state. The two regions are treated

separately.

The goal of this method is to provide an accurate description of valence electrons in

order to reproduce chemical properties of a crystalline system. In this formalism, the actual

functions |ψ〉 are transformed into pseudo-functions |ψ′〉 that can be calculated in a simpler

way from their actual counterparts. The two functions are the same in the ΩI , being

described as plane waves, while in ΩA the pseudo-functions |ψ′〉 do not exhibit variations as

strong as the real functions |ψ〉. On the boundary between the augmented and interstitial

regions, one must ensure the continuity and differentiability of the pseudo-function. The

calculation of pseudo-functions is meant to calculate chemical properties with an efficient

way to describe the valence electrons. Consider the transformation T̂ that relates the
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actual and pseudo- wave functions

|ψ〉 = T̂ |ψ′〉 . (2.55)

Since the |ψ〉 and |ψ′〉 only differ inside spheres centered on the nuclei, the transforma-

tion operator T̂ can be written as the sum of the identity operator with the transformation

operators T̂~R responsible for the addition of difference between |ψ〉 and |ψ′〉 in the vicinity

of the atomic site located at the nuclei located by ~R vector (KRESSE, 1999)

T̂ = 1̂ +
∑
~R

T̂~R. (2.56)

A set of convenient all electrons |φi〉 and pseudo orbitals |φ′i〉 are determined in order

to calculate the nodal structure of the valence electrons in the ΩA region. In the vicinity of

the nuclei located by vector ~R, the all electrons and pseudo orbitals are mapped according

to the equation |φi〉 = T̂ |φ′i〉. These orbitals are typically partial waves in the augmented

region, resembling the Kohn-Sham solutions for free atom in this limited region.

It can be shown (KRESSE, 1999) that the transformation operator can be written as

T̂ = 1̂ +
∑
i

(|φi〉 − |φ′i〉) 〈p′i| , (2.57)

where 〈p′i| represents projector operator of the pseudo-function |ψ′〉 on pseudo orbital |φ′i〉
partial wave, which must fulfill the condition 〈p′i|φ′j〉 = δij. The actual wave function can

be, therefore written as

|ψ〉 = |ψ′〉+
∑
i

〈p′i|ψ′〉 |φi〉 −
∑
i

〈p′i|ψ′〉 |φ′i〉 , (2.58)

|ψ〉 = |ψ′〉+ |ψ1〉 − |ψ′1〉 . (2.59)

The decomposition of the actual wave function in its pseudo counterpart, indicated as
′, and central quantities in ΩA regions, indicated as 1, is also possible to other physical

quantities. The real charge density n(~r) can be written as (KRESSE, 1999)

n(~r) = n′(~r) + n1(~r)− n′1(~r), (2.60)

where n′(~r) is the pseudo electronic density and n1(~r) and n′1(~r) are the on-site charge

density from the real function and pseudo wave functions, respectively. As described
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elsewhere (BLOCHL, 1994), the effective Hamiltonian operator acting on the pseudo-

wavefunctions can be expressed as

Ĥ ′ = −1

2
∇2 + V̂ ′eff +

∑
i,j

〈p′i| (D′ij +D1
ij −D′1ij) |p′i〉 , (2.61)

where D′ij , D
1
ij and D′1ij are operators related to the decomposition of n(~r) in terms of n′(~r),

n1(~r) and n′1(~r). This operator allows us to calculate a Schrödinger like DFT equation for

the pseudo-function |ψ′〉 that demands a small fraction of the Kohn-Sham equations 2.27

written in terms of the actual wave functions |ψ〉.

2.2 Thermodynamic properties and statistical model

for alloyed systems

2.2.1 Generalized Quasichemical Approximation (GQCA)

The VASP software applies periodic boundary conditions to the given structure, so this

tool could not directly deal with non-periodic disordered systems, such as random alloys.

This obstacle can be surpassed by the application of a statistical approach combined with

ab initio calculations based on DFT. First we will focus on the study of binary alloys,

which can be represented as A1−xBx, where A and B represent different compounds and x

is the average B composition in the system and finally some results will be generalized to

a ternary alloy.

We start with the classic definition of the Gibbs free energy G of a system with enthalpy

H, entropy S and temperature T

G = H − TS, (2.62)

which can be rewritten using the definition of enthalpy as

G = E + PV − TS, (2.63)

where E is the internal energy, P is the pressure and V is the volume of the corresponding

system.

It follows from thermodynamics that the equilibrium state of a system maintained at

a constant temperature and pressure corresponds to the state of minimum Gibbs energy
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(GOKCEN, 1986). In the case of solid materials under pressures about 1 atm, we have

G ≈ E − TS = F, (2.64)

where F is the Helmholtz free energy. We can also define conveniently the mixing free

energy ∆F as the deviation from the Helmholtz free energy from the weighted average for

the concentration of the free energy of the A and B pure compounds (SHER, 1995)

∆F (x, T ) = F (x, T )− (1− x)FA(T )− xFB(T ), (2.65)

where F (x, T ), FA(T ) and FB(T ) represent, respectively, the Helmholtz free energy of the

studied alloy, compound A and compound B. We can decompose ∆F into two contributions,

one from the mixing energy ∆E and the other from the mixing entropy ∆S

∆F = ∆E − T∆S. (2.66)

There are different models to describe the terms ∆E and ∆S. We will adopt in this work

the generalized quasi-chemical approximation (GQCA). Consider a system decomposed

in statistically and energetically independent with n sites that may be occupied by an

atom A or B. Possible generalizations will be discussed in the sessions 2.2.3 and 2.2.4.

Initially, we can list 2n different supercells configurations, ranging from a configuration in

which all sites filled with atoms A to another one filled only with atoms B. Due the fact

that crystalline structures are symmetric some configurations can be obtained from the

application of some symmetry operations on the atomic arrangement, such as rotation,

translation or reflection. These configurations are equivalent, since they share the same

physical properties. Let gj be degeneracy of a specific configuration j, given by the number

of atomic arrangements among the 2n considered ones that are equivalent to the cluster

configuration j.

Therefore, exploring the crystalline symmetry group we can reduce our list of 2n

configurations to J non-equivalent cluster classes with different degeneracies gj . Let M be

the total number of clusters in an alloyed system and Mj the number of clusters j. One

can calculate the mixing internal energy as

∆E =
J∑
j=1

MjEj −M(xEA + (1− x)EB) (2.67)

where EA and EB are the energies of the clusters occupied only by atoms A and B,

respectively, and x is the concentration of type A atoms in the alloy.
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In order to add corrections on the mixing entropy estimation, we must consider the

information given by the number Mj of clusters j observed in the system. Consider

the number of possible configurations of the alloy calculated on the random distribution

of atoms, multiplied by a term that considers the probability of achieving a certain

distribution of {Mj} cluster. This expression can be normalized by the a priori probabilities

xoj = gjx
nj(1− x)n−nj of finding the cluster j if the alloy were perfectly random (CHEN;

SHER, 1995).

Φ =
N !

NA!NB!

M !∏
jMj!

∏
j

(xoj)
Mj (2.68)

Using Stirling’s approximation ln(N !) ≈ N.ln(N)−N , we can write the mixing entropy

in terms of the occurrence probability xj = Mj/M of the cluster j in the alloy.

∆S = −Nk(xln(x) + yln(y))−Mk
∑
j

xjln

(
xj
xoj

)
, (2.69)

with y = 1− x and k the Boltzmann constant. Substituting these results in the expression

∆F = ∆E − T∆S, we obtain the mixing free energy as a function of the occurrence

probabilities xj

∆F =
J∑
j=1

MjEj −M(xEA + (1− x)EB) +NkT (xln(x) + yln(y)) +MkT
∑
j

xjln

(
xj
xoj

)
(2.70)

The probabilities xj are the values that minimize ∆F , respecting the condition of

probability normalization and the alloy average composition x. The two constraint

conditions can be written, respectively, by the equations

J∑
j=1

xj = 1 (2.71)

J∑
j=1

njxj = nx. (2.72)

This problem can be solved using the Lagrange multipliers formalism. Then when get
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a set of J equations given by

∂

∂xj

(
∆F

M
− λ1

[
J∑
j=1

xj − 1

]
− λ2

[
J∑
j=1

njxj − nx

])
= 0,∀jε{1, 2, 3, ..., J}, (2.73)

where λ1 and λ2 are the Lagrange multipliers associated with the normalization and

average constraints, respectively. We can develop this set of equations and determine the

probabilities xj

xj =
xojexp[(λ2nj −∆εj)/kT ]∑J
j=1 x

o
jexp[(λ2nj −∆εj)/kT ]

, (2.74)

where ∆εj is the configuration excess energy given by the equation

∆εj = Ej −
nj
n
EA −

n− nj
n

EB. (2.75)

Defining λ = xeλ2/kT/(1− x), we can rewrite the equation as

xj =
gjλ

njexp[(−∆εj)/kT ]∑J
j=1 gjλ

njexp[(−∆εj)/kT ]
, (2.76)

where λ can be determining by the mean composition constraint.

Each cluster j can be associated with an infinite periodic system obtained by the

repetition of the correspondent atomic arrangement in the space. The physical properties

of this system can be calculated using an ab initio methodology, representing as Pj a

particular property of the cluster j of interest. Then, we can estimate the alloy property

Palloy(x, T ) through an average of Pj values weighted by the probabilities xj. Then, we

write

PGQCA(x, T ) =
N∑
j=1

xj(x, T )Pj. (2.77)

In addition, we can evaluate the uncertainty of the estimation by the standard deviation

associated with the distribution of Pj values

∆PGQCA(x, T ) =

√√√√[ N∑
j=1

xj(x, T )P 2
j

]
−

[
N∑
j=1

xj(x, T )Pj

]2
. (2.78)
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2.2.2 Thermodynamic stability and phase decomposition

The T -x phase diagram of an alloy is obtained from two curves: the binodal and

spinodal. These curves divide the diagram into three regions corresponding to stable,

meta-stable or unstable conditions.

Given a growth temperature T, we can study the ∆F/M of a binary alloy as a function

of the mean composition x. For each concentration x the GQCA approach calculate a set

of occurrence probabilities {xj}, which can be use to calculate ∆F/M as

∆F

M
=

J∑
j=1

xjEj−(xEA+(1−x)EB)+nkT (xln(x)+yln(y))+kT
∑
j

xjln

(
xj
xoj

)
. (2.79)

Performing the calculation of the free energy of the alloy for several compositions x,

adopting a fixed temperature value T, one obtain the behavior of the alloy mixing free

energy curve as a function of the concentration of its compounds.

For temperatures lower than the critical temperature, there may be a miscibility gap,

i.e. concentrations x where the alloy becomes unstable and tends to split into two different

stable phases with concentrations x1 and x2, with x1 < x2. The x1 and x2 values are such

that in the equilibrium condition the two phases share the same chemical potential µ,

which can be associated with the derivative of ∆F (x, T ) with respect to x

∂∆F (x1, T )

∂x
=
∂∆F (x2, T )

∂x
. (2.80)

One condition that must be observed in this case is that the phase separation must give

lower free energy than the condition of one only phase with composition x between x1 and

x2, as we see in figure 2.3. In fact, the decomposition into two phases with concentrations

x1 and x2 gives the minimum possible free energy with an average x1 < x < x2. The set

of concentrations x1 and x2 for different temperatures form the binodal curve in the T -x

diagram.

Other important points of the free energy curve are inflection points x′1 and x′2, where

the concavity of the free energy of mixing curve changes. For a given temperature, the

concentrations points x′1 and x′2 are determined from the equations

∂2∆F (x1, T )

∂2x
= 0, and

∂2∆F (x2, T )

∂2x
= 0. (2.81)

The alloy is stable in the composition ranges x < x1 and x > x2, unstable in x′1 < x < x′2

and metastable in the intervals x1 < x < x′1 and x′2 < x < x2. The interval x1 < x < x2
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FIGURE 2.3 – Mixing excess energy of an alloy calculated at an arbitrary temperature.
The concentrations x1 and x2 are determined by the common tangent method and the x′1
and x′2 are calculated by the change of curve concavity.

have higher free energy than its decomposition into two phases with composition x1 and

x2. The instability and the metastability may be distinguished by considering small local

composition fluctuations. If the concavity in x of ∆F (x, T ) is negative, i.e. the curve is

concave, a small disturbance tends to lower the free energy, it occurs in the whole alloy

and the system is decomposed in order to obtain a minimum free energy.

If the concavity of the curve at the point x is upward, i.e. the curve is convex, although

the decomposition in the phases with compositions x1 and x2 could lower the system free

energy, small pertubations in the alloy concentration tends to increase the system free

energy. In these composition ranges x1 < x < x′1 and x′2 < x < x2 there is an energy

barrier for the decomposition. In this situation, one may say that the alloy is metastable.

The phase diagram is composed by the binodal and the spinodal curves. This diagram

summarizes the information about the alloy thermodynamic stability. The two curves

split the diagram in three different regions. The points (x, T ) above the binodal curve

correspond to stable condition for the alloy growing, the points between the two curves

corresponds to metastable conditions and, finally, the points below the spinodal correspond

to unstable condition. The figure 2.4 depicts an example of a T -x phase diagram.

In the region below the spinodal curve the alloy decomposes into two different phases

with average compositions x1 and x2 thereby minimizing the mixing free energy F (x, T )

for given x and T . The poor and rich phases with concentrations x1 and x2 are respectively
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FIGURE 2.4 – Arbitrary example of T -x phase diagram. The stable, metastable, and
instable regions are represented by the white, grey, and red colors, respectively.

characterized by statistical weights

w1 =
x2 − x
x2 − x1

and w2 =
x− x1
x2 − x1

. (2.82)

The alloy average properties estimated by equation 2.77 should be reasonable to

represent homogeneous systems under stable (x, T ) conditions and systems with small

cluster sizes where composition fluctuation effects between the two segregated phases are

relevant. If these conditions are not fulfilled and the system is fully segregated in poor

and rich phases, i.e. for temperatures and compositions below the binodal curve, a more

reliable estimation of the mean absorbance spectra is given by

PPS(x, T ) = w1(x, T )PGQCA(x1, T ) + w2(x, T )PGQCA(x2, T ) (2.83)

with w1 and w2 the statistical weights defined in equations (2.82).

2.2.3 Generalizations concerning ternary alloys

In this work, we are also interested in alloys that can be represented as (A2)x′(BC)1−x′ .

Despite the fact that, these alloys are completely defined with one average composition

parameter x and behave somehow like a pseudo-binary alloy. Their statistics must be

obtained by particularization of a ternary alloy AxByCz.

Each term in equation 2.79 for the binary alloys has a physical interpretation that can
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be generalized to the ternary case, dispensing a reformalization from the very beginning.

The mixing internal energy ∆E(bin) =
∑J

j=1 xjEj − (xEA + (1− x)EB) can be corrected

by considering the three end components

∆E(ter) =
J∑
j=1

xjEj − (xEA + yEB + zEC) (2.84)

and new set of cluster configuration possibilities arising from the fact that a third element

can occupy each atomic site. The term ∆S
(bin)
0 = −(xln(x) + yln(y)) can be interpret as

the entropy per atomic site of a random binary alloy according to the Shannon entropy

(SALINAS, 1997), therefore it must be corrected to a generic ternary alloy as

∆S
(ter)
0 = −k(xln(x) + yln(y) + zln(z)), (2.85)

and finally the quantity

DKL(xj||xoj) = −k
∑
j

xjln

(
xj
xoj

)
(2.86)

can be interpreted as the relative entropy or the Kullback-Leibler divergence (KULLBACK;

LEIBLER, 1951), which is associated with the information lost in the assumption of a

probability distribution among the several clusters xoj instead of xj, assumed to be the

correct probability distribution. This expression should remain unchanged. Considering

these observations, we may write for ternary alloys

∆F (ter)(x, y, T )

M
=

J∑
j=1

xjEj − (xEA + yEB + zEC) (2.87)

+ nkT (xln(x) + yln(y) + zln(z)) + kT
∑
j

xjln

(
xj
xoj

)
.

The (A2)x′(BC)1−x′ alloy is described by setting x = x′ and y = z = 1−x′
2

. The equation

2.79 can be reformulated, considering the two possible end components as EA and EBC as

∆F (x)

M
=

J∑
j=1

xjEj − (xEA + (1− x)EBC) (2.88)

+ nkT

(
xln(x) + (1− x)ln

(
1− x

2

))
+ kT

∑
j

xjln

(
xj
xoj

)
.
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It is also interesting to discuss what is the effect of considering only a subset S ′ of

J ′ cluster configurations among the initial set S with J > J ′ configurations. In the

(A2)x(BC)1−x alloy study, for example, we may restrict the sample set S ′ to only those

configurations with nB = nC . Therefore, the a priori xoj of a configuration j in S ′ set can

be corrected by a normalization factor that comes from the conditional probability

xoj = P (j|j ∈ S ′) =
P (j)

P (j ∈ S ′)
(2.89)

xoj = P (j|j ∈ J ′) =
gjx

nA,j
(
1−x
2

)n−nA,j∑
j∈S′ gjxnA,j

(
1−x
2

)n−nA,j
. (2.90)

The determination of the probability distribution xj can still be recalculated by

considering the same constraints given by equations 2.71 and 2.72 considering the subset of

configurations S ′. Observe that the correction on ∆S
(ter)
0 is irrelevant in the minimization

of the mixing free energy, since it does only depend on the alloy average composition, and

that the normalization factor is cancelled in equation 2.74. The modification of the xoj can

be absorbed by a redefinition of the auxiliary parameter λ as λ = 2xeλ2/kT/(1− x) and

the result given by equation 2.76 still holds with only slight changes

xj =
gjλ

nA,jexp[(−∆εj)/kT ]∑
j∈S′ gjλnA,jexp[(−∆εj)/kT ]

(2.91)

Since these alloys are completely defined with one average composition parameter x,

the same stability formalism based on x1,x
′
1,x
′
2 and x2 special compositions obtained from

the ∆F (x, T ) can be directly applied.

2.2.4 Generalization of GQCA for 2D functionalized sheets

In previous works, the entropy of an alloyed system has been derived from the number

of possible combinations between different elements (GUILHON et al., 2015; TELES et al.,

2000; MARQUES et al., 2003). Hence, the correction of the system entropy referring to the

cluster distribution is obtained from combinatorics arguments (MARQUES et al., 2006). The

exact number of atomic arrangements is a relatively easy task, since it naturally arises

from a combination of a defined set of atoms in N atomic sites.

In this work, we are interested not only in 2D substitutional alloys, but also in 2D

functionalized sheets. In such systems, the absence of adsorbant group, groups adsorbed

above or below the sheet may be counted in an analogous way as a ternary substitutional

alloy with the same structure of the considered sheet. However, the adsorbed of groups on

first-neighbor sites on the same side of the sheet might lead to very large total energies, due
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to repulsion between these groups. Such situation asks for the constraints of the adsorbed

groups, in order to obtain moderate energy values, which changes the total number of

arrangements. The functionalized sheet may be also decorated with multisite adsorption

groups, leading to a non-trivial configuration counting. In fact, different approximate

solutions have been proposed to this problem in literature (ROMA et al., 2003; D’AVILA et al.,

2006). Indeed, the difficulty in the analysis of a multisite statistics has been addressed for

dimer adsorption on various 2D lattices (ROMA et al., 2003). The introduction of structural

constraints on adsorption groups distributions, and the occurrence of multisite adsorbants

result into a non-trivial number of allowed arrangements.

The previous formulation to calculate the number of atomic arrangements, and therefore

the system entropy, depends on combinatoric arguments to derive equation 2.68. However,

we have discussed how the obtained results can be interpreted and generalized to a ternary

alloy using the Shannon entropy (SALINAS, 1997), leading to equation 2.85, and the

correction of the GQCA to the entropy term (eq. 2.86) may be interpreted as a Kullback-

Leibler divergence (KULLBACK; LEIBLER, 1951) of a priori and a posteriori probability

distributions. These results show the close relationship between configurational entropy of

atoms in the cluster expansion and the occurrence probability distribution of elements

and clusters.

To avoid the complications originated from the combinatoric arguments in these special

cases, we will propose an alternative approach to calculate the entropy term that does not

require any combinatoric arguments. To accomplish this task, we start with the Shannon

entropy per cluster from the very first beginning, calculating ∆S/M in terms of probability

distribution xj. However, to calculate the configurational entropy one needs to use not

the probability distribution among the symmetry classes, but on the atomic arrangements

themselves. Since the GQCA supposes that the clusters are statistically independent

from the neighborhood, there is not favoring between the occurrence of any of the gj

atomic arrangements that belong to the same symmetry class j. Therefore the occurrence

probability of an arbitrary arrangement from symmetry class j is given by pj,arr = xj/gj.

The Shannon entropy per cluster is then calculated as

∆S

M
= −k

∑
j,arr

pj,arr ln (pj,arr) , (2.92)

covering all the gj possible arrangements that belong to each the symmetry class j and

all the J identified symmetry classes. This expression can be rewritten in terms of the

identified symmetry classes probabilities xj as

∆S = kM
J∑
j=1

xj(ln gj − lnxj). (2.93)
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This formula is simpler than the previously considered entropy expressions (GUILHON et

al., 2015; TELES et al., 2000; MARQUES et al., 2006), but reproduces the same results in the

thermodynamic limit with no need of combinatorics arguments. We will demonstrate the

equivalence between the two different approaches for substitutional alloys.

Consider the simplest case that we considered in the regular solution (CHEN; SHER,

1995), which is a perfectly random binary substitutional alloy with N atomic sites that

can be occupied by NA = xN atoms A and NB = (1− x)N atoms B. Since the identity

xj = x0j holds for this system, the equation 2.69 results in the following entropy

∆S
(bin)
0 = −Nk[(1− x)ln(1− x) + xln(x)]. (2.94)

One may also consider the probability distribution approach to obtain the same result.

Since the atoms are randomly distributed, the a priori probability distribution xoj is

determined by each configuration degeneracy gj, the average composition x of element A,

and y of element B (x+ y = 1) as

xoj = gjx
nA,jynB,j , (2.95)

with nA,j (nB,j) representing the number of A (B) atoms in cluster j.

Substituting this probability distribution in the entropy expression (2.93), one obtains

a configurational entropy

S ′ = −kM

(
J∑
j=1

xjnA,j lnx+
J∑
j=1

xjnB,j ln y

)
. (2.96)

The average composition constraints
∑J

j=1 xjnA,j = nx and
∑J

j=1 xjnB,j = ny yield on

the same result of equation 2.94. This equivalence of the two approaches can be easily

generalized for random alloys of more atomic components.

The equivalence between approaches still hold for a cluster expansion combined with

GQCA. As previously demonstrated with combinatoric arguments, an alloyed system

entropy is given by equation 2.69. A qualitative interpretation of each entropy term under

the light of information theory has already been give in section 2.2.4. The difference δS

between the entropy values per cluster calculated from equations 2.69 and 2.93 is

δS = −k
J∑
j=1

xj

(
gj
xj

)
+ k

J∑
j=1

xoj

(
gj
xoj

)
+ k

J∑
j=1

xjln

(
xj
xoj

)
(2.97)
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and

δS = −k
J∑
j=1

(xj − xoj) ln

(
gj
xoj

)
. (2.98)

Substituting the random probability distribution xoj , given by (2.95) in the logarithm,

we obtain that

δS =k

{[
J∑
j=1

xojnA,j −
J∑
j=1

xjnA,j

]
lnx (2.99)

+

[
J∑
j=1

xojnB,j −
J∑
j=1

xjnB,j

]
ln y

}
.

Since the a priori and a posteriori probability distributions xoj and xj refer to the same

system, the terms in parenthesis cancel each other because the average composition x is a

given constraint. Therefore, it holds

δS = 0, (2.100)

and the informational and configurational approaches lead to the same result.

The proposed formalism to entropy calculation directly from the occurrence probability

distribution xj, as described in 2.93, has significant advantages comparing to 2.69. The

obtained expression calculates the total entropy straight forwardly instead of calculating

one term from combinatoric arguments, and the relative entropy associated to the difference

between the a priori xoj and a posteriori xj probability distributions. Since the combinatoric

argument are not required any more, it represents a significant simplification to the disorder

modeling of 2D functionalized sheets.

In this work, we consider system with a fixed number of particles as canonical ensembles.

It is worthy saying that the approach proposed here to entropy calculation approach is also

a simple alternative to the generalization of the GQCA methodology to systems modeled

as grand-canonical ensembles. The demonstration of such result is left as an annex, and its

application to different systems will be further explored by other studies in a near future.
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2.3 Optical properties

2.3.1 Layer optical absorbance

The optical properties of matter follow from the coupling between electromagnetic fields

to the possible electronic excitations. The optical transitions might have different strength

of coupling depending on the relation between the photon energy and the difference between

the initial and final electronic state.

To study the interaction between the electromagnetic field and the electronic structure,

one may change the electron standard momentum operator p̂ by the generalized momentum

operator p̂+ e
c
Â(~r, t), considering cgs units, in the Hamiltonian operator expression

Ĥ =
1

2m
(~p+

e

c
~A)2 + Vext(~r), (2.101)

where ~A(~r, t) represents the electromagnetic vector potential. Choosing the Coulomb

gauge, where ∇ · ~A = 0 the electric and the magnetic fields can be expressed in terms of

the vector potential as ~E(~r, t) = −1
c
∂
∂t
~A(~r, t) and ~B(~r, t) = ∇× ~A(~r, t).

This problem can be solved using time dependent perturbation theory, where the

optical properties are obtained by the coupling between different electronic states by the

electromagnetic perturbation term according to the Fermi’s golden rule (PIZA, 2003).

Let ~q be the momentum and ω the frequency of the incident light. It follows from

the Ohm’s law ~j(~q, ω) = σ(~q, ω) ~E(t), where σ(~q, ω) describes the material response to the

incident wave as a complex number. From Ampere’s Law, the relative dielectric function

can be written as

εr(~q, ω) = 1 + i4π
σ(~q, ω)

ω
, (2.102)

in CGS units.

Since the typical wavelengths are much larger compared to the lattices constants of

crystalline structure in solid materials we can use the approximation ~q → 0 and also neglect

the local-fields corrections for the dielectric function. Considering these assumptions, one

may write the dielectric function of a solid with respect to longitudinal perturbations as

(EHRENREICH; COHEN, 1959; GAJDOS et al., 2006)

εr(q̂, ω) = 1 +
4πe2

V

∑
c,v

∑
~k

|Mcv(~k, q̂)|2
1

εc(~k)− εv(~k)− ~ω − iη
, (2.103)

where η represents a small broadening to deal with divergences at resonances frequencies
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and Mcv(~k, q̂) are the elements of the optical matrix

Mcv(~k, q̂) = lim
~q→~0

1

|~q|
〈c~k| ei~q·~r |v~k + ~q〉 . (2.104)

In this work, we studied the optical absorbance A(ω), which is connected to the

frequency-dependent imaginary part of the dielectric function εr(~q, ω). The imaginary

part of the dielectric function can be calculated taking the limit for small η values of the

expression

lim
η→0

1

εc(~k)− εv(~k)− ~ω − iη
=

1

εc(~k)− εv(~k)− ~ω
+ iπδ(εc(~k)− εv(~k)− ~ω), (2.105)

then we obtain

Im[εr(q̂, ω)] =
4π2e2

V

∑
c,v

∑
~k

|Mcv(~k, q̂)|2δ(εc(~k)− εv(~k)− ~ω). (2.106)

The optical conductivity σ(~q, ω) can be obtained from the imaginary part of the

dielectric function according to equation 2.102

σ(~q, ω) =
ω

4π
Im[εr(q̂, ω)]. (2.107)

When the ab initio calculations are performed in the VASP package, the output

dielectric function considers not only the 2D material, but also a large vacuum layer that

isolate different layers that comes from the periodic conditions in the three dimensions.

The 3D optical conductivity can be related to the 2D by a factor of L, which is the distance

between two neighbor sheets. The sheet absorbance for in-plane light polarization with

angular frequency ω and isotropic layers can be expressed in terms of

A(ω) =
ω

c
L Im[ε(ω)]. (2.108)

2.3.2 Average optical spectra

In a disordered system, where the cluster expansion is performed, the alloy statistic

and the set of optical spectra Aj(ω) calculated in the ab-initio framework for each cluster

configuration j must be combined to obtain the alloy average optical spectrum.

The average absorbance spectra of an alloy at a specific photon frequency ω can be

estimated within GQCA by equation (2.77). Therefore, such expression can be generalized
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for the whole optical spectrum as described by the expression

AGQCA(ω, x, T ) =
N∑
j=1

xj(x, T )Aj(ω). (2.109)

This average should be reasonable to represent homogeneous systems under stable

(x, T ) conditions and systems with small cluster sizes where composition fluctuation effects

between the two segregated phases are relevant. These are the conditions in which the

probability distribution among the clusters can be well described by the xj(x, T ) set of

probabilities.

If these conditions are not fulfilled and the system is fully segregated in poor and

rich phases, i.e. for temperatures and compositions below the binodal curve, there is one

different set of occurrence probabilities for each cluster in each phase, described by xj(x1, T )

and xj(x2, T ). In this situation, as already mentioned a more reliable estimation of the

mean absorbance spectra is given by equation 2.83 and the phase separated absorbance

can be written as

APS(ω, x, T ) = w1(x, T )AGQCA(ω, x1, T ) + w2(x, T )AGQCA(ω, x2, T ) (2.110)

with w1 and w2 the statistical weights defined in equations (2.82).

2.4 VASP Software and computational details

In our work, we solved the Kohn-Sham equations as implemented in Vienna Ab

Initio Package (VASP) (KRESSE, 2012). This simulation package is implemented with

parallel programming MPI (KRESSE, 2012), with the aim of using multicore computers

to parallelize the operations in order to reduce the processing time required by the

computational simulations of electronic structures.

This code computes the approximate solution to the many-body Schrödinger equation

as previously discussed. DFT and Hartree-Fock methods are both implemented. Hybrid

functionals are available as well, and it is also possible to set the ratio between DFT and

HF contribution to the considered exchange energy and the screening parameter µ as well.

Furthermore, Green’s functions methods as GW are also available in VASP.

VASP expands the orbital wave functions into plane waves and applies periodic contour

conditions, considering a given periodic cell and an atomic basis. The Kohn-Sham orbitals

are solved within PAW formalism. In chapter 3, we use an energy cutoff parameter for plane
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wave expansion of Ecut = 400eV and a 9x9x1 Γ-centered k-point mesh to approximated

integrals over the Brillouin-zone as a weighted sum over the sampled k-points. In chapter 4,

a cutoff parameter Ecut = 450eV and a 12x12x1 Γ-centered k-point mesh were considered.

All the atomic coordinates are relaxed until Hellmann-Feynman forces are smaller than

0.01 eV Å−1. Each alloy system is simulated as an artificial 3D crystal constituted by a

periodic repetition of the atomic sheets in a distance L = 20 Å from the neighbor ones.

This distance is large enough that the interaction between the sheets vanishes.

The optical properties are described by the frequency-dependent dielectric matrix,

which is calculated within the independent-quasiparticle approximation (ADOLPH et al.,

1996). The optical transition matrix elements are described adopting the longitudinal

gauge (GAJDOS et al., 2006). We focus on the optical absorbance A(ω) for normal incident

light with wavelength ω. For dielectric function calculations a refined Γ-centered mesh

42x42x1 is used in order to increase the number of considered optical transitions in our

calculations.



3 Group IV binary alloys

3.1 Introduction

A strong effort has been invested to study graphene-like 2D materials composed of

other group-IV elements. It has been suggested that 2D sheets with a hexagonal lattice

structure of Si and Ge, referred to as silicene and germanene, respectively, might exhibit

similar properties as graphene, but with a low buckled structure instead of the planar one

(CAHANGIROV et al., 2009).

Scientific reports have progressed from theoretical predictions to experimental observa-

tions in only a few years (XU et al., 2013). The formation of silicene was reported on Ag (1

1 1) (VOGT et al., 2012; FENG et al., 2012; CHIAPPE et al., 2012), ZrB2(0 0 0 1) (FLEURENCE

et al., 2012) and Ir(1 1 1) (MENG et al., 2013) surfaces. Very recently, germanene was

grown on the Au(1 1 1) surface (DAVILA et al., 2014), on Pt(1 1 1) substrate (LI et al.,

2014b), and as a termination of Ge2Pt crystals on Ge(1 1 0) (BAMPOULIS et al., 2014).

The angle-resolved photoemission spectroscopy revealed the presence of a linear dispersion

in the band structure of silicene (so called Dirac cones) with a Fermi velocity of about

1.3 x 106m/s (VOGT et al., 2012), higher than expected from free-standing graphene (1.1

x 106m/s). The corresponding measured value for multilayer silicene (VOGT et al., 2012)

seems to be closer to velocities as theoretically predicted (HOUSSA et al., 2011; HOUSSA et

al., 2014).

Despite the fact that silicene and germanene have no energy gap, theoretical predictions

of binary systems indicate that a gap opening can be obtained by breaking the symmetry

between the two sub-lattices of the honeycomb structure (SAHIN et al., 2009; SUZUKI;

YOKOMIZO, 2010). Photoluminescence experiments shows a strong light-emitting of 2D

SiC nanoflakes at 373 nm (LIN, 2012), which is consistent with the previous predictions.

In this chapter, we will discuss the possibility of varying the composition of the alloyed

2D binaries formed by IV-A column elements and its consequences on the properties of

the new system, which can be treated as an alloy. The GQCA statistical approach is,

therefore, an important step to go beyond the simulation of a specific ordered atomic

distribution and understand how thermodynamics influence the others physical properties
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of the alloyed system. Whenever it is possible, we compare our results with available

experimental data and other theoretical results as well.

3.2 Determination of the equivalence cluster classes

This study will focus on the 2D group IV binary alloys made from carbon, silicon and

germanium Si1−xCx, Ge1−xCx and Ge1−xSix, which can be generic referred as A1−xBx.

The first step in the study of such systems using GQCA approach consists in the choice of

an adequate supercell for the cluster expansion of the alloys. In this work, the clusters

are described by a 22 unit cell, as depicted in figure 3.1. This choice gives a reasonable

compromise solution between computational costs and the number of possible atomic

arrangements. The chosen supercell format preserves the same symmetry class as the

primitive cell, which simplifies the count of the non-equivalent configuration classes. Read

appendix A for a further discussion on the supercell cell size choice.

FIGURE 3.1 – Eight-atom supercell considered in the calculation. The atomic sites are
labelled by 1,2,3,4,5,6,7,8.

The atomic sites can be occupied by the two different elements that correspond to the

alloy endcomponents. The possible 28 = 256 atomic arrangements can be arranged in

different equivalence classes. The planar honeycomb structure belongs to the C6v point

symmetry group (WATARI, 2009), since the structure is symmetric by a rotation of 60o and

by reflections with respect to six different plans. There are also translational symmetries

associated with two vectors of the Bravais lattice, ~a1 and ~a2, and the vector ~a1 + ~a2 as well.

Each symmetry operation can be transformed into a permutation of integer from 1

to 8, considering the labelling indicated in figure 3.1. If the cluster configuration can be

obtained from the application of a symmetry operation on another one, these two atomic

arrangement are called equivalent and the configuration class degeneracy is incremented.

After all the possible configurations and symmetry operations are considered, J = 22
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non-equivalent cluster configurations are obtained. Each class has a different degeneracy

gj, as shown in table 3.1. The configurations are labelled by the occupation of atomic site

1 to atomic site 8, as depicted in figure 3.1. For example, the AAAAAABB configuration

has atoms A located on the lattice sites of 1 to 6 and atoms B on sites 7 and 8.

TABLE 3.1 – For each different cluster class j it is presented one possible atomic arrange-
ment and degeneracies gj of 8-atom supercells to study Si1−xCx, Ge1−xCx and Ge1−xSix
binary alloys. Each configuration is labelled according to the numeration represented in
figure 3.1.

j gj Label j gj Label
1 1 BBBBBBBB 12 6 AABBBBAA
2 8 ABBBBBBB 13 24 AAABBBAB
3 4 ABBBBBBA 14 24 AAABBABB
4 12 ABABBBBB 15 24 AAAAABBB
5 12 AABBBBBB 16 8 AAABABAB
6 8 ABABABBB 17 24 AAABBAAB
7 24 AABBBBAB 18 4 AAABBAAA
8 24 AAABBBBB 19 12 AAAAABAB
9 6 AAAABBBB 20 12 AAAAAABB
10 8 AAABABBB 21 8 AAAAAAAB
11 2 ABABABAB 22 1 AAAAAAAA

3.3 Thermodynamic properties

In an alloy where the mixing internal energy is not zero, the assumption that a random

arrangement of atoms is the equilibrium geometry might not be acceptable. The actual

arrangement of atoms will be a compromise that gives the lowest internal energy consistent

with sufficient entropy, or randomness, to achieve the minimum free energy as discussed in

section 2.2.1. The probability of occurrence of each configuration xj depends on the average

composition x in the alloy, the temperature and the excess energy of each configuration

is defined in equation (2.75). To illustrate the effect of ∆εj values on xj calculations, we

listed in Table 3.2 a column with xj for an alloy with composition x=0.5 at T=800 K.

One can observe that the configurations with lower excess energies are favored over the

more energetic ones.

In systems with ∆U < 0 the internal energy of the system is reduced by increasing

the number of A-B bonds by ordering the atoms. If ∆U > 0 the internal energy can be

reduced by increasing the number of A-A and B-B bonds by the clustering of the atoms

in A-rich and B-rich domains. However, the degree of ordering or clustering will decrease

as temperature increases due to the increasing importance of the entropy.

In systems where negative excess energies are observed ordered structures with low



CHAPTER 3. GROUP IV BINARY ALLOYS 67

TABLE 3.2 – Excess energy ∆εj (eV) and statistical contribution xj(x = 0.5, T = 800K)
of the cluster configurations Ge8−nj

Cnj
, Si8−nj

Genj
and Si8−nj

Cnj
.

Ge8−nj
Cnj

Si8−nj
Genj

Si8−nj
Cnj

Class j ∆εj xj ∆εj xj ∆εj xj
1 0.00 0.402 0.00 0.006 0.00 0.061
2 2.57 0.031 0.10 0.038 1.41 0.044
3 3.76 0.002 0.17 0.017 1.26 0.033
4 4.16 0.003 0.18 0.048 2.10 0.021
5 2.51 0.053 0.16 0.050 1.44 0.072
6 4.91 0.000 0.26 0.028 0.82 0.169
7 5.19 0.001 0.21 0.091 2.76 0.015
8 3.13 0.035 0.20 0.093 3.67 0.003
9 3.26 0.007 0.21 0.023 2.56 0.006
10 5.49 0.000 0.23 0.029 2.82 0.005
11 5.49 0.000 0.32 0.006 -0.18 0.300
12 5.31 0.000 0.23 0.022 2.32 0.010
13 5.70 0.000 0.24 0.086 2.53 0.026
14 4.78 0.002 0.22 0.091 3.46 0.005
15 5.28 0.001 0.20 0.093 3.72 0.003
16 6.64 0.000 0.26 0.028 2.28 0.016
17 6.22 0.000 0.22 0.091 3.60 0.004
18 4.40 0.001 0.17 0.016 2.18 0.011
19 6.90 0.000 0.19 0.048 3.52 0.003
20 7.63 0.000 0.16 0.051 3.84 0.002
21 5.34 0.000 0.11 0.038 3.24 0.004
22 0.00 0.462 0.00 0.006 0.00 0.187

excess energies may occur at low temperatures. First, we investigate the relative stability

of ordered and disordered phases by observing the behaviour of ∆F at T=0K, which

corresponds to analyze the values of ∆U . In addition, for each cluster class j we compute

the excess energy ∆εj of the considered cluster configurations. The results are listed in

Table 3.2. For the 22 studied configurations for Ge1−xCx and Si1−xGex the values are non-

negative, while for Si1−xCx the configuration 11 exhibits an excess energy ∆ε11 < 0, that

indicates a tendency for ordering in Si1−xCx alloy under small temperatures. In Fig. 3.2 (a),

this fact is indicated by ∆U < 0 for all x, despite the fact that, apart from configuration

11, any configuration has an energy greater or equal to the Si1−xCx alloy consisting mainly

of the configurations 1 (Si), 11 (SiC) and 22 (C). Indeed the ∆U(x, T = 0K) curve has

one inflection point at x=0.5, which is mainly due to the ordered structure corresponding

to configuration 11 (displayed as an inset in Fig. 3.2(a)). In this configuration the atomic

sites represent an ideal honeycomb lattice and are occupied alternately. We conclude that

the Si1−xCx alloy consists of domains of ordered 2D SiC, the silicongraphene (GORI et al.,



CHAPTER 3. GROUP IV BINARY ALLOYS 68

2012), graphene and silicene depending on the alloy composition. For x = 0.5 at T = 0K

only silicongraphene is realized.
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FIGURE 3.2 – Plot of the excess energies (2.75) of each Si8−nj
Cnj

(a), Ge8−nj
Sinj

(b) and
Ge8−nj

Cnj
(c) configuration. In addition, the tie line representing the internal energy ∆εj

of Si1−xCx at T = 0 K, calculated through 2.75, is shown as function of the concentration
x. The inset figure corresponds to configuration 11, i.e. sp2-bonded SiC.

This result is underlined by Fig. 3.3 for the composition x = 0.5. In Fig. 3.3 (a) the

values of xj are plotted as a function of the temperature. At very low temperatures the

ordered configuration 11 is predominant. As the temperature increases other configura-

tions begin to contribute. Besides SiC, mainly graphene and silicene contribute. Also

configuration 6 with 5 Si and 3 C atoms per cluster may be visible. At temperatures about

T = 1000 K, one can say that the alloy is almost randomly disordered.

In order to quantify the degree of ordering, we calculate the short-range order (SRO)

parameter, such that L = 1 for a fully ordered alloy and L = 0 for a completely random

distribution. The SRO is defined as (PORTER; EASTERLING, 1981)

L =
PSi−C − P 0

Si−C

Pmax
Si−C − P 0

Si−C
, (3.1)

where PSi−C is the probability to find a Si-C bond in the considered alloy for a given x
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FIGURE 3.3 – (a) The probabilities xj of all Sinj
C8−nj

configurations versus temperature
at x = 0.50. Configurations 1, 6, 11 and 22 are highlighted. (b) Degree of ordering in
Si1−xCx for x = 0.5, quantified as SRO parameter L, as a function of temperature.

and T , which can be estimated by the means of equation (2.77)

PSi−C(x, T ) =
J∑
j=1

xj(x, T )PSi−C,j, (3.2)

P 0
Si−C = 2x(1− x) describes this probability in a completely random alloy, and Pmax

Si−C =

2min{x, 1− x} is its possible maximum value, given by the concentration x. The order

parameter is plotted in Fig. 3.3 (b) for x = 0.5 versus the temperature. It again indicates

complete ordering for T = 0K, but rapidly decreasing ordering for temperatures above

T = 1000K.

In the case of Ge1−xCx and Si1−xGex the situation is completely different. It holds

∆U(x, T ) ≥ 0 for all compositions and temperatures. This is obvious from the excess

energies in Table 3.2. Miscibility or spinodal decomposition should happen depending on

composition and temperature, as described in section 2.2.2.

The application of the GQCA to these two binary alloys for different temperatures and

compositions results in the T -x phase diagrams. The results are shown in Fig. 3.4. They

represent the binodal and the spinodal curves that divide the (x, T ) points in zones of

stable, metastable and unstable phases.

From Fig. 3.4(a) we observe a strong tendency of phase separation with a huge

critical temperature of 22400 K for Ge1−xCx. This temperature represents the minimum

temperature for which one has a completely random alloy of graphene mixed with germanene

for any composition. For temperatures which can be experimentally accessed, only small

amounts of carbon can be mixed into the 2D germanium in order to form a random alloy.

The situation is completely different if carbon is replaced by silicon as indicated by

the phase diagram in Fig. 3.4(b). The Si1−xGex alloy has a critical temperature of 550
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FIGURE 3.4 – The T -x phase diagram of (a) Ge1−xCx(black) and (b) Si1−xGex(red). Solid
lines: binodal curves; dashed lines: spinodal curves.

K, indicating the possibility to synthesize a random alloy of germanene and silicene, in

agreement with results obtained within special quasirandom structures (SQS) (PADILHA et

al., 2013). The phase diagram is rather symmetric. For lower temperatures it indicates that

in the equilibrium the random Si1−xGex alloys tend to decompose into a low-concentration

and a high-concentration alloy.

In Si1−xGex, we observe smaller ∆εj values explaining the achievable critical tempera-

ture of these alloys. On the other hand, most of the Ge1−xCx configurations exhibit higher

excess energies, contributing to small xj values, reflecting their immiscibility until very
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high temperatures.

Consequently the details of the alloy statistics and thermodynamics can be related to

the energetics of the individual cluster configurations. We observe from Table 3.2 that the

excess energies of carbon-rich configurations are greater than germanium-rich ones. This

means that adding germanium atoms to a graphene structure is more thermodynamically

unfavorable comparing to incorporating carbons atoms in a germanene structure, since

the first case demands bigger deformations of the atomic arrangements in the hexagonal

unit cells. Both facts explain the asymmetry of the T -x phase diagram in Fig. 3.4 (a).

3.4 Structural Properties

Our study of structural properties focus on the average lattice parameter and the

average first-neighbor distances. These parameters are very important to evaluate possible

stresses that may be observed if these materials are used in in-plane heterostructures. We

also consider the buckling parameter of these materials, which represents displacements of

the atomic sites in the honeycomb structure perpendicularly to the atomic layer.

The alloy properties are estimated within the GQCA approach. The alloy properties

depends on the alloy average composition and the growth temperature. As was discussed

before, in section 2.2.1, these results are derived from a weighted average of the clusters

properties that make up the alloy, considering the probability of occurrence xj of each of

the different non-equivalent configurations. We perform explicit calculations at T = 800 K

based on the growth temperatures of graphene on SiC found in literature (LOGINOVA et al.,

2008). However, the calculated lattice constant curves do not change significantly for 500

K, approximately the growth temperature of germanene and silicene on Ag(111) (SONE et

al., 2014; LI et al., 2014b).

3.4.1 Lattice parameter a

The configurationally averaged lattice parameter a is obtained by considering the

equation (2.77) as

a =
J∑
j=1

xj(x, T )aj, (3.3)

where aj is the equilibrium lattice constant of each cluster j.

The resulting lattice constants projected onto a two-atom unit cell as in graphene,

silicene or germanene are shown in Fig. 3.5. One verifies that for 2D Ge1−xCx, Si1−xGex
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and Si1−xCx alloys the lattice parameter varies approximately linearly with the composition.

Only a small bowing appears for the carbides.
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FIGURE 3.5 – The lattice parameter as a function of the composition for Ge1−xCx(black),
Si1−xGex(red) and Si1−xCx(blue). The symbols represent the lattices parameters of an
individual cluster configuration with the corresponding composition.

We observe that some individual aj values in clusters forming Ge1−xCx and Si1−xCx,

which have no significant statistical contribution for the calculated mean value, do not

adhere to the obtained curve. This follows from the fact that these configurations are

thermodynamically unfavored.

3.4.2 First-neighbor distances

In graphene, silicene and germanene all bond lengths are the same by symmetry. For

the binary alloys, considering the ionic relaxation, the first-neighbor distances will change,

depending very strongly on which elements are involved and on the concentration. We

study the different bonds in all clusters between atoms of the same kind (A−A or B −B
bonds) and different kinds (A−B bonds), with A, B = Ge, Si or C. Each cluster possesses

12 bonds between neighbor pairs. The mean first-neighbor distance dX−Y , using GQCA,

can be written as

dX−Y =

J∑
j=1

xjn(j,X−Y )d(j,X−Y )

J∑
j=1

n(j,X−Y )xj

, (3.4)
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where X and Y represents A or B, d(j,X−Y ) is the mean distance of X−Y bonds in cluster

class j, and n(j,X−Y ) is the number of X − Y bonds in class j.
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FIGURE 3.6 – The mean first-nearest neighbor distance of Ge1−xCx(black), Si1−xGex(red)
and Si1−xCx(blue) as a function of the composition with respective mean values associated
with the configuration in each cluster class. The A− A, A−B, ans B −B bond lengths
are shown with triangles, circles and squares, respectively.

The results are shown in the Fig. 3.6. First, we observe three distinct bond lengths,

showing that Vegard rule fails for bond lengths as observed for 3D alloys (TELES et al.,

2000). We also observe a tendency to keep the bond length of pure materials, the mean

bond lengths of A−B bonds mainly follow the covalent radii of the constituting atoms.

We find that the difference between the bond lengths in Si1−xGex is much smaller than in

Ge1−xCx and Si1−xCx. This fact explains why Si1−xGex is more likely to be a more stable

alloy, with weak tendency to phase separation, in contrast to Ge1−xCx and Si1−xCx. The

reason is clearly related to the different sizes of the atoms in carbides A1−xCx (A = Si,

Ge) and, hence, the strong internal strains.

The obtained mean first-neighbor distances in Si1−xGex alloys are compared in Table 3.3

with results based on SQS for particular concentrations (PADILHA et al., 2013). Apart from

generally slightly larger values obtained within the SQS, the trends with the composition

are quite similar.

TABLE 3.3 – Comparison of mean first-neighbor distances obtained within GQCA and
SQS (PADILHA et al., 2013) (in parenthesis) for Si1−xGex alloys at fixed compositions. All
values are given in Å.

x Ge-Ge Si-Ge Si-Si
0 - - 2.27 (2.31)

0.265 2.40 (2.42) 2.34 (2.37) 2.29 (2.32)
0.500 2.41 (2.43) 2.36 (2.38) 2.30 (2.32)
0.735 2.42 (2.44) 2.37 (2.38) 2.30 (2.33)

1 2.44 (2.46) - -

Indeed, the mean bond lengths associated with different configurations in Fig. 3.6
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FIGURE 3.7 – Perspective views on (a) Ge4C4 (configuration j = 14) , (b) Si6C2 (configu-
ration j = 20), (c) Si4Ge4 (configuration j = 11), and (d) Si4C4 (configuration j = 11). C
(Si, Ge) atoms are presented as brown (bright blue, dark blue) dots.

are more diffuse in Ge1−xCx and Si1−xCx, while the calculated first-neighbor distances do

not change appreciably with the composition x. These configurations present significant

deformation on the honeycomb geometry, as we can see in Figure 3.7(a) and 3.7(b). We

believe that the main reason for such deformations are the big differences between the

lattice parameters of graphene and the other 2D group-IV materials. For some specific

configurations this effect is very pronounced, affecting not only the bond lengths, but also

the layer buckling (see explanation in Fig. 3.8). As an example, the geometries of a few

cluster materials A8−nj
Bnj

are displayed in Fig. 3.7. In Figs. 3.7 (a) and 3.7(b), despite

the equal numbers of atoms, the covalent radii and the bonding are different, resulting in a

strong deformation and change of the atomic geometries, which are related to neighboring

constitutes of the same element. On the other hand, since germanium and silicon have

similar covalent radii, the honeycomb geometry of these materials does not need to deform

much to accommodate a different atom, as shown in Fig.3.7(c). In Fig.3.7(d) a symmetric

and equally bonded configuration (j = 11) is shown for Si1−xCx, resulting in a completely

hexagonal and planar honeycomb structure.

3.4.3 Buckling parameter ∆

Graphene has a planar honeycomb configuration, while silicene and germanene represent

a slightly buckled structure, since the bonds between atoms are not pure sp2 but correspond
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to a mixed sp2 − sp3 hybridization (ZHOU et al., 2013; MATTHES et al., 2013a). This

hybridization is also expected for many bonds in the studied 2D alloys. As a consequence

some configurations exhibit large buckling values above 1 Å (see Table 3.4). They are

associated with considerable deformations of the local hexagonal structure. Indeed, the

bonding hexagons in Figs. 3.7 (a) and (b) are strongly deformed.

FIGURE 3.8 – Buckling amplitude of an arbitrary configuration.

The buckling amplitude in each cluster is calculated as the maximum displacement

between two atoms in the direction perpendicular to the sheet plane, as shown in Fig. 3.8.

Besides the individual results in Table 3.4, the mean alloy values averaged according to

(2.77) are depicted in Fig. 3.9. The most stable configuration for graphene is the planar

honeycomb structure, while silicene and germanene present more stable slightly buckled

configurations with buckling parameters ∆ of 0.46 Å and 0.68 Å, respectively, which are

in agreement with other calculations (MATTHES et al., 2013a; IVANOVSKII, 2012).
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FIGURE 3.9 – Averaged buckling amplitude of Ge1−xCx(black), Si1−xGex(red) and
Si1−xCx(blue) as a function of the composition. The red diamonds represent previously
reported results for Si1−xGex alloys within SQS methodology (PADILHA et al., 2013).

As indicated in Table 3.4, the buckling parameter varies significantly from zero to

2.81 Å. Nevertheless, when considering the cluster statistics, equation (2.77), the buckling

parameter of Ge1−xCx exhibits an approximated linear behavior with composition x. This

is due to the major statistical contribution of the cluster j = 1, which corresponds to
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TABLE 3.4 – Buckling parameter ∆j of the cluster configurations Ge8−nj
Cnj

, Si8−nj
Genj

and Si8−nj
Cnj

.

∆j (Å)
Class j Ge8−nj

Cnj
Si8−nj

Genj
Si8−nj

Cnj

1 0.69 0.43 0.43
2 0.85 0.48 0.48
3 0.71 0.51 0.08
4 1.65 0.51 0.68
5 2.81 0.51 2.70
6 1.67 0.55 1.51
7 1.49 0.55 0.57
8 2.81 0.55 1.28
9 2.01 0.59 1.79
10 2.37 0.58 1.99
11 0.00 0.58 0.00
12 0.75 0.58 0.03
13 1.91 0.58 1.70
14 2.76 0.58 2.48
15 2.15 0.62 1.91
16 0.85 0.61 0.02
17 1.36 0.62 0.55
18 0.24 0.64 0.01
19 0.00 0.65 0.00
20 1.07 0.65 2.29
21 0.06 0.67 0.01
22 0.00 0.68 0.00

pure graphene, and cluster j = 22, which corresponds to pure germanene. In Si1−xGex

and Si1−xCx, we have contributions of different configurations. For Si1−xGex, a more

homogeneous distribution of xj and ∆j is observed (see Table 3.4), while for Si1−xCx the

most significant contributions comes from the configuration j = 11 and pure configurations

j = 1 and 22 as well as j = 6 (Si5C3). The configuration 11 represents an ordered alloy

of 50% Si and 50% C atoms, for which there is a maximum number of Si-C bonds. In

particular, for Si1−xGex, the only random alloy, the values previously obtained within SQS

(PADILHA et al., 2013) are depicted in Fig. 3.9 for comparison. The GQCA and the SQS

results agree very well.

In Table 3.5 we compare results considering the cluster statistics and the configuration

j = 11. We observe that the values for the layer buckling ∆ differ when considering or

not the statistics for Ge1−xCx and Si1−xCx alloys, being comparable only for Si1−xGex.

In the case of Si1−xCx the value depends on the growth temperature, which determines

the contribution of the configurations and if the alloy consists of ordered domains. For
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Ge1−xCx and Si1−xGex, the mean buckling does not depend on the temperature. This is

due to the fact that, in the first case, one has a phase separated alloy with a huge critical

temperature, so for reasonable temperatures the only contributing configurations are the

pure compounds, while in the second case, the dependence of the mean buckling in the

random alloy is approximately linear, which will not change for a phase separated phase

at low temperatures.

TABLE 3.5 – Layer bucklings (∆) for the 2D Ge1−xCx, Si1−xGex and Si1−xCx alloys,
considering the cluster statistics (x = 0.5) and for the configuration j = 11. Results are
compared with literature data shown in parenthesis. References: (SAHIN et al., 2009)a,(ZHOU

et al., 2013)b and (PADILHA et al., 2013)c.

Alloy ∆ (Å)
Ge0.5C0.5 (j = 11) 0.00

Ge0.5C0.5 0.39
Si0.5Ge0.5 (j = 11) 0.58(0.55a,0.579b)

Si0.5Ge0.5 0.58 (0.61c)
Si0.5C0.5 (j = 11) 0.00 (0.00a)

Si0.5C0.5 0.19

3.5 Electronic Properties

The ability to obtain customized electronic properties, such as the energy bandgap,

is the main concept of the bandgap engineering. The GQCA statistical approach allows

the prediction of the average band gaps for the whole composition range for alloyed

systems considering a growth temperature T . The obtained fundamental energy gaps

Eg are listed in table 3.6 for the random alloys Ge1−xCx, Si1−xGex and Si1−xCx at the

growth temperature of T=800 K. In order to simulate the quasiparticle shifts we apply

the DFT-1/2 approach (FERREIRA et al., 2008; FERREIRA et al., 2011) (see section 2.1.6).

Considering 3D materials the DFT-1/2 method predicts energy band gaps in very good

agreement with experimental data, including alloys (PELA et al., 2015). For 2D materials it

was recently applied to 2D allotropes of group-IV materials giving results in reasonable

agreement when compared with gaps derived by hybrid functionals (MATUSALEM et al.,

2015).

It is worth to point out that the alloys may exhibit phase separation, or even ordered

geometries. That means that the result for the 50% compositions can be different from

the values predicted for the ordered cases (SUZUKI; YOKOMIZO, 2010). This is the case

for Ge0.5C0.5, for which the predicted values for the ordered configuration 11 is 2.07

eV, while the predicted energy gap of the random alloy (Fig. 3.10) remains extremely
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TABLE 3.6 – Energy gap Eg,j of the cluster configurations Ge8−nj
Cnj

, Si8−nj
Genj

and
Si8−nj

Cnj
. Metallic configurations are indicated by ‘metal’.

EGGA
g,j (eV) E

GGA−1/2
g,j (eV)

Class Ge8−nj
Cnj

Si8−nj
Genj

Si8−nj
Cnj

Ge8−nj
Cnj

Si8−nj
Genj

Si8−nj
Cnj

1 0.000 0.000 0.000 0.000 0.000 0.000
2 metal 0.003 0.202 metal 0.003 0.206
3 metal 0.000 0.000 metal 0.000 0.000
4 metal 0.005 0.485 metal 0.009 1.027
5 metal 0.003 metal metal 0.003 metal
6 1.442 0.007 1.832 1.930 0.001 2.396
7 0.446 0.005 0.561 0.838 0.007 0.563
8 1.095 0.003 0.020 1.059 0.003 metal
9 metal 0.008 metal metal 0.006 metal
10 metal 0.004 metal metal 0.005 0.071
11 2.072 0.007 2.534 2.535 0.014 3.061
12 metal 0.008 0.003 metal 0.009 0.090
13 1.089 0.006 1.374 0.610 0.011 1.017
14 metal 0.000 metal metal 0.000 0.159
15 0.529 0.005 0.563 0.540 0.006 0.322
16 1.352 0.005 1.429 1.535 0.010 1.678
17 0.619 0.005 0.579 0.788 0.008 0.677
18 0.000 0.000 0.000 metal 0.000 metal
19 0.943 0.002 1.295 1.411 0.009 1.573
20 metal 0.006 0.079 metal 0.005 0.312
21 0.674 0.001 0.766 0.840 0.001 0.932
22 0.000 0.000 0.000 0.000 0.000 0.000

small with 0.04 eV. This is due to the fact that, in spite of non-zero values for different

concentrations, the only two configurations that have a significant statistical contribution

are those corresponding to pure graphene and pure germanene, which have both zero energy

gaps. This is a good example of how mandatory is the use of statistics, showing that values

previously obtained for a special arrangement of the C and Ge atoms (SUZUKI; YOKOMIZO,

2010; SAHIN et al., 2009) are only valid for an energetically unfavorable distribution of the

atoms.

For Si1−xGex, which can be widely mixed, but especially Si1−xCx we see from Fig. 3.10

that the values of Eg strongly deviate from the linear behavior, but can be well described

by a parabolic one. We apply the usual formula for the average energy gap Eg versus

average composition x as well known from semiconducting alloys (CHEN; SHER, 1995),

where the deviations from the linear variation are described by a bowing parameter b as

Eg(x, T ) = xEA
g + (1− x)EB

g − bx(1− x). (3.5)
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FIGURE 3.10 – The gap curves of random alloys of Ge1−xCx (black), Si1−xGex (red) and
Si1−xCx (blue) as a function of the composition for T= 800K. Full line (dashed) curves
correspond to results obtained within the GGA-1/2 (GGA) approach.

Germanene presents a metallic electronic band structure in the planar honeycomb

geometry without buckling but near K in the BZ Dirac cones with zero gap when one

considers the buckling effect, as we did. Silicene, on the other hand, present Dirac cones

with zero gap independently if one considers the layer buckling or not (CAHANGIROV et al.,

2009). Thus, here EA
g = EB

g = 0 holds because all group-IV-derived graphene-like systems

possess a vanishing fundamental gap at K or K ′ in the Brillouin Zone, at least neglecting

spin-orbit interaction (KOKOTT et al., 2014; MATTHES et al., 2013b). In contrast to 3D

semiconductors an anti-bowing b < 0 is found in Fig. 3.10. For Si1−xGex (Ge1−xCx) we

calculate b = −0.02 (−0.18) eV for the parabolic fit, whereas for Si1−xCx, b = −4.38 eV

indicating the large gaps for SiC-like configurations. While Si1−xGex and Ge1−xCx alloys

present energy gaps about a few meV, the Si1−xCx alloys possesses large direct energy

gaps that can be very interesting for optoelectronic applications.

In order to compare our values for Si1−xCx and Ge1−xCx with results previously

obtained, we need to consider only the energy gap of configuration 11. The Eg values

for this configuration, as well as, considering the statistics are shown in Table 3.7. A

nice agreement is observed among our results and the ones obtained considering LDA

or GGA (GORI et al., 2012; SAHIN et al., 2009; LIN et al., 2013; MIRO et al., 2014), while a

qualitative agreement is verified with other calculations (SUZUKI; YOKOMIZO, 2010; GORI

et al., 2012; SAHIN et al., 2009; MIRO et al., 2014). The latter case is due the use of different

(approximate) quasiparticle corrections (QPCs) due to the spatial non-locality of the XC

potential, these calculations obtain absolute gap values for Si1−xCx and Ge1−xCx about 1



CHAPTER 3. GROUP IV BINARY ALLOYS 80

eV higher than the values in Table 3.7, as one can observe. We also made a simulation for

a generalized Kohn-Sham scheme with a hybrid functional HSE06 (HEYD et al., 2003; HEYD

et al., 2006), which has been successfully applied to band structures of silicene, germanene,

and graphene (MATTHES et al., 2013b) and gives rise to a gap value Eg =3.40 eV and 2.87

eV for ordered Si0.5C0.5 and Ge0.5C0.5 arrangements, respectively. The obtained energy

gap for a ordered Si0.5C0.5 phase is very close to the experimental optical gap measurement

made by S. S. Lin, obtained by photoluminescence of ultrathin SiC nanosheets (LIN, 2012).

However, it is important to emphasize that the larger localization and modification of

screening due to low-dimensionality in 2D materials lead to great exciton binding energies

and intense self-energy interactions that may not be fully captured by the hybrid functional

picture. A partial compensation of these two effects was reported in other 2D materials

(WIRTZ et al., 2006; YANG et al., 2009), explaining why the energy gap obtained within

independent quasi-particle picture and hybrid functional obtained within is comparable

with the Si0.5C0.5 optical gap, while a GW (GW0) calculation leads to quasiparticle energy

gaps of 4.42 eV (4.19 eV) (HSUEH et al., 2011; SAHIN et al., 2009).

TABLE 3.7 – Energy gaps (Eg) for the 2D Ge1−xCx, Si1−xGex and Si1−xCx alloys, consid-
ering the cluster statistics (x = 0.5), and for the configuration j = 11. The values with the
symbol † were calculated considering gap corrections. The DFT-1/2 self-energy corrections
for alloy statistics were obtained with transferability arguments, while the results for the
ordered configurations (j = 11) were optimized for these specific arrangements.

Alloy Eg (eV)
Present work Other calc. Exp.

GGA GGA-1/2 (HSE06)
Ge0.5C0.5 0.041 0.041
Si0.5Ge0.5 0.004 0.005 0.010c

Si0.5C0.5 1.166 1.429
Ge0.5C0.5 2.07 3.87 (2.87) 2.09a, 2.26h

(j = 11) 3.16†,b, 3.37†,h, 3.83†,a

Si0.5Ge0.5 0.007 0.01 0.02a, 0.015i

(j = 11) 0.275†,b

Si0.5C0.5 2.53 4.38 (3.40) 2.52a, 2.55 d,2.5e,2.56f 3.3g

(j = 11) 2.57h,4.19†,a, 4.42†,j

3.53†,b, 3.63†,d, 3.7 †,f , 3.88†,h

aRef. (SAHIN et al., 2009), bRef.(SUZUKI; YOKOMIZO, 2010), cRef.(PADILHA et al., 2013),
dRef.(MIRO et al., 2014), eRef. (LIN et al., 2013), fRef.(GORI et al., 2012), gRef.(LIN,

2012),hRef. (LU et al., 2012), iRef.(JAMDAGNI et al., 2015), and j Ref.(HSUEH et al., 2011).

DFT-1/2 method was recently applied with success to 2D allotropes of group-IV

materials (MATUSALEM et al., 2015). In 3D systems the transferability of self-energy

corrected pseudopotentials between similar systems is verified, which is still valid for 2D

systems according to our current investigations on DFT-1/2 performance on this class
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of materials (GUILHON et al., To be published). For some alloyed systems, VBM and

CBM states exhibit significant projections on different orbitals and elements, which makes

the DFT-1/2 application not straightforward. To overcome this obstacle, the removal

of a fraction of half-electron proportionally to VBM and CBM states projections on

atomic orbitals was proposed (ATAIDE et al., 2017). As a first approximation, we assumed

the carbon, silicon and germanium corrected pseudopotential transferability from LHD

structures to our 2D alloys (MATUSALEM et al., 2015; GUILHON et al., 2015). More accurate

results can be obtained by by a deeper investigation of VBM and CBM orbital characters,

accompanied by respective CUT parameters optimizations, for each cluster configuration

j of each material.

DFT-1/2 results were optimized to ordered Si0.5C0.5 and Ge0.5C0.5 cluster configurations

(j = 11) considering valence and conduction corrections. The top of valence band is

associated with carbon pz orbitals, while the bottom of the conduction band is associated

with silicon and germanium pz orbitals, respectively. The application of the optimized

self-energy potentials to this ordered arrangements leads to quasiparticle energy gaps of

4.38 eV and 3.87 eV, respectively, which are in very good agreement to GW calculations

available in literature (SAHIN et al., 2009; HSUEH et al., 2011).

As one observes in Table 3.7 and Fig. 3.10, the calculated energy gaps are underesti-

mated when quasiparticle corrections are not taken into account, as expected. However,

the Kohn-Sham gaps still give correct tendencies with the composition x, so qualitative

analysis and inferences can still be done. Another interesting feature of the Si1−xCx alloys

is the growth temperature dependence of the computed gap curves shown in Fig.3.11 (a).

The gap curves vary substantially with the growth temperature. For low temperatures,

the inclusion of the configuration 11 is favored, resulting in a wider energy gap, since this

configuration has a gap value of 2.53 eV in DFT-GGA. With increasing temperature other

configurations begin to contribute resulting in the temperature dependence of Eg, and the

maximum of the gap curves are shifted to lower average composition x as temperature

increases. In Fig. 3.11 (b) we show the maximum energy gap as a function of the growth

temperature. It makes more obvious the temperature dependence of the average gap of

SiC. The value for the ordered configuration 11 at T = 0K is reduced to about 1 eV for

T = 1000K. The results can be well fitted by the expression

Emax
g (T ) = Emax

g (0)e−T/Tc,ord , (3.6)

with Tc,ord = (1004± 22)K, which agrees with the temperature of about T = 1000 K for

which the alloy is almost random as shown previously accordingly to the SRO parameter

L in Fig.3.3. Thus, this temperature dependence is mainly a consequence of increasing

probabilities for other atomic configurations beyond the j = 11 one.
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The situation for the other carbide alloy is totally different. For Ge1−xCx, there is a

clear phase separation into pure graphene-like and pure germanene-like configurations,

while all other configurations do not give rise to significant contributions. In contrast,

for Si1−xGex, from Fig. 3.10, we observe that all clusters appear and contribute to the

statistics. Nevertheless, the resulting average gaps remain about few meV because of the

small cluster gaps as listed in Table 3.6.

FIGURE 3.11 – (a) The gap curves of Si1−xCx for different temperatures. The black line
corresponds to ordered phase 11. (b) The maximum energy gap obtained for the Si1−xCx

alloy as a function of the growth temperature. The full line represent the best fit of the
data using Eq. (3.6).



4 (BN)1−x(C2)x alloy

4.1 Introduction

In chapter 3, one can observe a great role of strong deformations of the honeycomb

structure in the total energies of the three considered binary alloys obtained from group-IV

elements. This effect is very dramatic in Si1−xCx, Ge1−xCx, where the difference between

atomic radii is not negligible, while Ge1−xSix is a random alloy and the honeycomb structure

is not severely deformed by the permutation of the atoms that occupy each atomic site.

This effect should not be very strong in materials with similar atomic sizes, such

as boron, carbon, and nitrogen, for example. Based on these observations, a 2D alloy

formed by graphene and h-BN is a natural choice for study. Both materials have the same

honeycomb structure with a constant mismatch of only 2%(LIU, 2013). Since graphene is

a conducting material and h-BN is an insulator with a wide bandgap, an alloyed system of

this materials can, in principle, exhibit conducting, semiconducting or insulator behavior

depending on its composition.

Recently, it has been demonstrated that (BN)1−x(C2)x layers can be synthesized

by Chemical Vapor Deposition (CVD) (CI, 2010; CHANG et al., 2013) or via chemical

substitution of C with h-BN in graphene (GONG et al., 2014). However, the distributions of

atoms in these alloys are far away from perfectly random, instead exhibit phase separation

resulting in h-BN-rich and graphene-rich domains (YUGE, 2009; CI, 2010; CHANG et al.,

2013).

The alloy thermodynamics determines the miscibility of the combined materials, thereby

also favor some specific atomic arrangements, which might have a strong influence on the

electronic and optical properties of the alloy with a given composition x. Depending on

the size of the domains produced in the phase segregation process, their effect on the

observed properties of (BN)1−x(C2)x might be different. According to Ci et al. (CI, 2010),

for domain sizes smaller than 2-3 nm, the film behaves like a BN-C alloy, with a band gap

equal to the average gap of the two components, while domain sizes larger than 2-3 nm

can lead to carrier localization and exhibit the electronic and optical properties of both

materials.
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Previous theoretical approaches have been used only to predict phase separation (YUGE,

2009; MAZZONI et al., 2006; AZEVEDO, 2006), but its effects on electronic and optical

properties is still an open question. Therefore, the combination of a quasiparticle electronic

structure method with a statistical approach that takes into account the segregation

and composition fluctuations should give rise to novel results for the prediction of the

fundamental energy gap and related electronic as well as optical properties.

4.2 Cluster expansion and configurational counting

We chose the same supercell used for Si1−xCx, Ge1−xCx and Ge1−xSix alloy. Since this

alloy shares the same symmetry as the previous alloys, the same procedure to reduce

the total number of configurations to a set of J non-equivalent cluster configurations by

symmetry considerations can be used. However, since we have a third atom in the alloy,

the initial number of configurations increases from 28 = 258 up to 38 = 6561.

To deal with this problem, only clusters Bn−nj
Nn−nj

C2nj
(nj = 0, 1, 2, 3, 4 and 2n = 8)

are considered. The 2n = 8 atomic sites can be randomly occupied by boron, carbon or

nitrogen atoms, covering all the configurations with equal numbers of boron and nitrogen

atoms. Besides C-C, B-N, C-B and C-N bonds, also B-B and N-N ones are allowed.

This sample set result in 1107 possible atomic configurations, which can be arranged into

J = 43 classes with different degeneracies considering the symmetry equivalence of different

cluster configurations. Such systems with equal numbers of boron and nitrogen atoms

are synthesized by CVD growth using ammonia borane NH3-BH3 as a single precursor of

boron and nitrogen atoms (CI, 2010) or controlling the flux of distinct boron and nitrogen

precursors (UDDIN et al., 2015). The configuration cluster classes are listed in the table 4.1

Since the ratio between the number of boron and nitrogen atoms is fixed at the unity,

the alloy composition is fully described the carbon fraction x and the GQCA formalism

for ternary alloys can be applied to this system, as a particularization for a pseudo-binary

alloy as explained in section 2.2.3.

The main difference between this set of configurations and the ones considered in

the previous chapter is that in the (BN)1−x(C2)x alloys all the possible permutations

between boron and nitrogen atoms are allowed. Therefore we have six different clusters

configurations at x = 0, among which the ordered h-BN configuration is the most stable.

One can verify by direct inspection of the equation 2.76 that the calculated set of occurrence

probabilities xj within the GQCA formalism are invariant by considering different energy

values to represent the system at x = 0 composition in the excess cluster energies ∆εj

calculation. The effect of considering a different total energy reference in this composition

is incorporated by a new value for the Lagrange multiplier λ in the equation 2.76, which is
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FIGURE 4.1 – An example of a 2D periodic system derived from one supercell configu-
ration. B, C and N atoms are represented as green, brown and gray dots, respectively.
Each configuration is labelled according to the represented numeration. The represented
configuration is labelled as BCCCNNCB following the order of the atoms that stay in the
12345678 sites, respectively.

still determined by the average composition constraint given by equation 2.72.

TABLE 4.1 – (BN)1−x(C2)x non-equivalent cluster classes and their degeneracies gj. The
numeration of sites for cluster labelling is depicted in Fig. 4.1.

j gj Label j gj Label j gj Label
1 1 CCCCCCCC 16 24 CCCNNBCB 31 48 CBCNNBBN
2 24 CCCCCCBN 17 48 CCBBBNNN 32 24 CBCNNBNB
3 24 CCCCCBCN 18 12 CCBBNNCC 33 24 CBBBNNNC
4 24 CCCCBBNN 19 48 CCBBNNBN 34 24 CBBNBNCN
5 12 CCCCBNBN 20 12 CCBNBNCC 35 48 CBBNNBNC
6 24 CCCBCBNN 21 24 CCBNBNBN 36 24 CBBNNNCB
7 24 CCCBCNBN 22 24 CCBNBNNB 37 8 CBNBNBNC
8 24 CCCBBCNN 23 12 CCBNNBCC 38 6 BBBBNNNN
9 24 CCCBBNCN 24 48 CCBNNBBN 39 8 BBBNBNNN
10 8 CCCBNCCC 25 48 CCBNNNBB 40 24 BBBNNBNN
11 48 CCCBNCBN 26 12 CBCBCNCN 41 24 BBBNNNBN
12 48 CCCBNCNB 27 24 CBCBBNNN 42 6 BBNNNNBB
13 48 CCCBNBCN 28 24 CBCBNBNN 43 2 BNBNBNBN
14 48 CCCNBBCN 29 48 CBCNBBNN
15 24 CCCNNCBB 30 24 CBCNBNBN
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4.3 Phase stability and composition fluctuation

In a macroscopic alloy the mixing free energy ∆F (x, T ) is determined by the interplay

between configurational entropy and internal energy resulting in the temperature and

composition dependent cluster probabilities xj(x, T ). Thereby, the most favorable local

arrangement of atoms is influenced by the alloy thermodynamics, favoring some cluster

configurations with low excess energies in preference of others. The excess energy and the

statistical contribution of each cluster at x = 0.5 and T = 1600K are listed in Table 4.2.

TABLE 4.2 – Excess energy ∆εj (eV) and statistical contribution xj (x = 0.5,T = 1600K)
of the cluster configurations of the Cx(BN)1−x alloy.

Class j ∆εj (eV) xj Class j ∆εj (eV) xj Class j ∆εj (eV) xj
1 0.00 0.057 16 4.20 0.025 31 6.92 0.004
2 2.10 0.183 17 7.79 0.002 32 5.00 0.011
3 3.31 0.061 18 8.49 0.000 33 11.43 0.000
4 6.20 0.004 19 10.41 0.000 34 7.68 0.001
5 1.87 0.102 20 4.31 0.011 35 6.96 0.004
6 5.21 0.010 21 1.97 0.167 36 9.41 0.000
7 5.41 0.008 22 10.11 0.000 37 3.42 0.015
8 4.95 0.012 23 3.98 0.015 38 14.25 0.000
9 4.06 0.028 24 5.60 0.012 39 12.29 0.000
10 3.22 0.022 25 8.16 0.001 40 11.66 0.000
11 7.36 0.003 26 6.59 0.001 41 7.45 0.001
12 3.11 0.132 27 9.01 0.000 42 6.58 0.001
13 6.30 0.007 28 7.34 0.001 43 0.00 0.074
14 6.55 0.006 29 11.23 0.000
15 5.31 0.009 30 5.06 0.010

The plot of the excess energies ∆εj of the 43 considered cluster configurations as a func-

tion of the carbon concentration is depicted in Fig. 4.2. We verify that the configurations

without B-B and N-N are strongly energetically favored. The most energetically favorable

configurations are BNBNBNBN(nj=0), CCBNBNBNBN (nj=1), CCCCBNBN (nj=2)

and CCCCCCCC(nj=4). They show a strong tendency to eliminate B-B and N-N bonds

and to maximize the number of C-C and B-N bonds, as reported in previous theoretical

(YUGE, 2009) and experimental (HUANG et al., 2013) works. Consequently, the cluster

configurations which represent almost a mixture of h-BN and graphene are energetically

favored. This fact explains a very strong tendency of the mixed system to segregate into

graphene and h-BN domains as observed experimentally (CI, 2010).

Fig.4.3 depicts the resulting phase diagram, in which we observe a huge critical tem-

perature Tc= 5200 K, significantly above typical growth temperatures. This temperature

is comparable to the result of Tc =4500 K calculated using Monte Carlo simulations,

neglecting the lattice vibrations, which is much higher than the expected melting point
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FIGURE 4.2 – (Color online) Excess energies ∆εj of each atomic configuration as function
of the number of carbon atoms nj. The black diamonds represent the configurations with
mainly B-B and N-N bonds, while the light blue diamonds represent the complementary
subset of the possible configurations.

of the alloy (YUGE, 2009). The phase diagram in Fig. 4.3 shows that random alloys can

only exist for extremely small C or h-BN concentrations and that carbon-rich alloys are

more thermodynamically favored then h-BN-rich ones. For T=1600 K, a typical growth

temperature, we predict a very small carbon solubility in h-BN of xC = 0.028 and a h-BN

solubility in graphene of xBN = 0.042. These results are in very good agreement with the

experimental values xexpC = 0.032 and xexpBN = 0.05 reported by Uddin et al. (UDDIN et al.,

2014; UDDIN et al., 2015).
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FIGURE 4.3 – The T -x phase diagram of (BN)1−x(C2)x. The binodal (spinodal) curve is
represented by the full (dashed) line.



CHAPTER 4. (BN)1−X(C2)X ALLOY 88

0.00
0.05
0.10
0.15
0.20

x j
(a) T=800 K

0.00
0.05
0.10
0.15
0.20

x j

(b) T=1600 K

0.00
0.05
0.10
0.15
0.20

x j

(c) T=5200 K

CC
CC

CC
CC

CC
CC

CC
BN

CC
CC

CB
CN

CC
CC

BN
BN

CC
CB

NC
CC

CC
CB

NC
NB

CC
BN

BN
BN

CB
NB

NB
NC

BN
BN

BN
BN

CC
CC

BB
NN

CC
CB

CB
NN

CC
CB

CN
BN

CC
CB

BC
NN

CC
CB

BN
CN

CC
CB

NC
BN

CC
CB

NB
CN

CC
CN

BB
CN

CC
CN

NC
BB

CC
CN

NB
CB

CC
BB

BN
NN

CC
BB

NN
CC

CC
BB

NN
BN

CC
BN

BN
CC

CC
BN

BN
NB

CC
BN

NB
CC

CC
BN

NB
BN

CC
BN

NN
BB

CB
CB

CN
CN

CB
CB

BN
NN

CB
CB

NB
NN

CB
CN

BB
NN

CB
CN

BN
BN

CB
CN

NB
BN

CB
CN

NB
NB

CB
BB

NN
NC

CB
BN

BN
CN

CB
BN

NB
NC

CB
BN

NN
CB

BB
BB

NN
NN

BB
BN

BN
NN

BB
BN

NB
NN

BB
BN

NN
BN

BB
NN

NN
BB

0.00
0.05
0.10
0.15
0.20

x j

(d) Random alloy

FIGURE 4.4 – The probability histogram of all cluster configuration classes of (BN)1−x(C2)x
alloy with x=0.5 at 800 K (a), 1600 K (b) and 5200 K (c) within GQCA formalism.
Histogram obtained from a random alloy, more precisely an ideal solid solution, is depicted
in (d). The black bars represent the configurations with B-B and N-N bonds, while the
light blue bars represent the complementary configuration subset S.

The probabilities xj(x, T ) for the realization of a certain atomic configuration j depend

mainly on the excess energies for lower temperatures. For higher temperatures the entropy

term in the mixing free energy, given by equation 2.69, becomes more important. The

distribution of occurrence probability among the 43 clusters starts to resemble the random

distribution and more energetic configurations can be statistically relevant depending on

the considered growth temperature T . This behavior is depicted by bar histograms in

Fig. 4.4 for a average composition x = 0.5 and increasing temperature T . In agreement

with the excess energies, for lower temperatures the probability to find a cluster with B-B

and N-N bonds is vanishing small. For such temperatures, mainly the cluster classes with

C-C, C-N,C-B, and B-N in the subset S should be realized. Only for temperatures close to

the critical one, also significant contributions from clusters with B-B and N-N bonds may

occur. In this case, the cluster distribution approaches the probabilities predicted for a

random alloy, i.e., an ideal solution.

The similarity between the GQCA probability xj(x, T ) and the probabilities of cluster
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j in an ideal solid solution x0j(x) can be measured by the Kullback-Leibler divergence

DKL(xj|x0j) given in equation 2.86. This quantity rules the deviation of the actual mixing

entropy from the ideal system. The Fig. 4.5 shows the behavior of the KL divergence

between the distributions at average composition at x=0.25, 0.5, and 0.75 as a function of

the temperature. The maximum divergence value at low temperatures corresponds to the

occurrence of only graphene and ordered h-BN clusters. As the temperature increases the

two materials start to alloy and divergence decays. The assumption of a random atomic

distribution in a (BN)1−x(C2)x alloy is hardly justified for typical growth temperatures.

This is in agreement with the phase diagram in Fig.4.3 and the reported alloy tendency

for phase segregation.
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FIGURE 4.5 – Kullback-Leibler divergence between the random alloy and GQCA probabil-
ity distributions as a function of temperature for different compositions x=0.25, 0.5, and
0.75. Small divergence values indicate similar probability distributions. Adopted growth
temperature T for alloy property estimations and critical temperature Tc are highlighted.

4.4 Structural properties

Considering equation 2.77 and the cluster occurrences probabilities calculated from the

minimization of the free energy for given T and x, we can predict the alloy properties in

the whole range of concentrations based on the properties pj calculated for each cluster

class. We perform our calculations at T = 1600 K, the growth temperature found in

literature (UDDIN et al., 2014; RAIDONGIA et al., 2010).

In the Fig. 4.6 one observes the behavior of the lattice parameter of the 2D hexagonal

structure as a function of the carbon concentration. The most carbon-rich cluster with

the smallest lattice constants dominate the average behavior in the alloy. The cluster
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TABLE 4.3 – Layer buckling ∆j and lattice constant aj of each cluster configuration class
j of the Cx(BN)1−x alloy.

Class j ∆j(Å) aj(Å) Class j ∆j(Å) aj(Å) Class j ∆j(Å) aj(Å)
1 0.00 2.469 16 0.00 2.504 31 0.00 2.53
2 0.00 2.487 17 0.01 2.55 32 0.00 2.524
3 0.00 2.492 18 0.00 2.517 33 0.05 2.521
4 0.00 2.520 19 0.02 2.536 34 0.61 2.505
5 0.00 2.497 20 0.00 2.508 35 0.00 2.527
6 0.00 2.523 21 0.01 2.510 36 0.00 2.545
7 0.00 2.505 22 0.02 2.552 37 0.01 2.511
8 0.00 2.524 23 0.00 2.504 38 0.03 2.47
9 0.00 2.510 24 0.01 2.523 39 1.00 2.466
10 0.01 2.490 25 0.01 2.534 40 0.00 2.566
11 0.00 2.517 26 0.00 2.508 41 0.01 2.562
12 0.00 2.500 27 0.01 2.541 42 0.03 2.602
13 0.00 2.521 28 0.01 2.533 43 0.00 2.515
14 0.00 2.509 29 0.00 2.525
15 0.00 2.515 30 0.01 2.521

with larger lattice constants do less contribute. It was verified that (BN)1−x(C2)x alloy

obeys Vegard’s law (DENTON; ASHCROFT, 1991) at the considered growth temperature.

The calculated a(x, T ) within the GQCA approach slightly deviates from the linear fit

a(x) = aBN (1− x) + aCx, with aC=2.47 Å and aBN=2.51 Å, with a rooted mean squared

error (RMSE) lower than 4.10−3 Å.
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FIGURE 4.6 – The lattice parameter as a function of the carbon concentration for the
(BN)1−x(C2)x. The black diamonds represent the configurations with B-B and N-N bonds,
while the light blue ones represent the complementary configuration subset S. These
calculations considered the growth temperature T=1600 K.
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The second structural property observed for the clusters is their buckling amplitude,

which is defined as the maximum displacement of atoms from a flat configuration. The

configurations CBBNBNCN (j = 34) and BBBNBNNN (j = 39) exhibit very high buckling

values. A further investigation on those two configurations showed that the verified great

layer buckling amplitudes are associated with deformations in the honeycomb structure

in order to accomodate the neighbor boron atoms, which have greater atomic radii than

carbon and nitrogen, as depicted in Fig.4.7. Despite of these two configurations, the mean

buckling amplitude within GQCA shows that the alloy preserves the planar hexagonal

structure exhibited by its end components as illustrated in Fig. 4.8.

FIGURE 4.7 – Cluster configurations CBBNBNCN (a) and BBBNBNNN (b) of
(BN)1−x(C2)x alloys are depicted in perspective. A lateral view of configuration
CBBNBNCN is provided in (c) and one of BBBNBNNN configuration is provided in
(d).

This effect is analogous to the very strong deformations depicted in Fig. 3.7 (a) and

Fig. 3.7 (b) of Ge1−xCx and Si1−xCx alloy, respectivelly. Since the difference of atomic

radii in boron and the other two element is small the effect is mitigaded. One may also

observe that as the number of boron atoms decreases from configuration j = 39 (nB = 4)

to j = 34 (nB = 3), the buckling drops from 1.00 Å to 0.61 Å.

4.5 Electronic properties

In Table 4.4 we list the calculated fundamental energy gap for each cluster configura-

tion. The values for the energy gaps of CCBNBNNB, CBCNBBNN, CBBBNNNC and

BBBBNNNN configurations, which exhibit metallic behavior, are considered to be zero, in

agreement with the interpretation that graphene is a zero-gap semiconductor. Metallic

behavior of clusters with B-B and N-N bonds is in agreement with reported results to

some BxCyNz layered structures available in literature (MAZZONI et al., 2006). However,



CHAPTER 4. (BN)1−X(C2)X ALLOY 92

0.0 0.2 0.4 0.6 0.8 1.0
Carbon composition x

0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
ye

r B
uc

kl
in
g 
∆
(Å

)

FIGURE 4.8 – The layer buckling amplitude as a function of the concentration for the
(BN)1−x(C2)x. The black diamonds represent the configurations with B-B and N-N bonds,
while the light blue ones represent the complementary configuration subset S.

these clusters do not have dominant influence on the alloy bandgap curve predicted within

GQCA formalism.

Because of the high computational costs we restrict the electronic structure calculation

using the hybrid functional HSE06 to the nine most statistically relevant configurations

with the lowest excess energies, represented by the light blue diamonds in Fig.4.2. The

considered configuration classes correspond up to the 99.6% of the total probability in

the carbon poor phase (x′1 = 0.02) and to the 95.7% of the clusters in the carbon rich

phase (x′2 = 0.95), according to GQCA calculations. As expected, the HSE06 results in

larger fundamental energy gaps in comparison with DFT calculations, as can be observed

comparing the dotted black and the full blue energy gap curves in Fig. 4.9.

Due the fact that only one configuration has significant statistical contribution at x=0

and x=1, the energy band gap curve varies between Eh−BN =6.06 eV and EC =0 eV,

corresponding to pure hexagonal boron nitride and pure graphene, respectively. Without

phase decomposition the system behaves like a homogeneous phase with the average

concentration x. The solution of the Lagrange problem would yield to the a set of

probabilities xj that would give the energy band gap curve represented by the blue full

line in Fig. 4.9. We define a concentration-dependent bowing parameter b(x) as a measure

of the deviation from the linear behavior for the energy gap curve by fitting our results

with the function Eg(x, T ) = (1− x)EBN + xEC − b(x) x(1− x). The calculated bowing

parameter is b(x) = (5.6 − 4.9x) eV, with a rms deviation of 0.02 eV. This finding is

a generalization of the estimated bowing parameter of 3.6 eV and 4.8 eV reported in



CHAPTER 4. (BN)1−X(C2)X ALLOY 93

TABLE 4.4 – Energy gap Eg of the cluster configurations of Cx(BN)1−x alloys in eV. GGA
calculations are performed for all configurations, while HSE06 hybrid functional is only
considered for the statistically most relevant ones.

Class j EGGA
g EHSE

g Class j EGGA
g EHSE

g Class j EGGA
g EHSE

g

1 0.0 0.0 16 0.79 - 31 0.54 -
2 1.06 1.69 17 1.59 - 32 1.33 -
3 0.14 0.24 18 0.08 - 33 0.0 -
4 0.41 - 19 0.01 - 34 1.61 -
5 1.58 2.2 20 1.9 - 35 0.96 -
6 0.68 - 21 2.78 3.75 36 0.35 -
7 0.92 - 22 0.0 - 37 2.72 3.71
8 0.01 - 23 0.04 - 38 0.0 -
9 0.76 - 24 0.84 - 39 0.94 -
10 1.27 1.84 25 0.79 - 40 0.01 -
11 0.47 - 26 0.42 - 41 1.81 -
12 2.04 2.86 27 0.61 - 42 0.62 -
13 1.02 - 28 1.57 - 43 4.65 6.06
14 1.04 - 29 0.0 -
15 0.1 - 30 1.18 -

literature(UDDIN et al., 2014; UDDIN et al., 2015), based on the available experimental data

for the fundamental energy gap of the two end components and samples of 1µm-thick

BC2N (x=0.5) films (WATANABE et al., 1996).

At compositions x where the system tends to segregate in phases with compositions

between x1 and x2, visible in the phase diagram in Fig. 4.3, the set of probabilities xj

derived within GQCA does not represent the fully decomposed alloy. Rather in this case,

we have to estimate Eg(x, T ) as a weighted mean of the energy gaps of Eg(x1, T ) and

Eg(x2, T ) of the carbon-poor and -rich phases with respective weights w1 and w2. Since

the weights w1 and w2 vary linearly with the average composition x, Eg(x, T ) should vary

linearly in the range x1 < x < x2 when phase segregation effects is included. This fact is

represented by the blue dashed line in Fig. 4.9.

As one can observe in Fig. 4.9, different energy gap values are possible for different

cluster configurations with the same carbon concentration. This indicates that the use

of statistical approaches to account for disorder effects are mandatory due the fact that

a change of the atomic arrangement of atoms can result in entirely different electronic

properties. Therefore, the choice of particular cluster configurations with a defined

composition might not properly represent the chemically disordered system with an average

composition x and composition fluctuations derived within the GQCA formalism. For

example, the non-monotonic behavior of the energy gap as a function of the concentration

was reported by D’Souza and Mukherjee (D’SOUZA; MUKHERJEE, 2015) when considering

particular zigzag and armchair interfaces configurations is not observed when disordered
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FIGURE 4.9 – The energy band gap as a function of the composition for the (BN)1−x(C2)x
alloys obtained with the GGA functional (dotted black curve) and within the HSE06
approach with and without phase decomposition effects (full and dashed blue lines,
respectively). The vertical grey shades indicate the x compositions where the alloy is
stable and the horizontal ones corresponds to the energy gap tune range at the stable
composition conditions. The black and light blue diamonds represent the energy band
gap obtained by GGA and HSE06 calculations for the investigated clusters. Available
experimental data are represented by red circles (UDDIN et al., 2014; UDDIN et al., 2015)
and squares (CHANG et al., 2013).

configurations and statistics are considered as illustrated in Fig.4.9.

The comparison between theoretical and experimental results displayed in Fig. 4.9

require further discussions. For carbon concentrations under the carbon solubility (vertical

grey shaded areas) the experimental and the theoretical curve agree. The same behavior

is observed for carbon-rich alloys, where our theoretical energy gap curve stands between

the experimental findings (UDDIN et al., 2015; CHANG et al., 2013). For BN-rich alloys

with carbon concentrations above its solubility in h-BN (UDDIN et al., 2014), where phase

segregation occurs, the decrease of the energy gap is much weaker than the predicted

GQCA curve and stays near to the horizontal shaded area. This result can be explained if

we consider the phase separation process: the light possibly comes from BN-rich segregated

domains, leading to carrier localization.
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4.6 Optical properties

Optical measurements for the (BN)1−x(C2)x alloy show two absorption edges at different

carbon concentrations which can be associated with a carbon-rich and a BN-rich phases

(CI, 2010; CHANG et al., 2013). The relative intensities of the peaks depend on the

alloy composition between the two end components, while their positions do not change

appreciably with x.

In Fig. 4.10, we compared the estimation of the optical absorbance spectra given by

equation 2.109, AGQCA(ω, x, T ), assuming local composition fluctuations and domain sizes

between 2-3 nm and the absorbance spectra considering a complete phase segregation

of the system APS(ω, x, T ), as expressed by equation 2.110. The optical absorbance of

the carbon-rich and BN-rich phases have pronounced absorbance peaks in the considered

wavelength region. The peak of the carbon-rich phase is associated with π-π∗ transitions

at M point in graphene (CHANG et al., 2013; MAK et al., 2008), while the peak of the

BN-rich phase is associated with the optical transition associated with the h-BN band

gap in the UV region. In the long-wavelength limit the absorption almost vanishes for

h-BN-rich phase due to its large gap, approaching 6 eV. On the contrary, in the case of

the graphene-rich phase the in-plane absorbance reaches a value πα (α - Sommerfeld fine

structure constant). This has been demonstrated experimentally (NAIR et al., 2008). It

goes back to the linear bands of graphene forming Dirac cones at K and K’ points in the

Brillouin zone (MATTHES et al., 2013a; MATTHES et al., 2014).

b

FIGURE 4.10 – Optical absorbance as a function of the wavelength for (BN)1−x(C2)x
alloys with different carbon compositions. The red (black) full line stands for the carbon-
rich (BN-rich) phase for comparison with intermediate compositions x=0.65 and x=0.84,
represented by green and blue lines. The absorption spectra predictions are calculated
considering local composition fluctuations (a) and complete phase segregation (b).

The difference between the blue and green lines in Fig. 4.10(a) and Fig. 4.10(b) for

average composition x=0.65 and x=0.84 shows a very strong effect of phase decomposition
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on the absorbance spectrum of alloys with intermediate compositions. When small clusters

and composition fluctuations are assumed in Fig. 4.10(a), clusters with intermediary

composition and lower fundamental energy gap are favored. Therefore, besides a reduction

of the intensity of the graphene absorption peak additional red-shifted absorption peaks

appear, which however are not experimentally observed. Otherwise, if the phase segregation

is considered as in Fig. 4.10(b), the absorbance spectra APS(ω, x) is given by a weighted

mean between the spectra of the two segregated phases and have the same qualitative

behavior as the experimental findings (CI, 2010; CHANG et al., 2013).

These results confirm the strong evidence for the (BN)1−x(C2)x phase segregation in

the measured absorbance spectra. The absorption peak associated with poor-carbon phase

is less pronounced than in the experiment due the neglect of excitonic effects (WATANABE;

KANDA, 2004), which enhances the absorption peak observed at about 200 nm in h-BN in

particular due to the formation of exciton bound states with energies of 5.822 eV (ARNAUD

et al., 2006).



5 Graphene Oxide

5.1 Introduction

Alloying methodologies are not the only alternatives to obtain chemically controlled

properties of 2D materials. There are different chemically functionalized 2D sheets obtained

through oxidation (MAO et al., 2012; LOH et al., 2010), hydrogenation (SOFO et al., 2007;

ELIAS et al., 2009) or halogenation (POH et al., 2013; LIAO et al., 2014) processes that exhibit

distinct properties as their original counterparts. Partial functionalization processes are

able to obtain tunable properties from both counterpart in an analogous methodology as

electronic and optical properties tuning by alloying.

Fully oxidized graphene, or graphene oxide (GO), opens energy gaps and exhibit

significantly different electronic and optical properties from graphene (EIGLER; HIRSCH,

2014; LOH et al., 2010; MAO et al., 2012; DREYER et al., 2010; PULCI et al., 2012). This

material paves the way for a new class of two-dimensional (2D) graphene-based materials.

GO has its own applications in 2D sensor devices (ROBINSON et al., 2008; DUA et al., 2010),

electronics (GOMEZ-NAVARRO et al., 2007; WEI et al., 2010; WU et al., 2008), optoelectronics

(LOH et al., 2010; WU et al., 2008) and supercapacitors (ZHANG; ZHAO, 2012). The first GO

samples were chemically exfoliated about 150 years ago by Bodie (BRODIE, 1859) from

graphite oxide. However, due to its amorphous nature, the details of its atomic structure

are still under debate (EIGLER; HIRSCH, 2014; MAO et al., 2012). Experimental findings

indicate that the epoxy and hydroxyl groups tend to adsorb close to each other (CAI et

al., 2008). GO is synthesized from graphite powder using chemical solutions with oxidant

compounds and subsequent exfoliation (MAO et al., 2012). Wet chemical treatment of

graphene and the exposure to oxygen plasma are successful ways to obtain GO samples

(NOURBAKHSH et al., 2010).

Besides the structural disorder, the resulting GO may also be understoichiometric by

the incomplete oxidation of graphene. The incomplete oxidation may also be reached by

chemical reduction of fully-oxidized GO (KIM et al., 2009). The understoichiometric oxides

allow to tune their properties between those of GO and graphene. In this thesis, we have

investigated the potential of tunable properties of understoichiometric GO studying the
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effect of −OH and −O− adsorption on graphene with a cluster expansion of the system.

The considered clusters have 8 C atoms and can have from 0 to 8 (0 to 4) adsorbed

hydroxyl (epoxy) groups. The section 5.2 describes the considered configuration labels of

the cluster expansion in the following sections. They may be interpretated as variations

between graphene (C), fully oxidized graphene with only −OH groups (COH), and fully

oxidized graphene with only −O− groups (CO1/2). The understoichiometric GO systems

are initially investigated considering the effect of adsorption of only hydroxyl or epoxy

groups, separately, in sections 5.4 and 5.5 respectively. The effect of different oxidant

groups on the energetic stability, atomic geometry and accompanying electronic and optical

properties are less studied and, therefore, widely not understood.

At last, in section 5.6, we investigate the simultaneous adsorption of hydroxyl and

epoxy groups on graphene. The resulting non-stoichiometric GOs exhibit structural and

chemical disorder. We focus here on new phenomena due to the simultaneous appearance

of two different oxidant groups. We report on unambiguous features of GO energetics, for

instance the increase of energetically stability, as for low-energy fully oxidized graphene

with both hydroxyl and epoxy groups. Such structures give rise to larger energy gap

ranges for band gap engineering. Ordered geometries may indicate that the oxidant groups

agglomerate in a unique oxygen-rich phase.

5.2 Cluster expansion and configurational counting

Here, we generalize the method for simultaneous occurrence of −OH and −O− groups.

We chose 2D supercells with n = 8 carbon sites, where the hydroxyl groups can be

adsorbed, and n = 12 carbon-carbon bonds, that can be bridged by epoxy groups, as

illustrated in Fig. 5.1. We consider the possible arrangements of oxidant groups, which

fulfill the following conditions: (i) carbon atoms are three- or fourfold-coordinated after

adsorption, and (ii) hydroxyl groups are not allowed to adsorb on first-nearest-neighbor

carbon atoms at the same side of the graphene basal plane. These conditions reduce

the considered atomic arrangements to configurations with moderate formation energies,

as will be demonstrated in Sec. 5.3. The described constraints result in a set of 16343

possible arrangements, with nOH,j −OH groups and nO,j −O− groups . They can be

reorganized in J =308 symmetry equivalent classes considering all possible symmetry

operations, with different degeneracies gj. For discussion of specific atomic arrangements,

a labeling procedure is explained and exemplified in the caption of Fig. 5.1.

Among the set of 308 symmetry equivalent classes, we selected for preliminary studies

the 31 configurations with the adsorption of −OH groups, and 24 configuration with

−O− groups. The obtained results from the investigation of these configuration sets are
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FIGURE 5.1 – (a) The atomic sites (carbon-carbon bonds) are labeled with integer numbers
from 1 to 8 in black (1 to 12 in white). Sites without oxygen groups are represented as
0, oxygen groups above the graphene layer as ‘u’ and oxygen groups down the graphene
layer as ‘d’. The configuration label is obtained by the combination of atomic site labels
followed by the carbon-carbon bond ones. (b) An example of a cluster configuration.
Carbon, oxygen and hydrogen are respectively illustrated by brown, red and white spheres.
According to the labeling system described in (a), the configuration of the represented
atomic arrangement is 00ud00ud-d0000u000000.

described in sections 5.4 and 5.5. In the study of the configurations with only hydroxyl

(epoxy) adsorption, we simplify the configuration notation to only the 8 atomic sites (12

carbon-carbon bonds) occupation description.

5.3 Fully oxidized sheets

In order to describe completely oxidized graphene we study the two oxidant groups,

epoxy and hydroxyl, separately. In both cases, we investigate the possible arrangement of

these groups on both sides of the graphene sheet. We start with the full hydroxyl decoration

of graphene. Thereby, in case of the adsorption of the −OH groups, we restrict to their

alternating bonding to the single carbon atoms on top and below the graphene sheet. This

leads to 8 −OH groups (nS = nOH = 8) per 2x2 graphene unit cell as depicted in Fig. 5.2

(a) (generalized Ruess model (MAO et al., 2012)). The illustrated configuration is used

as an example of labelling and is further explained in the caption, following the defined

labels and symbols. We avoid atomic configurations with too large formation energies.

These thermodynamically unfavorable arrangements with small statistical weights in the

GQCA approach are atomic arrangements with two neighboring hydroxyl groups bonded

to the same side of the carbon sheet. This disregard was verified by comparing the total

energies of the clusters 000000 + + and 000000 +− with two hydroxyl groups at adjacent

carbon sites in parallel or antiparallel orientation. The repulsive interaction between two

neighboring hydroxyl groups at the same side of the sheet results in an energy increase of

1.31 eV/cluster. The strong electrostatic repulsion between neighboring hydroxyl groups is
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due the large electronegativity of oxygen compared with the hydrogen and carbon values

(MÖNCH, 1993). The negatively charged oxygen ions in the −OH group are responsible for

the repulsion if they come too close to each other.

In the case of graphene oxide decorated only by epoxy groups, one oxygen atom bridges

two carbon atoms along one carbon sp2 bond (generalized Hofmann model (MAO et al.,

2012)). The constraints of alternate bonding (hydroxyls) and fourfold-coordinated carbon

atoms (epoxides) are kept for a reasonable number of significant atomic arrangements

with oxidant groups. Consequently, no adjacent C−C bonds can be occupied by another

oxygen atom.

FIGURE 5.2 – Illustration of cluster configurations of graphene with a maximum number
of oxidant groups: (a) nOH = 8 alternately bonded hydroxyl groups and (b) nepo = 4
epoxy groups. Carbon, oxygen and hydrogen atoms are respectively represented by
brown, golden and grey spheres. In case that only hydroxyl (epoxy) group adsorption is
considered, the configuration label described in Fig. 5.1 can be simplified to 8 sites (12
C-C bonds) label. Consequently, the represented atomic arrangements are (a) +-+-+-+-,
and (b)-0000++0000-.

Because of the pairing character of the oxidation by epoxy groups, we have to count

nB = 12 carbon-carbon bonds per cluster because of the constraint for three-fold or

four-fold coordination of carbon atoms. Only four bridging −O− groups can be adsorbed

by a 2x2 clusters in total. Each carbon is only allowed to bond to one epoxide group.

Since neighboring C-C bonds cannot be occupied by −O−, the repulsion of the negatively

charged oxygen atoms is mitigated. Therefore, all the possible manners of arranging

epoxide groups on both sheet sides are considered. One of these eight possible cluster

atomic arrangements with epoxide groups -0000++0000- is shown in Fig. 5.2 (b) explaining

also the labelling of the twelve C-C bonds.

In the GQCA formalism, presented in Sec. 2.2.4, the configurational entropy formula

expressed in Eq. (2.93) allows us to impose different constraints and consider both

substitutional alloys or group adsorption on sites or bonds in a unified theoretical formalism.

Besides the chemical disorder due to fluctuating number of sites or bonds occupied by
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FIGURE 5.3 – Electronic band structures for fully oxidized cluster configurations (x = 1)
obtained from HSE06 calculations: (a) carbon sheet completely oxidized with −OH groups
is described within the 1x1 unit cell in order to avoid band folding associated with the
use of the 2x2 supercell, and (b,c,d) thermodynamically favorable epoxy-oxidized systems
studied within 2x2 supercells used in the cluster expansion of the disordered system. The
valence band maximum (VBM) is chosen as energy reference.

oxidant groups, also structural disorder, e.g. due to the arrangement of the oxidizing

groups on both sides of the carbon layer, is accounted.

In order to use the canonical ensemble, the average number of oxygen groups per cluster

in the system nO can be characterized according to the oxidation level x, defined as the

fraction of carbon atoms functionalized with oxygen atoms in the carbon sheet. For the

hydroxyl (epoxy) oxidation process, the atom ratio C/O is given by 1/x (2/x). In this

sense x describes the average composition of the non-stoichiometric oxides C1−x(COH)x

or C1−x(CO1/2)x, depending on the oxidant group considered. A more general formalism

that considers a grandcanonical ensemble with the number of oxygen groups determined

by chemical environment conditions may be explored, but will be left as a future work.

Within the described framework the fully oxidized system with hydroxyl groups (in

which x = 1) is a honeycomb structure with sp3 hybridized carbons, labelled as +-+-+-+-

(cf. Fig. 5.2(a)). This cluster configuration exhibits a lattice constant of aCOH = 2.63 Å,



CHAPTER 5. GRAPHENE OXIDE 102

which is larger than graphene lattice constant aC = 2.47 Å , leading to a lattice constant

mismatch of 6.5%. Due to the tendency for sp3 hybridization, the carbon layer exhibits

a buckling amplitude of ∆ =0.50 Å . The obtained carbon-oxygen and oxygen-hydrogen

bonds show respective lengths of dCO = 1.42 Å and dOH = 0.99 Å, which determine

an angle of θOH = 107o between them. The structural parameters are similar to those

obtained using a 5x5 graphene supercell (LU et al., 2011). We investigated the influence of

hydroxyl orientation on calculated energy gap for the fully decorated configuration, but no

changes above 0.1 eV were observed.

The fully oxidized configuration in Fig. 5.3 exhibits a direct energy gap of 3.78 eV

at the Γ point according to the HSE06 calculation, showing the potential of the oxygen

groups to significantly change the electronic structure of the graphene sheet. The zero-gap

semimetal graphene becomes as graphene oxide a wide-gap semiconductor or insulator as

other functionalized graphene layers, e.g. hydrogenated graphene (PULCI et al., 2012). The

obtained electronic band structure for this oxide is illustrated in Fig. 5.3(a). Other HSE

calculations even suggest a larger gap of 4.32 eV (JIANG et al., 2013).

Differently from the oxidation based on hydroxyl groups, a fully oxidized graphene

sheet with epoxy groups is not unique. There are a total of 8 fully oxidized configurations

with nepo,j = 4 epoxide groups. The possible clusters exhibit different arrangements of

epoxy groups with respect to which side of the carbon sheet the oxygen groups are bonded

and in which ordering the epoxy groups are distributed along the carbon honeycomb

structure. Because of such structural disorder, a statistical treatment is necessary even

for a fully oxidized system, in which the occurrence probability of each configuration is

determined by the cluster energetics and the cluster degeneracy. The equilibrium state is

calculated by the minimization of the system free energy considering x = 1. The lattice

constants of the fully oxidized configurations stand between 2.55 Å and 2.67 Å. They

lead to a mean lattice constant of 2.57 Å at 200 oC . The average lattice mismatch in

comparison to the pure graphene amounts to 4%. The graphene oxide layer possesses an

average buckling amplitude of 0.36 Å at 200 oC and does not significantly change until

temperatures of order of 1100 oC. The epoxy groups are characterized by C-O bond lengths

of 1.43 Å and a C−O−C bond angle close to 63o in rough agreement with calculations

for isolated groups (KIM et al., 2009; LU et al., 2011).

The band structures of the three most energetically stable configurations with nepo,j = 4

are illustrated in Figs. 5.3(b,c,d) for comparison. The different arrangements of the epoxy

groups lead to distinct electronic structures. The fundamental energy gaps calculated for

the 00+-00000+-0, 00++00000–0 and 00+00+0000– configurations are respectively 5.05,

6.37 and 5.50 eV from the HSE06 calculations. Both the direct Γ− Γ gap and the indirect

Γ−K gap are observed in the studied configurations. Our gap findings are close to the

HSE value of 6.2 eV found by Jiang et al. (JIANG et al., 2013).
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In Fig. 5.4, we show the in-plane components of the absorbance obtained from the DFT

calculations for graphene and carbon sheets fully decorated with −OH or −O− groups

as a function of the incident photon energy. While graphene and −OH decorated carbon

sheet spectra are calculated directly from periodic structures, the illustrated spectra of the

graphene fully oxidized with epoxy groups is obtained from a weighted average of the 8

possible epoxy arrangements in a 2x2 unit cell at T= 300 K. The absorbance spectrum

of graphene exhibits an absorbance of πα (α is the Sommerfeld fine structure constant),

while a very pronounced peak at about 4.0 eV associated with the saddle point of the

valence and conduction π-band difference. These spectral features have been previously

discussed in theoretical (MATTHES et al., 2013a) and experimental (NAIR et al., 2008) works.

In the case of oxidized graphene sheets, the band gap opening forbids optical transitions

for small photon energies and the sheets are transparent for low energy radiation. For

these materials, the optical absorbance significantly increases for photon energies above 4

eV in agreement with the calculated gaps.

Graphene
Epoxy
Hydroxyl

Photon energy ℏω (eV) 
1 2 3 4 5 6 7
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FIGURE 5.4 – Optical absorbance A(ω) of graphene (black curve), and carbon sheets
fully decorated with hydroxyl (blue curve) or epoxy (red curve) groups as a function
of the incident photon energy. The statistical weights of the different arrangement of
configurations with nepo,j = 4 are calculated considering a preparation temperature of T
= 300 K.

5.4 Partial hydroxyl oxidation

The considered cluster size, combined with the assumption that first-neighbor hydroxyl

groups must have anti-parallel orientations, results in 743 possible arrangements, containing

between nOH,j = 0 and nOH,j = 8 hydroxyl groups per cluster, which can be organized in
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Jepo = 31 symmetry-equivalence classes considering all possible space-group symmetry

operations. The quantities characterizing the 31 clusters with respect to the cluster

statistics and their electronic structure are summarized in Table 5.1.

We start the investigation of the thermodynamic stability for intermediate oxidation

levels by considering the excess energies ∆Ej of the 31 considered cluster classes versus

the number of bonded hydroxyl groups per cluster nOH,j. The considered energies were

obtained from spin-polarized calculations. The calculated values are depicted in Fig. 5.5

and listed in Table 5.1.

TABLE 5.1 – Cluster classes j, their labels, their degeneracies gj, numbers of hydroxyl
groups per cluster nOH,j , excess energies Ej per cluster, and fundamental energy gaps from
PBE (EPBE

g,j ) and HSE06 calculations (EHSE
g,j ). Metallic configurations are indicated by

‘Metal’.

j Label nOH,j gj ∆Ej (eV) EPBE
g,j (eV) EHSE

g,j (eV)

1 00000000 0 1 0.00 Metal Metal
2 0000000+ 1 16 1.50 1.32 1.92
3 000++000 2 8 1.29 2.68 3.92
4 000+-000 2 8 1.63 2.75 3.96
5 00000+0+ 2 24 2.97 Metal Metal
6 00000+0- 2 24 3.14 Metal Metal
7 000000+- 2 24 1.19 0.32 0.46
8 000++00- 3 48 2.02 0.54 1.04
9 000+-00+ 3 48 1.98 0.88 1.53
10 000+0+0+ 3 16 3.73 Metal Metal
11 000+0+0- 3 48 5.10 Metal Metal
12 00000+-+ 3 48 1.71 1.11 1.51
13 0+0+0+0+ 4 4 7.87 Metal Metal
14 0+0+0+0- 4 16 2.51 Metal Metal
15 0+0+0-0- 4 12 5.18 Metal Metal
16 00+-+-00 4 12 2.09 1.61 3.21
17 00+–+00 4 12 1.84 2.14 3.68
18 000++-0- 4 48 3.05 Metal Metal
19 000+-+0+ 4 48 2.06 2.02 3.11
20 000+-0-+ 4 48 1.13 2.39 3.53
21 000+0+-+ 4 16 3.53 Metal 0.02
22 0000+-+- 4 12 0.19 0.18 0.59
23 0+0+0+-+ 5 16 5.86 0.02 0.26
24 0+0-0-+- 5 16 4.63 Metal 0.32
25 00+-+-0- 5 48 3.26 Metal 0.05
26 000+-+-+ 5 48 1.63 0.43 1.20
27 0+-+-+-0 6 8 3.46 Metal 0.37
28 0+0+-+-+ 6 24 3.35 Metal 0.79
29 00+-+-+- 6 24 1.01 2.40 3.96
30 0+-+-+-+ 7 16 1.74 Metal 0.04
31 +-+-+-+- 8 2 0.00 2.25 3.78
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FIGURE 5.5 – Excess energies ∆Ej of cluster configurations functionalized with hydroxyl
groups as function of the number of oxygen groups per cluster nOH,j. The cluster con-
figurations with ∆Ej < 1.5 eV/cluster are represented as golden diamonds, while the
complementary set is represented in black.

For intermediate oxidation levels the excesses energies ∆Ej are distributed in a very

wide range between 0.19 eV/cluster and 7.87 eV/cluster, indeed occurring when nOH,j = 4.

There is a clear tendency that the most stable configurations with ∆Ej < 2 eV favor

the hydroxyl clustering, as can be observed for configurations 000000+- (j=7), 00000+-+

(j=12), 0000+-+- (j=22), 000+-+-+ (j=26), and 00+-+-+- (j=29) (see Table 5.1 and

Fig. 5.6). These are the most stable configurations for each possible number of hydroxyl

groups per cluster, 2 ≤ nOH,j ≤ 6. The most energetically unfavored configuration is

0+0+0+0+ (j=13), which does not exhibit pairs of neighboring hydroxyls. Apart from the

pure graphene (j=1) and graphene oxide (j=31) the most stable intermediate configuration

0000+-+- (j=22) represents an ordered structure with parallel zig-zag chains of alternately

arranged −OH groups in the direction of a hexagonal lattice vector (see Fig. 5.6). This

chain ordering significantly reduces the total energy, since the repulsion of −OH groups

in vertical direction of the chains is pratically not present, which is in agreement with

previous investigations on graphene oxide energetics (YAN et al., 2009; YAN; CHOU, 2010).

As the consequence of the resulting adjacent graphene-like chains the gap opening of the

half-oxidized system j=22 is small, only of 0.6 eV. The −OH groups in understoichiometric

graphene oxide with x=0.5 prefer to aggregate along the armchair direction of graphene

as one-dimensional chains on the basal plane has been demonstrated also in the other

theoretical studies (WANG et al., 2010; JIANG et al., 2013).

The thermodynamic stability of a non-stoichiometric graphene oxide is investigated by

the construction of the T -x phase diagram, depicted in Fig. 5.7, from the temperature- and

composition-dependent mixing free energy ∆F (x, T ). A double-peak pattern is observed
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(a) j=7 (b) j=12 (c) j=22

(d) j=26 (e) j=29

FIGURE 5.6 – Energetically favored (∆Ej < 2 eV) graphene oxide cluster configurations
with partial hydroxyl decoration: (a) 000000+-, (b) 00000+-+, (c)0000+-+-, (d) 000+-+-+,
(e) 00+-+-+-, and (f) 0+-+-+-+. The indicated cluster numbering j refers to Table 5.1.
Carbon, oxygen and hydrogen atoms are respectively represented by brown, red and grey
spheres.

in the binodal and spinodal curves, because of the low-energy chain structure j = 22 but

also the linear chain arrangement j = 17 and its slightly distorted version j = 20. An

extremely large critical temperature of Tc = 6000 K is calculated, meaning that graphene

oxide exposed to hydroxyl groups cannot be prepared as a homogeneous phase at any

oxidation level x and common growth temperatures. Both findings indicate a strong phase

segregation tendency of the hydroxyl-covered graphene into oxygen-poor and -rich phases,

which has been also indicated by experimental findings (HE et al., 1998; LERF et al., 1998)

and other theoretical investigations (YAN et al., 2009; YAN; CHOU, 2010; ZHOU et al., 2013).

For higher-temperature preparation conditions and x = 0.5, however, one cannot exclude

a partial decomposition in a third phase mainly consisting by the ordered armchair chain

structure j=22.

We investigate, besides room temperature, typical temperatures of 200oC (473 K) and

1100oC (1373 K), which represent different possible preparation conditions at which the

graphene oxide samples can be produced (PEI; CHENG, 2012). The average properties of

non-stoichiometric graphene oxide are estimated according to Eq.(2.77).

The mean lattice constant as a function of the oxidation level x can be approximated

as a(x) = xaCOH + (1 − x)aC − bx(1 − x), where b is known as the bowing parameter

of the curve, because it represents the deviation of the system from the Vegard’s law

(VEGARD, 1921; DENTON; ASHCROFT, 1991). Bowing parameters of b = 0.10 Å and

b = 0.11 Å are calculated for the growth temperatures of T = 473 K and 1373 K,

respectively. Therefore, mainly a linear variation with composition with only a small,

almost temperature-independent bowing is found. The buckling parameter ∆ (not shown)
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x

FIGURE 5.7 – The T -x phase diagram of graphene functionalized with hydroxyl groups
C1−x(COH)x. The binodal (spinodal) curve is represented by the full (dashed) line.

varies non-linearly and non-monotonically with composition from zero to the graphene

oxide value. A maximum average buckling amplitude of ∆= 0.57 (0.65) Å is calculated at

x = 0.64 (0.49) for a preparation temperature of T = 473 K (1373 K). The observed non-

monotonic behavior of the buckling amplitude comes from cluster classes with intermediate

oxidation levels that exhibit buckling amplitudes larger than 0.9 Å due to their particular

arrangement of sp2 and sp3 carbon atoms, e.g. j=9, 19, 24, 26, and 28, whose realization

probabilities are enhanced for higher temperatures.

The magnetic properties of the clusters were investigated within spin-polarized simula-

tions, considering ferromagnetic and antiferromagnetic initial configurations. In agreement

with investigations made by Wang et al. (WANG et al., 2011), some arrangements of

hydroxyl groups on the graphene sheet may exhibit ferromagnetism, electrons with un-

paired spins and non-zero magnetic moment for the ground state, e.g. j=13, 14, and

23. All the configurations with excess energy ∆Ej<1.5 eV/cluster, exhibit nonmagnetic

ground states. In addition, we verified that class j = 27 exhibits an antiferromagnetic

ground state. One observes that hydroxyl arrangements with such ferromagnetic and

antiferromagnetic properties are restricted to large excess energies and, therefore, their

realization is suppressed by thermodynamics. The average magnetic moment per cluster

was calculated for the typical growth temperatures and no significant magnetization was

verified.

Studying the electronic properties, we focus on the fundamental energy gap of each con-

figuration and their average value versus oxidation level x. The definition of a fundamental

gap is sometimes difficult in the case of oxidation via hydroxyl groups. The delocalized 2D

π-electron distribution observed in graphene is locally or globally distorted by adsorption
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of hydroxyl groups. A Cpz orbital is filled with one electron which is attracted to the

oxygen atom of the −OH group to form a noble gas octet shell. The interaction and

π-bonding of the remaining Cpz orbitals may lead to insulating or metallic cluster systems.

This is illustrated in Fig. 5.8 for two clusters with an odd number of hydroxyls performing

spin-polarized calculations. The 0000000+ (j=2) cluster class exhibits in Fig. 5.8 (a)

an insulating electronic structure, with a splitting of the energy bands with different

spin components large enough, so that only fully occupied or empty bands are observed.

Therefore, an energy gap can be determined for such a configuration. In Fig. 5.8 (b)

the electronic band structure of 000+0+0+ (j=10) cluster class is illustrated, exhibiting

half-occupied bands and, therefore, a metallic behavior.
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Hydroxyl: 000000+ Hydroxyl: 000+0+0+
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FIGURE 5.8 – Electronic band structures for cluster class configurations decorated with an
odd number of hydroxyl groups per cluster obtained from spin-polarized PBE calculations.
The Fermi energy level is chosen as the reference. One observes that (a) 0000000+ (j=2)
cluster arrangement exhibit for each different spin channel fully (un)occupied bands,
showing an insulating electronic structure; (b) 000+0+0+ (j=10) cluster class exhibits
half occupied bands, being therefore a metallic atomic arrangement.

Fortunately, the cluster classes identified to be metallic usually have large excess energies.

For that reason, we can take them into the calculation of the average fundamental gaps,

since their occurrence probability is extremely small. A gap curve for intermediary

compositions is obtained within GQCA approach, weighting the fundamental gaps of the

different 31 cluster configurations listed in Table 5.1 for each oxidation level. The obtained

curves are depicted in Fig. 5.9 for three preparation temperatures.

The comparison of the gap values computed within different XC approaches in Table 5.1

shows that the hybrid functional enhances the fundamental energy gaps of semiconductor

and insulator configurations compared with the PBE functional. In addition, for six highly

oxidized configurations that were predicted within PBE calculations to have a metallic

behavior, finite band gaps are calculated within the hybrid functional description (see

Table 5.1).
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x

FIGURE 5.9 – Energy gap curve of graphene functionalized with hydroxyl groups as
a function of the oxidation level within HSE06 framework. The diamonds represent
the HSE06 energy gaps of all the cluster configurations considered, the set of cluster
configurations with ∆Ej < 1.5 eV/cluster are represented as golden diamonds, while the
complementary set is represented with black diamonds. Metallic behavior is identified
with a zero energy gap.

When the electronic properties are related to the excess energies, one observes a clear

relationship between high excess energies and metallic behavior: all the configurations

predicted to be metallic exhibit excess energies per cluster above 2.5 eV. Therefore, the

realization of these high-energy −OH distributions is energetically less probable, i.e. these

configurations are unfavorable. However, these configurations influence the average energy

gap curve versus composition in Fig. 5.9, in particular for higher temperatures. For lower

temperatures, the energy gap curve is monotonically crescent, despite of the existence of

metallic configurations, and only a small gap bowing is visible. For higher temperatures

the energy gap curve becomes S-shaped. Larger gap systems with excess energies ∆Ej

near 2 eV influence the findings. Figure 5.9 shows that, independently of the preparation

temperature, the gap can be tuned between tenths of eV until about 3.5 eV with the

coverage by −OH groups. The big dispersion of energy gaps EHSE
g,j of the considered

clusters and the temperature influence of the average energy gap curves observed in Fig.

5.9 show the importance of taking statistics and growth conditions into account. These

results are in agreement with other calculations with a screened hybrid functional (JIANG

et al., 2013), but also measurements of typical band gaps of 2.3-3.6 eV (YEH et al., 2011),

3.26 eV (KRISHNAMOORTHY et al., 2012), 3.6 eV (PENG et al., 2012), and 2.4-4.3 eV (YEH

et al., 2010) for graphene oxides.

The effect of synthesis temperature can be observed comparing the curves for T =300
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K, 473 K and 1373 K in Fig. 5.9. As the temperature increases, more configurations

with larger excess energies have a bigger statistical relevance and change the average

energy gap curve profile. When low-oxidation levels are considered, this effect leads to

enhanced occurrence probabilities of configurations with intermediate oxidation levels

with larger fundamental energy gaps. For high oxidation levels, the average oxidation

level constraints the statistics favoring configurations with more hydroxyl groups, and the

temperature increase results into smaller energy gaps due a probability enhance of the

0+-+-+-+ configuration.

In Fig. 5.10(a) we display the absorbance spectra considering average oxidation levels

x =0.25, 0.50 and 0.75 considering local composition fluctuation effects, i.e. homogeneous

alloys, at T= 473 K and 1373 K according to Eq.2.83. For low temperature, one can

observe that the absorbance spectra progressively change from the graphene pattern to

the absorbance spectra of a fully decorated graphene sheet with −OH groups (see Fig.

5.4). At an oxidation level x = 0.50 a very wide absorbance range is expected in this case.

The increase of temperature at x = 0.25 exhibits a secondary adsorption peak around

2.5 eV mainly associated with the 0000000+ (j=2) configuration. The effect of complete

phase segregation is illustrated in Fig. 5.10(b) as obtained from Eq.2.83. In this case,

the j=2 cluster class still significantly contributes to the average spectrum, especially for

higher temperature. However, the qualitative behavior of the optical spectra of fully phase

segregated systems is dominated by the absorbance peaks associated with the graphene

and fully oxidized GO phases, when the complete phase segregation is considered.
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FIGURE 5.10 – Average optical absorbance as a function of the photon energy for
GO systems decorated with −OH groups with oxidation levels x=0.25, 0.50, and 0.75,
represented as red, green and blue curves, respectively. The average spectra are calculated
at T = 473 K (full lines) and 1373 K (dashed lines). The adsorption spectra predictions
are calculated considering only local composition fluctuations, i.e. a homogeneous alloy
(a), and complete phase segregation (b).
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5.5 Partial epoxy oxidation

We consider 689 possible arrangements, containing between nepo,j = 0 and nepo,j = 4

epoxy groups per 2x2 cluster cell, which can be organized in Jepo = 24 symmetry-equivalence

classes with different degeneracies gj (see Table 5.2).

TABLE 5.2 – Cluster classes j, their labels, their degeneracies gj, numbers of epoxys
groups per cluster nepo,j, excess energies ∆Ej per cluster and fundamental energy gaps
from PBE (EPBE

g,j ) and HSE06 calculations (EHSE
g,j ).

j Label nepo,j gj ∆Ej (eV) EPBE
g,j (eV) EHSE

g,j (eV)

1 000000000000 0 1 0.00 Metal Metal
2 00000000000+ 1 24 0.96 0.63 0.82
3 00000++00000 2 12 1.67 1.67 3.30
4 00000+-00000 2 12 1.09 2.52 3.81
5 000000000++0 2 24 1.48 0.49 0.95
6 000000000+-0 2 24 0.67 0.13 0.42
7 0000000000++ 2 48 1.74 1.41 2.35
8 0000000000+- 2 48 1.15 1.98 2.92
9 0000++0000+0 3 16 3.69 Metal 0.03
10 0000++0000-0 3 48 3.00 Metal Metal
11 00000++0000+ 3 24 1.95 1.96 3.64
12 00000++0000- 3 24 0.63 2.34 3.78
13 00000+-0000+ 3 48 0.73 3.30 4.50
14 000000++000+ 3 48 2.17 2.53 3.84
15 000000++000- 3 96 0.74 2.81 4.03
16 000000+-000+ 3 48 0.98 2.95 4.17
17 00++00000++0 4 6 2.21 3.37 4.81
18 00++00000+-0 4 24 0.64 3.32 5.17
19 00++00000- -0 4 12 0.03 4.52 6.37
20 00+-00000+-0 4 6 0.00 3.12 5.05
21 00+00+0000++ 4 12 2.81 3.96 5.58
22 00+00+0000+- 4 48 0.77 4.31 6.24
23 00+00+0000- - 4 24 0.01 4.09 5.50
24 00+00-0000+- 4 12 0.29 4.36 6.33

In Fig. 5.12 the excess energies of the 24 cluster classes listed in Table 5.2 are plotted

as a function of the number of epoxy groups adsorbed per cluster. One observes that the

configurations with alternated epoxy groups on top and below the graphene sheet have

lower excess energies, as verified for classes 00++00000–0 (j=19), 00+-00000+-0 (j=20),

and 00+00+0000– (j=23). These energy favored configurations are depicted in Fig. 5.11.

Cluster configurations with epoxy exposure just on one side of the carbon sheet result in

larger excess energies, as occurs for the 0000000000++ (j=7), 0000++0000+0 (j=9) and

00+00+0000++ (j=21) cluster classes. In average, the excess energies ∆Ej are smaller

for the −O− groups (Table 5.2) compared to the −OH groups (Table 5.1). Apart from
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zero-gap graphene the two cluster classes j = 9 and 10 with the largest excess energies

again tend to be metallic.

(a) j=19 (b) j=20 (c) j=23

FIGURE 5.11 – The most energetically favored (∆Ej ≤ 0.03 eV) graphene oxide cluster
configurations with complete epoxy decoration (nepo,j = 4): (a) 00++00000–0, (b) 00+-
00000+-0, and (c)00+00+0000–. The indicated cluster numbering j refers to Table 5.2.
Carbon and oxygen and hydrogen atoms are respectively represented by brown and red
spheres.

The cluster configurations with nepo,j = 4, apart configurations j=17 and 21 which

have epoxy groups only at on side of the graphene sheet, possess very small excess energies.

Therefore, for the oxidation level x = 1, the fully oxidized system represents a structurally

disordered system composed by clusters with a complete occupation by −O− groups (as

discussed in Sec. 5.3). The configurations j =19, 20, and 23 with nepo,j = 4 and almost

vanishing excess energies can be considered as ordered structures, i.e. as alternating

arrangements of −O− groups along armchair directions (j=20). However, because of the

chosen 2x2 cells no isolated chains can be extracted as in the case of 5x5 cells (JIANG et al.,

2013; WANG et al., 2010).

n

FIGURE 5.12 – Excess energies ∆Ej of cluster configurations functionalized with hydroxyl
groups as function of the number of oxygen groups per cluster nepo,j. The cluster con-
figurations with ∆Ej < 0.8 eV/cluster are represented as golden diamonds, while the
complementary set is represented in black.
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A T -x phase diagram of graphene functionalized with epoxy groups is constructed and

displayed in Fig. 5.13. A critical temperature Tc,epo = 3550 K is calculated. One can verify

that temperatures above 500 K result in a pronounced increase of the possible range of

oxidation level in which stable homogeneous phases can be obtained. One observes that

the asymmetry of excess energies ∆Ej distribution in Fig. 5.12 is not reflected in the T -x

phase diagram displayed in Fig. 5.13. This result is explained by the fact that clusters

with high oxidation levels and excess energies above 2.0 eV/cluster have significantly lower

statistical weights than the ones with lower excess energies for T < Tc,epo.

x

FIGURE 5.13 – The T -x phase diagram of graphene functionalized with epoxy groups.
The binodal (spinodal) curve is represented by the full (dashed) line.

Comparing the two phase diagrams in Figs. 5.7 and 5.13, a tendency is visible that

the epoxy groups are more likely to produce homogeneous phases with partial oxidation

than hydroxyl groups. The phase diagram in Fig. 5.13 displays a wide range between the

spinodal and binodal curves. This fact indicates that for low and high oxygen compositions

the decomposition of the alloy into graphene and graphene oxide phase can be hampered.

The GQCA approach predicts an almost linear behavior of the lattice constant as a

function of the oxidation level x, with deviations not larger than 0.006 Å . Therefore,

understoichiometric graphene oxides covered by epoxy groups follow Vegard’s law (DENTON;

ASHCROFT, 1991; VEGARD, 1921). The average buckling amplitude for intermediate

oxidation levels can be well approximated as ∆(x) = (1− x)∆C + x∆epo(T )− bx(1− x),

where the bowing parameters for T = 473 K and 1373 K are respectively −0.27Å and

−0.42Å, i.e. exhibit an anti-bowing. The lengths and angles between oxygen bonds in

the epoxy groups show no significant changes versus the oxidation level. Therefore, we

conclude that the geometry of the epoxy groups is rather insensitive to the occupation

and the orientation of the −O− groups.

Energy gap curves are plotted versus composition in Fig. 5.14. The average gap curve
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for epoxy functionalization varies between 0 eV and 5.58 eV according to the oxidation

level of the samples made by understoichiometric graphene oxide. As a general tendency

the addition of epoxy groups leads to an enhancement of the fundamental gap. This can

be observed both in the average gap curve but also for the energy gap of the considered

clusters. The energy gap curves are calculated at T = 300 K, 473 K and 1373 K for

comparison. One sees that the increase of the growth temperature results in a larger

bowing parameter of the energy gap curve. However, the temperature dependence is

less pronounced compared with the hydroxyl oxidation. A striking effect of the epoxy

treatment is a further increase of the gap compared to the hydroxyl oxidation (see Fig.

5.9) in agreement with other ab initio studies (JIANG et al., 2013). The photoluminescence

measurement of graphene samples subjected to O2 plasma and annealing at 250 oC show

emission in the 350-850 nm wavelength range with a maximum emission near a photon

energy of 2 eV (NOURBAKHSH et al., 2010). Fluorescence studies of as-synthesised GO and

such underlying a controlled deoxidation by hydrazine vapor exhibit values slightly below

our prediction of about 5.6 eV for a complete decoration of graphene with epoxy groups.

x

FIGURE 5.14 – Energy gap curve of graphene functionalized with epoxy groups as a
function of the oxidation level within HSE06 framework. The diamonds represent the
HSE06 energy gaps of the all the cluster configurations considered, the set of cluster
configurations with ∆Ej < 0.8 eV/cluster are represented as golden diamonds, while the
complementary set is represented with black diamonds. Metallic behavior is identified
with zero energy gap.

Similarly to the case of graphene decoration with −OH groups, we have calculated

average absorbance spectra for graphene decorated with epoxy groups for oxidation

levels x =0.25, 0.50 and 0.75 at T= 473 K and 1373 K. Figure 5.15(a) illustrates the

optical absorption taking only composition fluctuations into account as in homogeneous

alloys. Three peaks can be identified around 1.5 eV, 4.0 eV and 7.0 eV depending on the

composition and temperature. The peak at 1.5 eV is mainly associated with 00000000000+
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(j =2), especially for small oxidation levels and high temperatures. The peak near 4.0

eV is associated not only to the graphene cluster class (j =1) but also to configurations

with intermediate oxygen composition as j=8, 12, 13, and 16, which give rise to a peak

broadening increasing the preparation temperature for x =0.50, for example. The peak in

the UV region is associated with the average of the fully oxidized cluster configurations

with −O− groups. When the phase segregation effect is considered, as illustrated in

Fig. 5.15(b), the statistical weight of configurations with intermediate oxidation levels is

suppressed, and the intensity of the peak at 1.5 eV and the spectra dependence on the

temperature become less pronounced.

Photon energy ℏω (eV) 
1 2 3 4 5 6 7

 A
(ω

)/
π
α

  

1.0

2.0

3.0

0.0

x=0.25

x=0.50

x=0.75
(a) (b)

Photon energy ℏω (eV) 
1 2 3 4 5 6 7

x=0.25

x=0.50

x=0.75

FIGURE 5.15 – Average optical absorbance as a function of the photon energy for
GO systems decorated with −O− groups with oxidation levels x=0.25, 0.50 and 0.75,
represented as red, green and blue curves, respectively. The average spectra are calculated
at T = 473 K (full lines) and 1373 K (dashed lines). The adsorption spectra are calculated
considering local composition fluctuations, i.e., homogeneous alloys (a), and complete
phase segregation (b).

5.6 Simultaneous oxidation with hydroxyl and epoxy

groups

5.6.1 Thermodynamic stability

The energetics of the clusters classes is investigated by defining the excess total energy

of each atomic arrangement as

∆Ej = Ej −
nC,j

8
EC −

nOH,j

8
ECOH −

nO,j

4
ECO1/2

, (5.1)

where nC,j represents the number of three-fold coordinated carbons in cluster class j.
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Expression (5.1) represents the formation energy of a cluster class j, with respect to the

three end components, pure graphene with total energy EC, fully oxidized GO with only

−OH groups and energy EOH, and fully oxidized GO with only −O− groups and energy

ECO1/2
. The atomic geometry of the end components are displayed in Figs. 5.16 a, b,

and c, which illustrate graphene (x=1), a cluster fully decorated with hydroxyl (y=1),

and 00000000-00ud00000ud0, the cluster class with four epoxy groups per cluster (z=1)

with the lowest internal energy. Configurations with large excess total energies ∆Ej are

inhibited by the minimization of the Helmholtz mixing free energy. They are realized only

at high growth temperatures, while configurations with negative formation energy indicate

that such atomic arrangements are thermodynamically favored and realized even for low

temperatures.

In previous sections, we reported only positive excess energies for oxidation of graphene

sheets with hydroxyl or epoxy groups. If only one oxidant group is adsorbed on an atomic

sheet, the GO system tends to decompose into oxygen-poor and -rich domains. Here,

we investigate the simultaneous oxidation with −OH and −O− groups and explore new

features that emerge from the interaction between both oxidant groups.

The vast majority of cluster configurations still exhibits positive excesses energies,

especially for understoichiometric configurations. However, eight different classes of fully

oxidized configurations with hydroxyl and epoxy groups exhibit negative excess energies,

indicating great energetic stability even at low temperatures. Four of these configurations

with negative excess energies occur at (nC,j/8, nOH,j/8, nO,j/4) = (0, 0.5, 0.5), corresponding

to four −OH and two −O− groups per 8-carbon cluster. The other four energetically

favorable arrangements occur at (nC,j/8, nOH,j/8, nO,j/4) = (0, 0.25, 0.75), corresponding

to two −OH and three −O− per cluster. These findings agree with the indication by NMR

measurements that to a large extent hydroxyl and epoxy groups prefer to oxidize carbons

simultaneously (CAI et al., 2008), and theoretical works that indicate the total energies

are considerably lowered when epoxy and hydroxyl groups are adsorbed together (YAN et

al., 2009; YAN; CHOU, 2010). Oxidized domains with both oxidant groups are, therefore,

thermodynamically favored over a spatial segregation of the oxidant groups. The lowest

energy configurations at (nC,j/8, nOH,j/8, nO,j/4) = (0, 0.5, 0.5) and (0, 0.25, 0.75) are

u0d00d0u-00000ud00000 and d000000d-0000uu0000u0, respectively, which are illustrated

in Figs. 5.16 d and e.

The thermodynamic stability of the graphene oxide systems with respect to its chemical

composition is investigated by the mixing free energy ∆F (x, y, T ) at typical growth temper-

atures of 200oC and 1100oC (MARCANO et al., 2010; JUNG et al., 2009; EDA; CHHOWALLA,

2010; DREYER et al., 2010), considering all possible chemical compositions x = 1− y − z,
y, and z. The results are represented by the two color maps depicted in Fig. 5.17. The

most favorable configurations of the three end components C (graphene), COH (GO with
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(c)(a) (b)

(d) (e)

FIGURE 5.16 – Important cluster configurations representing (a) pristine graphene, (b)
COH, (c) 00000000-00ud00000ud0, which corresponds to the most energetically favored
cluster fully oxidized by epoxy groups, (d) u0d00d0u-00000ud00000, with ∆Ej =-0.72
eV/cluster, and (e) d000000d-0000uu0000u0, with ∆Ej =-0.67 eV/cluster. Carbon, oxygen
and hydrogen atoms are respectively represented by brown, red and grey spheres.

hydroxyl), and CO1/2 (GO with epoxy) are chosen as the corner points of the displayed

triangles. Their edges represent the variation of one composition x, y, or z, while the

other two compositions are zero. The oxidation processes with one single oxidant group,

which correspond to the C−COH and C−CO1/2 edges of the color maps, exhibit positive

mixing energies for lower temperatures, indicating strong phase decomposition tendency.

When higher temperatures are considered, the entropy term becomes more important and

contributes to the system stability for intermediate oxidation level, which very intense for

highly oxidized limit of C−CO1/2 edge, being represented in green color.

For intermediate oxidation levels, for both chosen growth temperatures, the red and

orange areas indicate an enhance of mixing free energy, and, therefore, a strong tendency

for phase decomposition into pristine graphene (C vertex) and fully oxidized domains with

both oxidants (CO1/2-COH edge). These results are in agreement with other theoretical

investigations (YAN et al., 2009; YAN; CHOU, 2010; ZHOU; BONGIORNO, 2013) and experi-

mental findings that non-oxidized domains may exist in GO samples (HE et al., 1998; LERF

et al., 1998).

The reasons for the gain of mixing free energy along the COH−CO1/2 edges of the color

maps in Fig. 5.17 are illustrated in Fig. 5.18. The mixing free energy ∆F is decomposed

into the internal energy contribution ∆U and the configurational entropy term −T∆S.

The mixing free energy ∆F is dominated by the entropy contribution −T∆S at high
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FIGURE 5.17 – The mixing free energy of the understoichiometric GO systems as a function
of the average compositions at synthesis temperature of (a) 200oC and (b) 1100oC.

temperatures. However, for low temperatures, the occurrence of atomic arrangements

with negative excess energies is reflected on ∆U . After the cluster statistics is considered,

fully oxidized domains decorated with hydroxyl and epoxy groups are demonstrated to be

stable for both considered growth temperatures.

In the hydroxyl-rich limit (y → 1), nearly all clusters correspond to the COH end

component. This situation leads to ∆U = 0, while an entropy per cluster of ∆S = kb ln(2)

is calculated by Eq.2.93 for the cluster expansion. Since gCOH = 2, the COH clusters are

free to ‘flip’ independently from the oxidant groups in the neighborhood due to GQCA

energetic independence between neighbor clusters hypothesis. In the epoxy-rich limit

(z → 1) there is a competition between different possible epoxy arrangements in the sheets.

At low temperature (see the solid lines in Fig. 5.18), the configurations with lower internal

energy of mixing are strongly favored, yielding low ∆U and ∆S. As the temperature

increases, the occurrence probability of cluster classes corresponding to more energetic

configurations is enhanced, leading to larger ∆U and T∆S contributions to the total excess

free energy.

5.6.2 Structural properties

We obtained the lattice constants of aC = 2.47 Å, aCOH = 2.63 Å and aCO1/2
= 2.57 Å

for the pure end compounds. A maximum lattice mismatch of 7% is calculated between

graphene, and GO with only −OH groups. Average lattice constants a(y, z, T ) of the

GO systems as a function of the chemical compositions are calculated within the GQCA

statistics and depicted in Fig. 5.19. A gradual change between the end component lattice

constant is observed and the linear fit a = xaC + yaCOH + zaCO1/2
gives the calculated

lattice constant with an maximal error below 1.5% for both considered temperatures. That
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y
FIGURE 5.18 – The mixing internal energy ∆U , free energy entropic contribution −T∆S,
and mixing Helmholtz free energy ∆F curves for a fully oxidized system (COH)y(CO1/2)1−y.
The solid lines are obtained for a growth temperature of 200oC, while the dashed lines are
for a growth temperature of 1100oC. The zero-energy line is given as a guideline.

means that Vegard’s rule is widely fulfilled.
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2.470Lattice constant a (Å)C COH

CO1/2

FIGURE 5.19 – The average lattice constant a of the GO systems calculated within the
GQCA approach at synthesis temperature of 200oC as second-nearest neighbor C distances.

The buckling amplitude ∆(y, z, T ) of the carbon sheet is also investigated. The

graphene layer exhibits a honeycomb planar structure with ∆j = 0.00 Å, while the COH

system exhibits a buckling amplitude of ∆j = 0.51 Å, which is associated with a pure sp3

hybridization of the carbon atomic orbitals. The CO1/2 end component fully decorated by

epoxy groups exhibits a different distortion of the planar honeycomb structure, depending

on how the epoxy groups are distributed. Buckling amplitudes between ∆j = 0.00 Å and

0.50 Å are observed, that results in an average buckling amplitude of 0.36 Å for the
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considered range of temperatures. The dependence of the average buckling amplitude

∆(y, z, T ) on the chemical compositions at 200oC is displayed in Fig. 5.20.

One observes a pronounced maximum buckling amplitude of 0.71 Å for fully oxidized

graphene oxide systems with both oxidant groups in proportions near nOH/nO = 1, which

is larger than any buckling amplitude observed in the end components. This is the result

of large statistical contributions of configurations u0d00d0u-00000ud00000 and udud0000-

000000ud0, which are thermodynamically favored due to their negative excess energies

(∆Ej = −0.72 and -0.58 ev/cluster, respectively). They exhibit buckling amplitudes

significantly larger than the pure sp3 buckling (∆j = 0.75Å and 0.62, respectively). This is

due the fact that some −OH/−O− distributions induce low energy long-range distortions

of the planar honeycomb structure.

0.71

0.00

0.14

0.26

0.37

0.48

0.60

Buckling amplitude Δ (Å)C COH

CO1/2

FIGURE 5.20 – The average buckling amplitude ∆ of the GO systems calculated within
the GQCA approach at synthesis temperature of 200oC.

The most stable configuration at (x, y, z) = (0, 0.5, 0.5) exhibits alternated stripes of

carbon atoms synthesized by hydroxyl and epoxy groups, as illustrated in Fig. 5.16(d),

which is constituted by an small-range stripe-like pattern of carbons oxidized by hydroxyl

and epoxy groups. The most stable configuration at (x, y, z) = (0, 0.25, 0.75) shows a

new discovered favorable structure, constituting of hexagons synthesized by epoxy groups

embedded by carbons synthesized by −OH groups. This can be verified by the 2D-periodic

repetition of the structure illustrated by Fig. 5.16(e).

5.6.3 Electronic and optical properties

The qualitative aspects of electronic and optical properties of the 308 cluster configura-

tions are investigated within the GGA-PBE exchange and correlation functional. This pure

DFT approach leads to fundamental energy gaps of Eg,C = 0 eV, Eg,COH = 2.25 eV, and

Eg,CO1/2
= 4.00 eV at 200 oC for the considered end components. As we demonstrated for
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adsorption of one oxidant group on the graphene sheet in Sec. 5.4 and 5.5, the Kohn-Sham

energy gap values obtained within GGA-PBE functional show the same trends as those

computed with screened hybrid functionals.

The fundamental energy gap depends on the stoichiometry, i.e., the general oxidation

state of the GO but also the average compositions y and z related to oxidation by means

of the hydroxyl and epoxy groups, respectively. The average gap Eg(y, z, T ), however, not

only depends on the average compositions x, y, and z and the growth temperature T but

also on the fluctuations from the average compositions. They lead to deviations of the

gaps from its linear behavior with the compositions, the so-called gap bowing, due to the

convex behavior of the curves. We investigate the energy gap bowing ∆Eg(y, z, T ) defined

as

Eg(y, z, T ) = xEg,C + yEg,COH + zEg,CO1/2
+ ∆Eg(y, z, T ). (5.2)

An estimate of the absolute values of the energy gap can be made by applying a

scissor operator approximation, considering quasiparticle corrections to the fundamental

energy gaps of the COH and CO1/2, and the gap bowing estimated from the GGA-PBE

calculations. The average gaps are calculated within GQCA at 200oC and 1100oC. The

energy gap bowings ∆Eg(y, z, T ) obtained using the gaps Eg,j for each configuration class j

and formula (2.77) ruled by the statistical weighs xj for the considered growth temperatures

are depicted in the color maps in Fig. 5.21.
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FIGURE 5.21 – The average energy gap bowing of the GO systems as a function of the
average compositions at growth temperature of (a) 200oC and (b) 1100oC.

In agreement with previous results for graphene oxide systems decorated with single

oxidant groups, the energy gap bowing for a −O− rich oxidation does not significantly

change with temperature increase, while the energy gap bowing for a −OH rich oxidation

changes from regular bowing (∆Eg < 0) at 200oC to a profile that may exhibit regular
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bowing or anti-bowing (∆Eg > 0) at 1100oC, depending on the oxidation level of the system.

The gap bowings along the C−CO1/2 edge are almost given as ∆Eg(x, T ) = −b(T )x(1−x),

while along the C−COH edge the gap may exhibit positive and negative bowing depending

on the chemical composition for large growth temperatures.

The energy gap bowing along the CO1/2−COH edge (y = 1−z), i.e., for the simultaneous

deposition of −OH and −O− groups in the limit of complete oxidation, exhibit larger

values for ∆Eg for fully oxidized systems with −O−/−OH ratios between 1 and 3 for both

growth temperatures. This enhancement of the energy gaps is explained by the significant

contributions of favorable configurations with negative excess energies and large energy gap

values, e.g., 4.40 eV (u0d00d0u−00000ud00000) and 4.68 eV (d000000d−0000uu0000u0).

The application of a statistical approach on a larger set of configurations results into an

even larger energy gap range for band gap engineering than the one obtained by Yan et

al. (YAN et al., 2009; YAN; CHOU, 2010), who suggested an obtained energy gap bowing

between 0.8-1.1 eV for fully oxidized configurations, when the system is prepared at low

growth temperature. Our calculated ∆Eg(x, T ) values are depicted in Fig. 5.21 indicate

significant changes for different temperatures.

The increase of the growth temperature induces more configurational disorder in the

GO system and the contributions of the configurations with lower energies decrease with

the rising temperature. One verifies this effect by the shrinkage of the red area in Fig.

5.21(b), compared with Fig. 5.21(a). This result shows the big potential of graphene

oxide to provide a 2D platform for novel 2D electronics, whose electronic properties can

be tuned controlling both the chemical composition and growth conditions. Thereby, the

coadsorption of hydroxyl and epoxy groups opens a new tune window not only in the limit

of full oxidation but also for intermediate decorations with structures similar to those in

Figs. 5.16 d and e.

The gap bowing ∆Eg(y, z, T ) illustrated in Fig. 5.21 can be fitted with the following

expression

∆Eg(y, z, T ) =c0 + c1(1− x)yz + c2(1− y)zx+ (1− z)xy(c3x+ c4y) + c5xyz, (5.3)

where c0, c1, c2, c3, c4, and c5 are parameters calculated by minimizing the total squared

error. We calculated these fitting parameters for T =300 K, 473 K, 1000 K, and 1473 K

using Nelder-Mead algorithm (NELDER; MEAD, 1965). The obtained coefficients and the

fitting average error at each temperature are listed in Table 5.3. The maximal error for all

considered chemical compositions and temperatures was 0.27 eV.

The dependence of the optical absorbance on the −O−/−OH ratio of a fully oxidized
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TABLE 5.3 – Fitting parameters for gap bowing ∆Eg(y, z, T ) as defined in Eq.5.3 for
different growth temperatures. The average fitting error ē is given for each temperature.
Parameters for intermediate temperatures can be estimated by interpolation.

Temperature (K) c0 c1 c2 c3 c4 c5 ē (eV)
300 0.01 5.87 0.32 0.03 -4.52 16.60 0.09
473 0.04 5.76 0.18 -0.04 -2.31 9.44 0.04
1000 0.08 4.78 0.07 2.30 -2.36 0.11 0.07
1373 0.08 4.28 0.11 3.22 -3.54 -2.39 0.07

system is represented in Fig. 5.22. The spectra Aj(ω) for all cluster classes have been

computed and averaged using the probabilities xj(y, z, T ) in (2.77). One observes that

temperature increase does not strongly influence optical absorption in the fully oxidized

limit of GO systems with coadsorption of −OH and −O− groups. This insensitivity

suggests that the statistics is dominated by the low energy configurations in a wide

temperature range. One also observes that the first pronounced peak in optical absorbance

for intermediate compositions y ≈ z ≈ 0.5 of the two oxidant groups is blue shifted for

very large photon energies, above 7 eV, which is consistent with the large energy gap

anti-bowing observed in Fig. 5.21 for such compositions. The strength of the absorption

decreases, however, monotonically from full decoration by epoxy groups to the hydroxyl

decorated graphene.
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FIGURE 5.22 – The average optical absorbance of fully oxidized GO systems for different
−O−/−OH ratio measured in units πα (α - fine structure constant), represented curves in
different colors. The full lines represent the averages obtained within the GQCA statistical
approach considering a growth temperature of 200oC, while the dashed lines have been
computed for a growth temperature of 1100oC.



6 Conclusion

Using first-principles calculations combined with a generalized quasichemical approach

we have studied the properties of different alloys, Ge1−xCx, Si1−xGex, Si1−xCx and

(BN)1−x(C2)x. The standard GQCA approach was generalized to any system that can

modeled with a cluster expansion with a given chemical content, which enable us to

study functionalized sheets, as graphene oxide under different growth conditions. We have

described the properties of these materials as a function of their average compositions,

and reported a big diversity of thermodynamic stability behaviors, which influence in their

optical and electronic properties. Different features were observed in each case.

For Si1−xCx the contribution of cluster configuration (j = 11), which corresponds to a

planar, stoichiometric, graphene-like SiC geometry, as well as pure silicene and graphene

are energetically favored. This fact induces an ordered phase for growth temperatures

under 1000 K and has direct consequences on the possibilities of band gap engineering by

composition and growth temperature control on this alloy.

For the germanium-containing alloys, the obtained T -x diagrams show extremely

different critical temperatures. They are related to the significantly different excess energies

of the individual cluster configurations, which differ by about one order of magnitude

between Si8−nj
Genj

and Ge8−nj
Cnj

clusters. For Ge1−xCx, for which the majority of

configurations have high excess energies, the preparation of the respective random alloys

is not likely to be achievable beyond the very small solubility reported so far. A strong

tendency for phase separation is expected to occur. For Ge1−xSix the critical temperature

approaches values of characteristic growth temperatures. Indeed, for higher temperatures

random alloys should exist. For lower temperatures also the tendency to phase separation

is visible. However, the two random alloys, which determine the decomposed Ge1−xSix

system, are not so close to the pure materials as in the case of Ge1−xCx.

For (BN)1−x(C2)x, we verified that this alloy system has a strong tendency to phase

separation and that B-B and N-N bonds are energetically unfavored, resulting in a tendency

for decomposition into a C-rich and a (h-BN)-rich phases, in agreement with experimental

findings. Showing a different behavior when compared to the 3D alloys, for which the

lattice mismatch is the main reason for the immiscibility. In this case, we have a chemical
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reason.

The thermodynamic properties together with the ionicity of the bonds in the de-

scribed alloys drastically influence the average fundamental energy gap versus composition.

Whereas significant gaps appear for (BN)1−x(C2)x and Si1−xCx systems, they almost vanish

for Ge1−xSix and Ge1−xCx. Different aspects of these systems have been investigated and

discussed, such as the effects of disorder induced by temperature growth on Si1−xCx

electronic properties, or the consequences of phase segregation and composition fluctuation

on (BN)1−x(C2)x optical properties. We developed a methodology to obtain the optical

absorbance spectra considering the phase-separated alloys within the GQCA statistical

approach. The absorption results with a double-peak show very good agreement with

experimental findings.

The proposed extension of the GQCA approach to functionalized sheets was applied

to graphene oxide. We demonstrated that the addition of oxidant groups can open large

energy band gaps in this material. We investigated the oxidations processes with only

hydroxyl and epoxy groups, corresponding to the wet and dry environments, and also the

simultaneous adsorption of both groups in the carbon basal plane. The agglomeration of

oxidant groups was demonstrated in terms of phase diagrams for both hydroxyl and epoxy

groups. The agglomeration of oxidant groups occurs also for the simultaneous adsorption

process, in which the interactions between −OH and −O− may lead to ordered structures

with both groups and enhance the energy gap range to performing band gap engineering.

While most of literature neglect disorder effects of such 2D disordered systems, we

extended and applied GQCA to this new class of materials. Relevant and innovative

results were obtained and recently published in periodic journals as regular papers during

the PhD project (GUILHON et al., 2015; GUILHON et al., 2017a; GUILHON et al., 2017b).

We showed the thermodynamic features have a determinant role in the determination of

the electronic and optical properties of the considered 2D systems. Our results indicate

that the use of a statistical approach to account for disorder effects is mandatory due

the fact that atomic arrangement changes can result in entirely different electronic and

optical properties. Moreover, our generalized approach is ready to be applied on other 2D

disordered systems in future works.
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Dispońıvel em: <http://www.jstor.org/stable/108699>.
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Dispońıvel em: <http://dx.doi.org/10.1038/ncomms4193>.

http://science.sciencemag.org/content/323/5914/610
http://dx.doi.org/10.1021/nl301047g
http://link.aps.org/doi/10.1103/PhysRevB.78.125116
http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3624562
http://link.aps.org/doi/10.1103/PhysRevLett.108.245501
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3615063
http://link.aps.org/doi/10.1103/PhysRevB.73.045112
http://dx.doi.org/10.1021/nl072090c
http://dx.doi.org/10.1038/ncomms4193


BIBLIOGRAPHY 130

GORI, P.; PULCI, O.; MARSILI, M.; BECHSTEDT, F. Side-dependent electron escape
from graphene- and graphane-like sic layers. Applied Physics Letters, v. 100, n. 4,
p. –, 2012. Dispońıvel em:
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n. 43, p. 18480–18486, 2009. Dispońıvel em: <http://dx.doi.org/10.1021/jp904396j>.

KAN, M.; ZHOU, J.; WANG, Q.; SUN, Q.; JENA, P. Tuning the band gap and magnetic
properties of bn sheets impregnated with graphene flakes. Phys. Rev. B, American
Physical Society, v. 84, p. 205412, Nov 2011. Dispońıvel em:
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<http://link.aps.org/doi/10.1103/PhysRevB.62.2475>.
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BECHSTEDT, F. Phase diagram, chemical bonds, and gap bowing of cubic InxAl1-xN
alloys: AbâĂL’initio calculations. Journal of Applied Physics, v. 92, n. 12, p.
7109–7113, 2002. Dispońıvel em:
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<http://science.sciencemag.org/content/328/5984/1373>.

WIRTZ, L.; MARINI, A.; RUBIO, A. Excitons in boron nitride nanotubes:
Dimensionality effects. Phys. Rev. Lett., American Physical Society, v. 96, p. 126104,
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2015. Dispońıvel em: <http://dx.doi.org/10.1039/C5TA00252D>.

YUGE, K. Phase stability of boron carbon nitride in a heterographene structure: A
first-principles study. Phys. Rev. B, American Physical Society, v. 79, p. 144109, Apr
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Appendix A - GQCA scaling with

cluster size

In this annex, we discuss the representation of atomic geometries, symmetry operations

and the problem of determining a reasonable supercell size for a disordered system cluster

expansion using a GQCA statistical approach.

As described in chapters 3 and 4, the atomic sites of substitutional alloys can be

numbered and each supercell arrangement can be associated with an symbol array, e.g.

AABBBBBB in chapter 3. This representation was generalized for functionalized sheets

and adsorption sites, as demonstrated to graphene oxide in chapter 5. Let P be the number

of possibilities for each atomic site in a substitutional alloy, which must correspond to the

number of symbols in the array representation of atomic geometries. In general, when there

is no constraint to the atomic arrangements, the total number of possible configurations

is given by PNs , where Ns is the number of sites in the supercell. Considering a N ×N
supercell to perform the cluster expansion and a unit cell with k atoms, we have Ns = kN2.

Each cluster configuration is associated with a periodic system generated by its periodic

in-plane repetition. A set of physical properties Pj are calculated for each generated periodic

system and associated with the respective cluster configuration. Atomic geometries that

generate the same periodic systems belong to the same equivalence symmetry class j. The

number of atomic arrangements that belongs to cluster class j is given by its degeneracy

gj. Since every configuration must belong to one, and only one, symmetry class, we know

that

J∑
j=1

gj = PNs . (A.1)

The symmetry operations of crystalline systems may be algebraically represented

as groups (WATARI, 2009). Crystalline systems present both translational and point

symmetries, which must belong to one of 230 different space group possibilities for bulk

materials (WATARI, 2009). When a symmetry operation T is applied on a cluster atomic

geometry, a permutation σT is applied to its associated array. The number of cluster space
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symmetry operations of a N × N supercell is given by the product of the N2 possible

Bravais vectors translations by the number of possible point symmetry operations. The

maximum value of cluster class degeneracy is gmaxj ∝ N2 ∝ Ns, considering a particular

case where every symmetry class results in a distinct cluster configuration. Therefore,

the number of configuration classes J scales faster than O(PNs/Ns). Considering that

the computer time demanded for each DFT calculation scales with N3
s , one observes that

the increase of computational cost demanded by GQCA statistical approach scales as

O(N2
s × PNs).

In order to illustrate this exponential scaling, we discuss the sensibility of the number

of symmetry cluster classes with respect to N and P . We start our study from the 2x2

supercell of a honeycomb structure, considered in chapter 3 and depicted in Fig. 3.1. In

our work we considered binary alloy, which implies P = 2. The correspondent number

of equivalence cluster classes is Jbin = 22, which is an organization of initial 28 = 256.

We evaluated the number of cluster classes considering ternary alloys (P=3), the set of

38 = 6561 configurations can be organized into 267 configuration classes. In this case, no

significant enhancement of the computational cost for each calculation is expected and an

extension to binary to ternary IV-A group honeycomb alloys is still feasible.

On the other hand, the number of configuration exhibits a dramatic dependence on

the cluster size. As an example, we consider how the number of cluster configurations

scales from a 2x2 honeycomb supercell (Ns = 8) to a 3x3 supercell (Ns = 18) for a binary

alloy. The number of possible cluster configurations is given by 218 = 262144, three

orders of magnitude larger than the 2x2 supercell case. Based on the described scaling of

O(PNs/Ns), we estimate a number of 10.000 cluster classes for a 3x3 honeycomb supercell.

Considering that each individual 3x3 supercell calculation takes about 8 more times than

a 2x2 similar calculation, this cluster size change affects the GQCA time consumption by

3 orders of magnitude at least.

We restricted ourselves in this work to 2x2 supercells, exploring different materials,

atomic geometry constraints, and the generalization of this framework to atomic sheets

functionalizations. As demonstrated, this cluster size provides dozens (hundreds) of

configurations for binary (ternary) alloys, providing rich statistics with a reasonable

computational cost.



Appendix B - Grand Canonical

Quasi Chemical Approximation

(Grand-GQCA)

In a functionalization process of a 2D atomic sheet, one can say that our system

of interest is exchanging not only energy but also matter with the environment. The

adsorption or release of functional groups are determined by the difference between chemical

potential parameters µ from the system and the environment. These processes can be

understood by considering grand canonical ensembles.

In an analogous approach as the cluster expansion of the standard GQCA formalism,

the system equilibrium state can be determined at a temperature T and a chemical

potential µ by minimizing the Grand potential

ΦG = U − TS − µαNα, (B.1)

instead of the Helmholtz free energy, where Nα is the number of atoms/groups adsorbed

in the system. Consider a cluster expansion of the disordered system, as an ensemble of

M statistically and energetically independent clusters, that belong to one of J symmetry

classes, analogously to the standard GQCA approach.

Let {xj} be the distribution of the occurrence probability among the possible J

configuration classes. Since the quantity of matter is not fixed anymore, the only constraint

to this probability distribution is the normalization of total probability given by equation

2.71.

For each cluster class j, one must determine the internal energy per cluster Ej, the

number nα,j of adsorbed α groups per cluster and configuration degeneracy gj. The

expected value of thermodynamic properties U , S and N can be written as a function of
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probability distribution {xj} as

U = M

J∑
j=1

xjEj, (B.2)

S = Mkb

J∑
j=1

xj(ln gj − lnxj), (B.3)

and

Nα = M
J∑
j=1

xjnα,j. (B.4)

Since these three thermodynamical quantities can be calculated in terms of the oc-

currence probability distribution xj, we can determine the equilibrium state of a grand-

canonical ensemble by a constrained minimization of ΦG with respect to probability

distribution xj among the J cluster classes. The formulation of this minimization as a

Lagrange multiplier problem leads to the equation

∂

∂xj

[
J∑
j=1

xjEj − kbT
J∑
j=1

xj(ln gj − lnxj)− µα
J∑
j=1

xjnα,j − λ

(
J∑
j=1

xj − 1

)]
= 0, (B.5)

which can be developed, obtaining the following result for the probability distribution

among the clusters

xj =
gj exp [−β(Ej − µαnα,j)]∑J
i=1 gi exp [−β(Ei − µαnα,i)]

. (B.6)

This result can be easily generalized for more than one possible adsorptive groups by

considering the Einstein sum notation on α index.
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podemos destacar o grupo de materiais semelhantes ao grafeno compostos por elementos da família IV-A, 
como siliceno e germaneno, ou estruturas de favo de mel feitas de átomos que pertencem a famílias III e 
V-A, como o nitreto de boro hexagonal, ou mesmo os dicalcogenetos de metais de transição. Uma grande 
diversidade de comportamentos eletrônicos pode ser observada nesses materiais e novos dispositivos 
baseados neles encontram-se em fase de desenvolvimento. Pode-se produzir materiais com propriedades 
ajustadas para otimizar o desempenho de novos dispositivos. As ligas semicondutoras tridimensionais 
(3D) foram amplamente aplicadas nesse sentido como forma de obter bandgaps de energia ajustáveis, o 
que é conhecido como engenharia de bandgap. Da mesma forma, o uso de ligas de materiais 2D poderia 
aumentar o potencial de aplicações destes materiais, oferecendo a possibilidade de modulação de suas 
propriedades eletrônicas. Contudo, sob certas condições as ligas podem sofrer efeitos de separação de 
fase, levando a diferentes propriedades eletrônicas e ópticas. Dessa forma, o estudo de ligas 
semicondutoras 2D e de sua estabilidade termodinâmica é de grande valia. Neste trabalho, realizamos 
importantes estudos pioneiros sobre as propriedades estruturais, eletrônicas, ópticas e termodinâmicas das 
ligas binárias com base em elementos da família IV-A, bem como da liga feita de grafeno e nitreto de 
boro hexagonal. Exploramos também a possibilidade de ajuste das propriedades de materiais 2D através 
de funcionalização parcial da folha de grafeno com grupos adsorventes, como no caso do óxido de 
grafeno. Para realizar essas investigações, combinamos os cálculos ab initio baseados na teoria funcional 
da densidade com uma abordagem estatística baseada em uma expansão de clusters, conhecida como 
aproximação quase-química generalizada (GQCA, do inglês Generalized Quasi-Chemical 
Approximation), para levar em conta a desordem estrutural e química do sistema. Propomos ainda um 
método de cálculo da entropia que não requer argumentos combinatórios e permite que a aplicação da 
GQCA para camadas atômicas funcionalizadas. O comportamento das propriedades físicas dos materiais 
estudados, tais como gaps de energia, é descrito como uma função de suas composições químicas médias 
e das condições de crescimento. Quando disponível, comparamos as previsões do nosso modelo com os 
resultados experimentais disponíveis. Diferentes condições de estabilidade termodinâmica foram 
verificadas em cada um desses sistemas e suas consequências para as suas respectivas propriedades físicas 
são entendidas à luz de efeitos de flutuação da composição e separação de fases. 
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