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Resumo

In this work, we investigate the role of coherent structures in solar wind and solar pho-

tospheric turbulence through the multifractal perspective. By using the multifractal de-

trended fluctuation analysis method coupled with the volatility of the time series, two solar

wind magnetic field time series are investigated, one with current sheets and one without

current sheets. As expected, a stronger level of multifractality is found in the volatility

of the series containing currents sheets when compared to the one without current sheets.

To know the origin of the multifractal behavior, the surrogate method is applied to all

time series. The results for the magnetic field time series reveal a major contribution

from a heavy-tail distribution to the multifractality of the series with currents sheets but

a stronger influence of long-range correlations for the series without current sheets. In

the context of the photosphere, we propose a new multifractal analysis methodology for

intense active regions. The results confirm the rise of multifractality following the growth

and evolution of the active region. In addition, Lagrangian objective vortices were also

detected at the photosphere, which are directly related to twisting and energy injection

in the magnetic field, leading to intense solar flares.
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1 Introduction

The Sun has a wide range of dynamical processes involving turbulence in surface

convection and large scale flows, all coupled to an intense magnetic activity. This complex

system of solar plasma events extends into the interplanetary medium and is far from any

concept of equilibrium or stability. Turbulence is the cornerstone in this dynamical system,

being associated with events like coronal mas ejections, solar flares or geomagnetic storms.

So, finding a methodology to describe and quantify these events is the key to understand

the phenomenology of solar plasma turbulence.

Among the most versatile methods to understand the coherent structures present in

this complex system are the ones based on a fractal perspective. By considering the data

obtained from these dynamical systems, e.g., solar wind magnetic field measurements, it is

possible to detect the behavior of scaling laws related to possible self-similarities intrinsic

to these nonlinear time series. Due to the evolution of this kind of analysis it was possible

to extrapolate its application to two-dimensional observational data, e.g., spatiotemporal

series of photospheric images. Developing a solid fractal methodology for both the solar

wind and photospheric complex systems can strongly impact the understanding of how

the solar dynamics works and, hence, how it affects the Earth’s atmosphere. This is the

goal of the present thesis, which is described in more details in the following sections. In

particular, we focus on the study of coherent structures present in the plasma turbulence

and their role on the behavior of the multifractal indices.

Fractals have been widely employed in nonlinear analysis along the past decades as a

form of representing the complex topological structures produced by dynamical systems.

These topological structures are subsets of the phase space that may represent chaotic at-

tractors, stable or unstable manifolds, boundaries between basins of attraction, etc. Thus,

when dynamical systems are investigated through nonlinear time series or spatiotemporal

series analysis, the fractal indices computed from the data series somehow represent the

complexity of the structure of an underlying set on which the solution lies. Additionally,

the dynamical structure could be represented either by a monofractal or a multifractal

process. A monofractal process has a scaling law for a fluctuation function which is a

linear function of statistical moments with a single scaling exponent. A multifractal pro-

cess has a power-law scaling which is a nonlinear function of statistical moments with a
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range of scaling exponents (SALAT et al., 2017). A monofractal scaling is to be expected

from dynamical processes behind perfectly self-similar fractal sets, like deterministically

generated Cantor sets (CANTOR, 1883), or even from white noise time series (IHLEN,

2012); multifractals, on the other hand, are observed in inhomogeneous systems, such

as strongly intermittent turbulence, where the presence of strong fluctuations related to

coherent structures localized in space generate a departure from Gaussianity in proba-

bility distribution functions (PDFs) of small-scale structure functions (CARBONE et al.,

2004b), as seen in several analyses of observational magnetohydrodynamic data (see, e.g.,

(MARSCH; TU, 1998), (BURLAGA, 2001), and (BRUNO, 2019) for reviews on turbulence,

intermittency and multifractal scalings in the solar wind).

1.1 Multifractal Analysis of Solar Wind

A series of more recent works have confirmed the multifractal nature of the solar wind

fluctuations. MACEK (2007) employed Voyager magnetic field data in the outer helio-

sphere and Helios plasma data in the inner heliosphere to show that multifractal spectra

of intermittent solar wind fluctuations are consistent with that of the generalized two-

scale weighted Cantor set. BOLZAN; ROSA (2012) analyzed magnetic field data from the

ACE satellite and conjectured that the presence of large scale coherent structures during

coronal mass ejections (CME) decreases the multifractality, when compared with periods

after the CME events. The interaction of the solar wind with the Earth’s magnetosphere

also contributes for multifractality in measurements of the geomagnetic activity, such as

the geomagnetic induced current WIRSING; MILI (2020) and the Dst index OGUNJO et al.

(2021), although internal sources of multifractality must also be considered, as GOPINATH

(2016) suggested that multifractality of the auroral electrojet index is fairly independent

of the solar activity cycle. WAWRZASZEK et al. (2019) characterized multifractality in in-

termittent turbulence of heliospheric magnetic field fluctuations from Ulysses spacecraft,

concluding that intermittency/multifractality decreases with heliospheric distance, a re-

sult that was confirmed by (KIRAN et al., 2021). A recent investigation utilizing the multi-

fractal detrended fluctuation analysis (MF-DFA) technique revealed that electron density

fluctuations in the E-F valley region of the ionosphere exhibit multifractal, asymmetric,

intermittent, and non-homogeneous characteristics (NEELAKSHI et al., 2022).

The direct link between intermittency and multifractality of magnetic and velocity field

fluctuations in the solar wind was made clear in (SALEM et al., 2009). Using data from the

Wind spacecraft, they applied the Haar wavelet transform to filter out intermittency from

the time series and showed that the scaling exponents for the structure functions behave as

a linear function of statistical moments, as in monofractal processes, therefore attributing

multifractality in the solar wind to intermittency. GOMES et al. (2019) obtained a similar
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linear scaling after filtering out the current sheets from Cluster-1 intermittent magnetic

field data, suggesting that the current sheets are the coherent structures responsible for

the nonlinear scaling of the structure functions in the solar wind. This was confirmed

after inspection of time series of days when current sheets were absent, that also showed

a linear scaling.

A question remained on whether the linear scaling found by SALEM et al. (2009) and

GOMES et al. (2019) indeed implies that the filtered time series are monofractal or not, i.e.,

is the nonlinearity of the distribution of scaling exponents of structure functions a general

measure of multifractality or is it just an indication of intermittency, one among different

possible sources of multifractality? One of the goals of the current work is to answer this

question. In this sense, it is important to stress that the origin of multifractality is not

always related to fat-tailed PDFs, as it may also be caused by different correlations in small

and large fluctuations, such as linear or nonlinear correlations (KANTELHARDT et al., 2002;

WU et al., 2018). The source of multifractality can be investigated by producing surrogates

from the original time series. Two types of surrogates are useful in this context (THEILER

et al., 1992; LANCASTER et al., 2018). First, shuffling the amplitudes of the original signal

breaks all long-range correlations, while keeping the PDF unchanged. Therefore, if the

multifractality is due to fat-tailed PDFs, it cannot be removed by shuffling the series. If it

is due, solely, to time correlations, the corresponding shuffled series will be monofractal.

If both fat-tailed PDF and linear/nonlinear correlations are present, the multifractality of

the shuffled series should be smaller than that of the original series (BARUNIK et al., 2012).

The second type of surrogate is produced by randomizing the phases of the Fourier modes

of the original time series, producing a new series with Gaussian PDF, but preserving

the linear correlations of the original series. If the random phases time series becomes

monofractal, then nonlinear correlations and/or non-Gaussian PDFs are the source of

multifractality. If the multifractality is preserved in the random phases time series, then

linear correlations are its source.

Studies of surrogate time series have been conducted to probe the origin of multi-

fractality in a wide range of contexts, including financial markets (BARUNIK et al., 2012),

gravitational waves (NEPOMUCENO, 2016), human gate diseases (DUTTA et al., 2013),

near-fault earthquake ground motions (YANG et al., 2015), solar irradiance fluctuations

(MADANCHI et al., 2017), air pollutants (DONG et al., 2017), meteorological time series

of air pressure, air temperature and wind speed (GOS et al., 2021) and rainfall records

(SARKER; MALI, 2021). The surrogate method was also employed in time series of CME

linear speed during solar cycle 23 to conclude that the multifractality is due to both the

broad PDF and long range time correlations (CHATTOPADHYAY et al., 2018). In the first

section of results, we use the method to reveal the role of current sheets in the origin of

multifractality in the solar wind. By analyzing two qualitatively different magnetic field
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time series from Cluster-1, one filled with current sheets and another one void of current

sheets, we develop a nonlinear methodology based on the multifractal detrended fluctu-

ation analysis (MF-DFA) method coupled with the volatility and surrogate time series.

Thus, the contribution of small- and large-scale magnetic fluctuations can be quantified

in different types of multifractal solar wind series. It is revealed that when the multi-

fractality is not mainly due to the PDF, the scaling exponents display an almost linear

behavior as a function of the moments of the structure function, despite the presence of

strong multifractality in the series. In addition, we employ the p-model (HALSEY et al.,

1986; MENEVEAU; SREENIVASAN, 1987) to confirm that the multifractality in both types

of solar wind time series can be attributed to a turbulent energy cascade process.

1.2 Multifractal Analysis of Active Region

Active regions (AR) are regions of the sun’s surface and atmosphere where strong

magnetic fields, sunspots, plages, flares and other activities occur (GOLUB; PASACHOFF,

2014). The use of a robust analysis is critical to characterize the physics behind the

growing of these turbulent regions (CONLON et al., 2008). The magnetic field configuration

of these structures, which are coupled with boundary perturbations, is responsible for their

evolution. These perturbations and the magnetic flux ropes rising to the solar surface lead

to evolving turbulent flows where the associated magnetic Reynolds number is about≈ 108

on the photosphere (PARKER, 2019). ABRAMENKO (2005) shows that this magnetic flux

distribution presents self-similarity characteristics related to nonlinear processes.

As already known in the literature, the magnetic field of AR follows a power-law

distribution (ABRAMENKO, 2005b), i.e., the evolution of AR is deeply related to coherent

process. This means that the energy related to active regions has a self organized criticality

nature; therefore a nonlinear analysis method is needed to understand the properties of

this chaotic system.

Due to their complex behavior, a series of methods were applied by different authors

to quantify the turbulent processes that are present in AR. As presented in this work, the

scale sensitivity inherent to multifractal analysis is a powerfull tool to characterize their

behavior. CADAVID et al. (1994) was the first to apply a multifractal method to an active

region, comparing this structure with simulated data. Later, ABRAMENKO et al. (2002)

using a two dimensional variation of the structure function (FRISCH, 1995), observed a

growing multifractality following the AR evolution. In 2005, MCATEER et al. applied a frac-

tal analysis to a large series of active region images, founding poor correlation between

multifractality and flare activity. ABRAMENKO (2005) compared the structure functions

of gaussian fields and active magnetograms and later ABRAMENKO (2005) calculated the
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power spectrum of several flaring active regions, relating them with a Kolmogorov-type

(−5/3) spectrum (KOLMOGOROV, 1941). Also in 2005, GEORGOULIS collected a series of

fractal and multifractal methods, e.g., zeta function and fractal dimension, to obtain a

tool to predict flare events. Thereafter, MCATEER et al. (2007) calculated the multifractal

spectra using Wavelet Transform Modulus Maxima (WTMM) for different bands of X-ray

emission of a X4.8 flare. Subsequently, HEWETT et al. (2008) observed the evolution of

the energy spectrum of two AR through the WTMM method, but with unsatisfactory

results regarding solar flare prediction. Shortly thereafter, CONLON et al. (2008) restored

the multifractal analysis CADAVID et al. (1994) using the singularity spectrum (f(α)× α)

to investigate the variation of multifractality over time for four active regions (Fig. 1.1).

However, surprisingly, this work revealed a multifractal index reduction with the region

formation and flaring activity. Another curious point is that due to the method’s limita-

tions, just a portion of the relevant multifractal parameters’s space was explored.

FIGURE 1.1 – Top: Representation of sample monofractal, multifractal and magnetogram images (NOAA
10030), respectively. Bottom: Singularity spectrum of each upper structure. Source: (CONLON et al., 2008)

.

Now redirecting this analysis to AR 11158, ERMOLLI et al. (2014) applied the multi-

fractal method used by CONLON et al. (2008) to this active region, finding a sensitivity of

the parameters to the spatial resolution and also a reduction of multifractality. However,

GEORGOULIS; GEORGOULIS (2012,2013) used different methods of multiscale parameters

calculation to AR 11158 and obtained opposite results, i.e., a mutifractality growth; but

also with no possibility to predict any flaring activity for the same active region.

In the present work, we exhibit the results obtained by the two-dimensional multifrac-

tal detrended moving average (MFDMA) analysis of the AR 11158 magnetograms over 6

days of observation. An expressive growth of the multifractality is observed, in conformity

with the evolution of the active region.
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1.3 Vortex Detection in Active Regions

The evolution of solar magnetic fields is strongly influenced by vorticity. BRANDT et

al. (1988) for the first time observed through the Swedish Solar Telescope a photospheric

vortex with 1.5 hour lifetime and about 5 Mm in a supergranular junction region. BRANDT

et al. (1988) proposed that the process behind the coronal heating system comes from the

electric currents at the base of magnetic flux tubes generated from twisted magnetic fields

by vortices. In 2009, ATTIE et al. analyzed Hinode quiet Sun images and observed two

vortices with lifetimes about 1 and 2 hours. Furthermore, INNES et al. (2009) detected small

CMEs and mini-flares at supergranular cells junctions and suggested that they are caused

by small portions of opposite-polarity magnetic fields twisted by rotating photospheric

flows.

Concerning active regions, the evolution of vortices leads to strongly twisted magnetic

fields, i.e., non-potentiality, where the energy is accumulated until it is released through

flaring and CMEs (SCHRIJVER et al., 2008; SUN et al., 2012). ZHANG et al.; YAN et al.

(2007,2008) analyzed the magnetic field and sunspot evolution for ARs and observed a

relation between the major solar flares and the interaction of rapidly rotating sunspots.

These rotating sunspots and emerging flux regions (EFRs) are associated with the increase

of magnetic shear. SONG et al. (2013) did a thorough analysis of different areas of AR 11158

and detected vortical photospheric flows related to rotating sunspots. They also observed

that vortices are responsible for the increase of magnetic field twisting and thus to major

flare formation, in particular, a X2.2-class flare (SONG et al., 2012) (Fig. 1.2). In 2012,

SUN et al. applied the nonlinear force-free field (NLFFF) extrapolation to show the growth

of the horizontal B component related to flare activity. JIANG et al. (2011) focused the

research at the persistent vortex related to the X2.2 flare and found an interaction between

the emerging pole P2 and rotating opposite-polarity sunspot (see Fig. 1.2). This clockwise

vortex persists for about 20 hours until it collides with an opposite-polarity region, causing

a flux cancellation. They suggest that the rotation and the shearing are responsible for

energy and helicity contribution for the X flare and therefore, the collision and cancellation

moment can be the trigger to the major flaring event. GRIMES et al.; GRIMES; PINTÉR

(2020,2022) studied the sunspot group rotation for different ARs, observing that rotation

leads to magnetic field twisting with instabilities that may conduct to an eruption and

also that ARs with more rotating groups perform more flare activity.
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FIGURE 1.2 – Magnetograms visualization for an instant before X2.2 flare event. Green and red arrows
indicate the horizontal magnetic field. ‘P’ and ‘N’ denote positive and negative polarities. Source: (SONG

et al., 2013)

The aforementioned works analyzed the presence of vortical structures through the

visual inspection of azimuthal variations of the vector magnetic field. Over the years,

however, more consistent definitions have been sought to describe and detect these co-

herent structures in fluids. In 2016, HALLER et al. proposed the Lagrangian Averaged

Vorticity Deviation (LAVD) method to detect objective Lagrangian vortices, i.e., vortices

that are invariant under continuous time-dependent changes of the reference frame or

observer (see references (CHIAN et al., 2019; SILVA et al., 2020) for examples of its use in

the context of solar physics). REMPEL et al. (2016) adapted the LAVD method to detect

magnetic vortices in numerical simulations (REMPEL et al., 2019; SILVA et al., 2020) and so-

lar atmospheric data (CHIAN et al., 2023). SILVA et al. (2021) successfully applied this new

method, called Integrated Averaged Current Deviation (IACD), to detect magnetic vor-

tices in the intergranular region of the photosphere using realistic numerical simulations

of magnetoconvection.

Our work employs Lagrangian objective vortex detection techniques for the first time

to an active region. Two particular vortices are followed. The first one, related to an

M-class flare formation, and a second one directly linked to an X-class flare formation.

The results support the idea of rotating sunspots as a trigger to bigger flares formation. In

addition, we applied the two-dimentional MFDMA anlysis to the vortical window related

to X-flare formation to see how this coherent structure affects an area of the AR and how

the parameters obtained are also affected by the morphology of the vortex.

This work is organized as follows. Chapter 2 presents the theoretical background on

solar wind turbulence, photospere and fractal analysis. In Chapter 3, the Multifractal

Analysis methodology is described as well as the Zeta function, p-model and integrated

averaged current deviation (IACD), together with a methodology review of these tools.

In Chapter 4, all the results of the multifractal analysis of two solar wind time series are
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described, including their volatility time series, the surrogate analysis for four time series,

and also the scaling exponent analysis of the original and surrogate times series with the

p-model analysis (BATISTA et al., 2022). In addition, the results related to multifractal

and IACD methods applied to active regions are presented. Finally, Chapter 5 presents

the conclusions obtained by the present research.



2 Theoretical Background

2.1 Solar Wind Turbulence

The solar wind is an ideal medium for the study of turbulence in space plasma. As

known from the literature, the heliosphere is not in hydrostatic equilibrium. Due to geo-

metrical constraints and gravitational effects in the surface of the Sun, critical regions are

formed where the radial velocity equals the sounds speed (BRANDENBURG; NORDLUND,

2011). In addition, the Sun’s magnetic field extends into the interplanetary medium and

carries with it an energetic plasma. The existence of such environment results in a su-

personic and super-Alfvénic plasma flow called Solar Wind, which comes from the Sun

and expands into the whole heliosphere (BRUNO; CARBONE, 2005; VELTRI, 1999). This

transonic flow reaches speeds around 300− 400 km s−1 at low latitudes (solar equatorial)

and 750−800 km s−1 at higher latitudes, where the flow is considered homogeneous. The

origin of the high-speed solar wind comes from the open magnetic field lines in the coronal

holes, while low-speed flow comes from field lines adjacent or inside the coronal streamers

and active regions (VELTRI, 1999).

All this turbulent flow comes with large amplitude fluctuations on time scales that

range from seconds to hundreds of hours (BRANDENBURG; NORDLUND, 2011), with as-

sociated frequencies lower than the ion-cyclotron frequency, 10−6 < f < 1 Hz. The time

variation of these fluctuations may be due to spatial variations advected by solar wind

velocity, which leads to Taylor’s Hypothesis, i.e., the turbulent fluctuations are advected

by the mean flow (velocity U0) as if fluctuations were frozen in the flow (VERMA, 2022).

By considering the solar wind velocity vsw ∼ 400 km s−1 it is possible to link f with the

wavelengths l = vsw/f and obtain the distance range of 400 km < l <1 AU.

These fluctuations follow a power law spectrum over all the frequency range

E(k) ∝ k−α. (2.1)

where α is the spectral index and has a range of values. This aspect may be considered

the main characteristic of the fully developed magnetohydrodynamic (MHD) turbulence
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generated by a nonlinear energy cascade process (VELTRI, 1999).

2.1.1 Kolmogorov Theory

Another inner property of fully developed MHD turbulence is how the system reaches

the dynamical equilibrium between the energy inflow provided by some large-scale insta-

bility and the energy outflow caused by the small-scale dissipation (BISKAMP, 2003).

The dynamics of the spectral energy flow through a cascade process weas first idealized

by Richardson (RICHARDSON, 1922). In this process turbulence is formed by a collection

of eddies in different scales where the larger ones transfer part of the energy to smaller

ones in a constant way through non-liner interactions (BISKAMP, 2003) 2.1 .

FIGURE 2.1 – Cascade model for the Kolmogorov 1941 theory. Source: (FRISCH, 1995)

To describe this phenomenology, the KOLMOGOROV (1941) theory is one of the most

important models in the literature. The K41 theory assumes that turbulence follows an

energy cascade process 2.1, whereby large scale structures brake into successively smaller

structures until they reach a scale with molecular viscous forces. This process is divided

into three scale ranges: an energy injection range, including the largest scales up to a

maximum wavenumber kin, an energy transferring range, or inertial range, and a dissipa-

tive range, beginning at some wavenumber kd and going up to the smallest scales. In the

inertial range turbulence is isotropic and homogeneous, which means that energy transfer

through scales is constant, i.e., it is scale invariant. As a result, Kolmogorov estimated for

the energy power spectrum in the inertial range a spectral index of −5/3 (KOLMOGOROV,

1941; FRISCH, 1995),

E(k) ∝ k− 5
3 . (2.2)
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FIGURE 2.2 – Turbulent PSD indicating the energy injection, inertial and energy dissipation ranges.
Source: (GUTBERLET, 2011)

2.1.2 Iroshnikov-Kraichnan Theory

The Iroshnikov-Kraichnan (IK) MHD turbulence model is a K41 modification with

an alternative model of nonlinear energy flux. In the IK model energy is transported

by Alfvén waves which propagate through the local magnetic field (BISKAMP, 2003).

Analogously to K41, the IK energy spectrum inertial range is estimated to follow a power

law

EK41(k) ∝ k− 3
2 . (2.3)

2.1.3 Current Sheet Detection

To understand the character of intermittent events (small-scale eddies increasingly

sparsely distributed) BISKAMP (2003) in MHD it is necessary to identify the main coherent

structures in the flow. These structures randomly appear and disappear in the fluid,

carrying a large amount of energy and dominating the statistics of small scales (BRUNO;

CARBONE, 2005). In the solar wind, these intermittent events occur on time scales of

a few minutes and one of their major sources are the current sheets (LI et al., 2011).

Current sheets can be described as thin magnetic coherent structures, which are almost

incompressible, located in an electric current area associated with nearly two-dimensional

regions contained in a plasma (GUTBERLET, 2011).

The magnetic field direction changes abruptly in the presence of current sheets (LI

et al., 2011). VELTRI (1999) found that the magnetic field rotation angle across current

sheets is about 120-130 degrees in the solar wind. To detect these discontinuities in a
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magnetic field time series, we use Li’s method (LI, 2007), which is focused in the magnetic

field rotation. This technique is based on the probability density, for a given time interval

τ , of finding an angle between vectors B(t) and B(t+ τ) inside the interval θ and θ+Δθ:

f(θ, τ)Δθ =
N τ (θ < θ� < θ +Δθ)

N τ (0 < θ� < π)
(2.4)

where N τ (θ < θ� < θ+Δθ) is the number of pairs of vectors B(t) and B(t+ τ) inside the

interval θ and θ +Δθ and N τ (0 < θ� < π) is the total number of measurements. So, the

integrated distribution function given by

F (θ, τ) =

� π

θ

dθ�f(θ�, τ) (2.5)

is the frequency of occurrence of angles larger than θ. If there are current sheets in B(t),

then F (θ, τ) follows a linear scaling law with τ for θ larger than a critical angle θc

F (θ, τ) ∼ F (θ, Nτ) when θ > θc. (2.6)

FIGURE 2.3 – Li’s method to find current sheets in a magnetic field series. The upper figure shows the
sliding window (blue) of size 2τ and the threshold L for the current sheet detection (red dashed lines).
The lower figure shows the related region in the magnetic field where the current sheets are located (red).

If a percentage L or more of the angles formed by B(t) and B(t + τ) in a 2τ window

size, centered at time T , are larger than θc, then there is a current sheet centred on time

T .
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2.2 Photosphere

By observing the full spectrum of phenomena present in the Sun, the solar flare stands

out by its intensity, diversity and frequency of occurrence in different parts of the Sun’s

surface and Sun’s atmosphere. This solar atmosphere is composed of 3 main regions:

Photosphere, Chromosphere and Corona, Figure 2.4, with a Transition Region between

the Chromosphere and the Corona.

The photosphere is the lowest region of the solar atmosphere, representing the upper

edge of the convection zone. The material in this region is in constant motion due to con-

vective energy transport in the lower layer, giving it a polygonal granular characteristic.

Another relevant characteristic of the photosphere is the presence of darker zones, when

compared to nearby regions, caused by the temperature decrease resulting from the local-

ized reduction in energy transport where the magnetic fields are most intense. These dark

regions are known as Sunspots and are associated with specific areas of strong magnetic

field called Active Regions (AR). All of these structures provide an environment that is

conducive to the formation of solar flares.

FIGURE 2.4 – Illustration of Sun’s layers. Source: (SUN, 2013)

2.2.1 Solar Flare

As described by (SHIBATA; MAGARA, 2011), solar flares are explosive events observed in

the solar atmosphere loaded with plasma. The energy released from a flare is ∼ 1021−1025

J, emitting radiation across different wavelengths of the electromagnetic spectrum in a

time interval about (103 − 104s), Figure 2.5. The flaring loops can reach heights ranging
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from 104 to 105km and are located in active regions. (CARRINGTON, 1859; HODGSON,

1859) (1859) described for the first time a solar flare around a sunspot. To identify and

quantify the intensity of these events, a classification method has been developed according

to X-ray peak flux (W/m2) with a (1 − 8 Å) variation in a log scale (BAI; STURROCK,

1989). This flare scale is defined by increasing order of intensity A, B, C, M and X 2.1,

where each class splits into 9 sub-scales (e.g., X1, ..., X9-class). Figure 2.6 shows a X-ray

flux time series detected by GOES satellite of the AR 11158 on 2011 February, highlighting

the M-class (M6.6, M1.0, M1.1) and the X-class flare (X2.2) events. Table 2.1 shows the

flare scale according to X-Ray peak flux.

FIGURE 2.5 – X4.9-class flare image in different wavelengths. Source: (NASA’S. . . , 2014)

FIGURE 2.6 – X-ray flux time series of the AR 11158 on 2011 February 13-16. Source: (INOUE et al.,
2013)



CHAPTER 2. THEORETICAL BACKGROUND 34

TABLE 2.1 – Solar flare classification in terms of X-ray peak flux.

Class Peak Flux Range (Wm−2)

A < 10−7

B 10−7 − 10−6

C 10−6 − 10−5

M 10−5 − 10−4

X > 10−4

2.3 Fractal Time Series

The word“fractal”was coined from Benoit Mandelbrot from the Latin adjective fractus

and means “irregular, fragmented” (MANDELBROT et al., 1983). The related Latin verb

frangere means “to break”. Mandelbrot defines fractal structures as very irregular shapes,

in either mathematics or nature, wherein each small part is very much like a reduced

size image of the whole (MANDELBROT et al., 2014), i. e., they are self-similar. Fractal

structures are not well defined by Euclidean geometry, i. e., usually they don’t have

an integer value dimension, like a square or a cube and their dimension is called fractal

dimension D or Hausdorff-Besicovitch dimension (MANDELBROT et al., 1983). D is also

called box dimension and is obtained by a process called box counting, which is based on

length measurement by covering the shape with a number of boxes N(δ) with different

sizes δ. This counting leads to a scaling law:

N(δ) ∼ δ−D. (2.7)

One good example of fractal dimension D measurement is the triadic Koch curve. The

curve starts as a line segment of size L(1) = 1. The following process, defined as first

generation, is replacing 1/3 of the central line by two new segments with the same length

L/3, creating a 4 line segments curve of total length L(1/3) = 4/3. So, in the second

generation we have a curve of N = 42 = 16 segments with lenght δ = 1/9 and total length

L(1/9) = (4/3)2 = 16. The process is repeated until the n-th generation, resulting in a

curve of length

L(δ) =

�
4

3

�n

(2.8)
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FIGURE 2.7 – Construction of the triadic Koch curve. Source: (FEDER, 1988).

with each line segment of size

δ =

�
1

3

�n

or n = − ln δ

ln 3
(2.9)

The length may be expressed as:

L(δ) = exp

�
− ln δ(ln 4− ln 3)

ln 3

�
= δ1−D (2.10)

with

D =
ln(4)

ln(3)
≈ 1.26 and N(δ) = δ−D (2.11)

where D is the fractal dimension and N is the number of segments (FEDER, 1988).

Besides all the contribution to image fractal characterization, Mandelbrot was also one

of the first to apply fractal analysis to natural time series (MANDELBROT; NESS, 1968;

MANDELBROT; WALLIS, 1969; MANDELBROT et al., 2014), based on Harold Edwin Hurst’s

studies on hydrological systems (HURST, 1956; HURST et al., 1965). In the present work, we

focus in the fractal behavior present in solar wind time series, specially the self-similarity

aspect.

To describe complex systems, it is necessary to understand that systems produce

time series with fluctuations on a wide range of time scales and values. These natural

fluctuations may follow a scaling relation with different time scales that can be interpreted

as a fractal scaling behavior Fig. 2.8.
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FIGURE 2.8 – Time series of microscale turbulent kinetic energy dissipation rates. At zooming in, the
structures remain very similar. Source: (SEURONT, 2010).

2.3.1 Self-similarity, self-affinity and the Hurst exponent

Self-similarity and self-affinity are both characteristics of fractal structures. Fractals

with identical scaling in all directions, isotropic, are defined as Self-similar. But if this

scaling similarity is anisotropic, i.e., for some directions the scaling factor is different, then

the fractal is self-affine Fig. 2.9.

Self-similarity and self-affinity are also present in the context of fractal time series,

and they are linked to a parameter known as Hurst Exponent H (HURST et al., 1965).

A self-similar time series is scale-invariant and follows a power law relation between the

fluctuation F (s) and the time scale parameter s, given by F (s) ≈ sH . But for self-affine

fractal time series, s is rescaled by a factor a and the fluctuation’s relation with s is now

defined as F (s) ≈ aHF (as) (KANTELHARDT, 2008).

Harold Edwin Hurst was the first to propose a method to analyse long-term persistence
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FIGURE 2.9 – Self-similar (A) and self-affine (B) fractal examples. A is the Brownian motion in two-
dimensional space and B is the x(t) plot of a particle coordinate. Source: (SEURONT, 2010).

in time series using random walk theory. The rescaled range analysis consists of a few

steps: First, the time series x̃i is divided into non-overlapping segments ν of size s,

generating Ns = int(N/s) segments. In the second step, the data is integrated in each

segment ν = 0, ..., Ns − 1:

Yν(j) =

j�

i=1

(x̃νs − �x̃νs+i�s) (2.12)

This subtracts the local averages, eliminating constant data trends. The third step is to

compute the differences between minimum and maximum values Rν(s) and the standard

deviations Sν(s) for each segment

Rν(s) = maxs
j=1Yν(j)−mins

j=1Yν(j), Sν(s) =

����1

s

s�

j=1

Y 2
ν (j). (2.13)

At last, the scaled range is averaged over all segments, generating the fluctuation

function:

FRS(s) =
1

Ns

Ns−1�

ν=0

Rν(s)

Sν(s)
, FRS(s) ∼ sH for s � 1, (2.14)

where H is the Hurst Exponent (KANTELHARDT, 2008).
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Hurst applied his method for the raining levels at Nilo River Fig. 2.10 and observed

the following characteristics of the time series associated with the H index:

1. For time series with H > 0.5, they exhibit a long-range correlation dependence

structure, i.e., long “memory”, and are denominated correlated or persistent time

series;

2. Time series with H < 0.5 show a short-range dependence structure, i.e., short

“memory”, and are defined as anti-correlated or anti-persistent ;

3. Finally, totally random time series have no “memory” and H � 0.5. They are called

independent or uncorrelated time series.

FIGURE 2.10 – Relation between range of summation curve R, standard deviation S; (a), and length of
record N . Source: (HURST et al., 1965)

Another interesting aspect related to the Hurst Exponent is the stationarity (or non-

stationarity) of the data. Using the random walk idea, i.e, Brownian motion, Mandelbrot

introduced the concept of fractional Brownian motion (fBm), BH(x), which is a gener-

alization of the Brownian motion. BH(x) is formed by random functions with Gaussian
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increments BH(xi) − BH(xi−1), i.e., a non-stationary signal with stationary increments,

where the variance is

�
|BH(xi)− BH(xi−1)|2

�
= k |xi − xi−1|2H (2.15)

where k is a constant and 0 < H < 1. As we can see, this relation follows a power law

where any change by a factor δ in scale t will also modify ΔBH = BH(xi)−BH(xi−1), by

a factor δH :

�
ΔBH(δx)

2
�
= kδ2H

�
ΔBH(x)

2
�

(2.16)

This difference scaling factors in two coordinates (δ for x and δH for BH) reveals a self-

affinity for fBm signals (SEURONT, 2010).

The other characterization of self-affine time series is the Fractional Gaussian noise

(fGn), a generalization of the white Gaussian noise defined as a series of successive incre-

ments in an fBm (SEURONT, 2010). In other words, the increments

yfGn(i) = xfBm(i)− xfBm(i− 1) (2.17)

yield a stationary fGn signal and vice versa:

xfBm(n) =
n�

i=1

(xfGn(i)− �xfGn�). (2.18)

FIGURE 2.11 – Two Monofractal time series examples. Left is fractional Gaussian noise and at right the
fractional Brownian motion generated by cumulative sum. Source: (EKE et al., 2002)

So, the cumulative sum of a fGn results in a fBm series and when a fBm is differenced

this results in a fGn Fig. 2.11. This property is extremely important to fractal analysis

because it is directly linked with the Hurst Exponent. One of the methods to identify a

time series profile is through H, Fig. 2.12: (i) H range is limited to 0 < H < 2 (KAN-

TELHARDT, 2008); (ii) fGn series are limited to H < 1, where for long-range correlations

0.5 < H < 1 (EKE et al., 2002). The value of H is increased or decreased by 1 if the data is
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integrated (fBm) or differetiated (fGn), respectively (KANTELHARDT, 2008). In sections

3.1 and 4.2.1.1 we see the method for H estimation and the need for differentiating some

of our series.

FIGURE 2.12 – Time series profile variation as function of H value. fGn (Noise) series are restricted to
H < 1 and fBm (Random walks) series have H > 1. Source: (IHLEN, 2012)

2.3.2 Monofractal and Multifractal Time Series

As seen in the previous sections, the term ‘fractal time series’ usually refers to a single

fractal or monofractal time series (EKE et al., 2002). Monofractal signals are defined by

a single power law exponent and their scale invariance is independent of time and scale

(IHLEN, 2012). However, multifractal time series are heterogeneous, i.e., they have self-

similarity only in specific ranges of the structure. This means that their fractal measure

varies with time and space, which makes them to be characterized by a set of local fractal

values (EKE et al., 2002). So, now to describe a multifractal series, a set of multifractal

power law exponents are needed. Multifractal analysis is described in more details in the

next chapter.



CHAPTER 2. THEORETICAL BACKGROUND 41

FIGURE 2.13 – fGn (blue) Time series for Multifractal (upper), Monofractal (middle) and White Noise
(bottom). fBm of the respective time series. Source: (IHLEN, 2012)



3 Methodology and Research Review

3.1 Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) method is a technique for the determina-

tion of the monofractal scaling properties and power law for long-range correlations in

non-stationary time series (PENG et al., 1994; KANTELHARDT et al., 2002). This method

was applied for the first time by PENG et al. (1994) to find long-range correlations and

remove nonstationary trends in DNA sequences and has been successfully used in diverse

fields of science, like physics, meteorology, medicine and economy (IHLEN, 2012; EKE et

al., 2002; LIU et al., 1997; SANTOS et al., 2019). The DFA method consists of three steps:

1. The time series xk is integrated:

Y (i) =
i�

k=1

[xk − �x�], i = 1, ..., N (3.1)

where �x� is the average value.

2. The series Y (i) is divided into Ns ≡ int(N/s) non-overlapping segments with equal

lengths s (Fig. 3.1). Since N is usually not a multiple of s, some of the data points

in the time series may be left out of the last segment. To fix this, the procedure

is repeated starting from the opposite end of the time series and going backwards.

Consequently, 2Ns segments are obtained.

3. The local trend for each 2Ns segments is calculated. Then the variance (Fig. 3.2) is

given by

F 2(s, ν) =
1

s

s�

i=1

{Y [(ν − 1) s+ i]− yν(i)}2 , (3.2)

for each segment indexed by ν = 1, . . . , Ns and

F 2(s, ν) =
1

s

s�

i=1

{Y [N − (ν −Ns) s+ i]− yν(i)}2 (3.3)
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FIGURE 3.1 – Exemplification of steps 2 and 3 in DFA method for the time series of solar wind magnetic
field of 2016 January 25. The upper figure (a, b, c) shows the series been divided into 5, 10 and 15 segments
respectively of size s. For each ν segments, a cubic polynomial detrend is applied. The lower figure (d, e,
f) shows the series been divided into 10 segments where a linear, quadratic and cubic polynomial detrend
is applied at each segment. Source: produced by author.
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FIGURE 3.2 – Local Fluctuations for segments with scales of 13, 127,1270 and 12703 of |B| 20016 January
25 time series. The red lines represent the overall RMS and are the fluctuation function of that scale.
Source: produced by author.

for ν = Ns +1, . . . , 2Ns, where yν is the m-th degree fitting polynomial of each seg-

ment ν (Fig. 3.1). This polynomial detrending of order m in the Y profile eliminates

trends up to order m − 1 in the original time series and specifies the type of DFA

applied.
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At last, the fluctuation over all segments (Fig. 3.2) is:

F (s) =

�
1

2Ns

2Ns�

ν=1

[F 2(s, ν)]

� 1
2

. (3.4)

F (s) increases exponentialy and for large values of s it follows a power-law:

F (s) ∝ sH . (3.5)

So, a log-log plot of fluctuation functions of the scale results in a linear fit with slope

H (Fig. 3.3), the Hurst exponent (HURST et al., 1965).
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FIGURE 3.3 – Log-log plot of fluctuation functions of the scales and their corresponding regression lines
for multifractal (January 25 |B|, blue), monofractal (magenta) and white noise (green) time series. The
slope of the regression line represents the Hurst exponent. Source: produced by author.
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FIGURE 3.4 – Flowchart for DFA method. Source: produced by author.
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3.2 Multifractal Detrended Fluctuation Analysis

The Multifractal Detrended Fluctuation Analysis (MF-DFA) method is a generaliza-

tion of the DFA method quantifying long-range correlations at non-stationary time series

(KANTELHARDT et al., 2002). The method identifies the scaling of qth-order moments of

the time series (NOROUZZADEH et al., 2007). The MFDFA method has a wide range of

applications in many different scientific fields working as a valuable tool for understanding

the complexity and dynamics of various systems by studying their scaling exponents (NEE-

LAKSHI et al., 2020; NEELAKSHI et al., 2022; BATISTA et al., 2022). The method consists of

five steps where the first three steps are the same of DFA method :

4. The average over all segments is calculated to obtain the qth-order fluctuation func-

tion (Fig. 3.5):

Fq(s) =

�
1

2Ns

2Ns�

ν=1

[F 2(s, ν)]
q
2

� 1
q

, (3.6)

where, in general, the q parameter can take any real value except zero. For q = 2,

the equation returns the DFA method. Steps 2 to 4 are repeated for different time

scales s.

5. The scaling behavior of the fluctuation function is defined by the log-log plot of

Fq(s)× s for each value of q (Fig. 3.6). If xi have long-range correlations, for large

values of s, Fq(s) increases as a power-law,

Fq(s) ∼ sH(q). (3.7)

The scaling exponents h(q) are the generalized Hurst exponents, defined as the slope

of the logFq(s) × log(s) graph (Fig. 3.6), where for h(2) we have the standard Hurst

Exponent (HURST et al., 1965). For positive values of q, h(q) describes the scaling behavior

of segments with large fluctuations and for negative values of q, h(q) describes the scaling

behavior of segments with small fluctuations (Fig. 3.5). For monofractal series, h(q) is

independent of q but for multifractal series h(q) depends on q (Fig. 3.6d). The generalized

Hurst exponent is directly related to the Renyi exponent (RENYI, 1976), τ(q), (Fig. 3.7b)

by

τ(q) = qh(q)− 1. (3.8)

Besides h(q), another way to characterize the multifractality of a time series is by the
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FIGURE 3.5 – Exemplification of step 4 in the MF-DFA method for the solar wind magnetic field of 2008
March 9 time series for a segment of scale size s = 193. The upper figure represents the q-order local
fluctuations for negative q values and the lower figure shows the local fluctuations for positive q. Source:
produced by author.
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singularity spectrum f(α), which is related to τ(q) via a Legendre transform,

α = τ �(q) and f(α) = qα− τ(q), (3.9)
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where α is the singularity exponent and is related to h(q) by

α = h(q)− qh�(q) and f(α) = q[α− h(q)] + 1. (3.10)
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FIGURE 3.7 – (a) Multifractal spectrum for multifractal 2008 March 9 |B| (blue), monofractal (magenta)
and white noise (green) time series. (b) Renyi exponent for multifractal March 9 |B| (blue), monofractal
(magenta) and white noise (green) time series. Source: produced by author.

This f(α) × α relation (Fig. 3.7a) represents the multifractal spectrum and has a

concave parabolic shape. The width of this downward parable in the α axis is a standard

measure of multifractality and represents the multifractal strength.

From the multifractal spectrum it is possible to obtain a set of parameters to charac-

terize each series (Fig. 3.8b): (i) the α value where f(α) is maximum, α0; (ii) the α width,

Δα = αmax − αmin, where αmin and αmax are, respectively, the minimum and maximum

values of α that mark the base of the concave parable in the multifractal spectrum (Δα

is a measure of multifractal strength); (iii) the asymmetry parameter:

A =
(αmax − α0)

(α0 − αmin)
, (3.11)

where:

1. A = 1 means that the spectrum is symmetric,

2. for A > 1 the spectrum is right-skewed asymmetric and

3. for A < 1 the spectrum is left-skewed asymmetric (SHIMIZU et al., 2002; FREITAS et

al., 2016; BATISTA et al., 2022).

A multifractal spectrum with a long right tail has a greater contribution from small

fluctuations. By contrast, a multifractal spectrum with left asymmetry has a greater

influence by local fluctuations with large values (IHLEN, 2012) (Fig. 3.8b).

Another useful multifractal parameter can be extracted from the τ(q)× q relation. As

can be seen from Eq. (3.8), τ(q) has a linear dependence with q for monofractal series,
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FIGURE 3.8 – (a) Renyi exponent for multifractal time series (red circles) and the linear regression
(black). (d) Multifractal spectrum for multifractal time series (red circles). Source: produced by author.

where h(q) is constant. In contrast, for multifractal series, this dependence is nonlinear.

The q-dependency of the Renyi exponent can be quantified by the coefficient of determina-

tion, R2 (Fig. 3.8a). R2 measures the proportion of the variance for a dependent variable

that is predictable by an independent variable in a linear regression model (BARRETT,

1974). The coefficient of determination is given by:

R2 = 1−
�n

i=1(yi − ŷi)
2

�n
i=1(yi − ȳi)2

, (3.12)

where yi is the observed dependent variable, ŷi is the corresponding predicted value and

ȳi is the mean of the observed data. R2 varies from 0 to 1, where in our case 1 represents

a perfect fit to the linear dependence model. In other words, the measure of R2 for the

τ(q)× q relation will be closer to 0 for multifractal series and closer to 1 for monofractal

series.

The MF-DFA method has best results if the time series has noise-like structure. Noise-

like time series have a Hurst exponent h between 0.2 and 0.8. If the time series have

random-walk structure, h has a value between 1.2 and 1.8. In the latter case, the time

series must be differentiated to become noise-like (IHLEN, 2012). To identify if the time

series has noise or random-walk structure, the h value can be obtained through the DFA

method EKE et al. (2002) prior to application of MF-DFA method.

3.3 Detrended Moving Average

Beside the DFA, different methods were developed to quantify and qualify long-range

correlations in nonstationary signals. VANDEWALLE; AUSLOOS (1998) proposed a new
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technique based on the moving average method to detect trends in data, the so called

Detrended Moving Average (DMA). This method follows the same points proposed by DFA

but now considering the contribution coming from “past” and “future” points, according

to which moving average model is applied. ALESSIO et al. (2002), CARBONE et al. (2004),

XU et al. (2005) and ALVAREZ-RAMIREZ et al. (2005) first defined two possible analysing

conditions based on moving average calculation:

1. Backward Moving Average (BDMA). Considering a window of size n, the backward

moving average is given by:

ỹ(i) =
1

n

n−1�

k=0

y(i− k). (3.13)

This means that ỹ refers to the average value of y for the last n data points (VAN-

DEWALLE; AUSLOOS, 1998) (see Figure 3.9).

2. Centered Moving Average (CDMA). Also considering a window of size n, the average

of the data inside the window is located at the center of this window (Fig. 3.9) and

given by:

ỹ(i) =
1

n

n/2�

k=−[(n−1)/2]+1

y(i− k) (3.14)

where y(i) is the integrated time series:

y(i) =
i�

k=1

[xk − �x�], i = 1, ..., N. (3.15)

FIGURE 3.9 – Exemplification of (a) backward moving average and (c) centered moving average for two
values of window size n. Source: (ALVAREZ-RAMIREZ et al., 2005)
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After defining the moving average method type used, the following steps are the same

implemented for DFA. So, the fluctuation for n is defined as

FBDMA(n) =

���� 1

N − n+ 1

N�

i=n

[y(i)− ỹ(i)]2, (3.16)

for BDMA and for CDMA:

FCDMA(n) =

���� 1

N − n+ 1

N−[n/2]�

i=[(n−1)/2]

[y(i)− ỹ(i)]2. (3.17)

As well as the DFA method, FDMA(n)× n relation follows a power-law:

FDMA(n) ∝ nH . (3.18)

Cumulative Sum

RMS

Divide the
Cumulative series

Polynomial Fit

window = s

each window

Divided
Cumulative series

of size s

Detrended
Series

FIGURE 3.10 – Flowchart for DMA method. Source: produced by author.

3.4 Multifractal Detrended Moving Average

Following the same concept of the DFA generalization proposed by KANTELHARDT et

al. (2002), GU; ZHOU (2010) extended the DMA method to investigate multifracal time

series and multifractal surfaces. The Multifractal Detrended Moving Average (MF-DMA)
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method is also consisted of a few steps, but first it is required to define a moving average

parameter called θ.

The position parameter θ varies inside the [0, 1] range, where:

1. θ = 0 considers the backward moving average (BMA)(XU et al., 2005; ALVAREZ-

RAMIREZ et al., 2005), i.e., ỹ is measured for n− 1 points in the “past”;

2. θ = 0.5 refers to the centered moving average (CMA), which considers past and

future data points in the n window;

3. θ = 1 selects the forward moving average (FMA) (GU; ZHOU, 2010), i.e., ỹ is calcu-

lated for n− 1 data in the “future”.

So, the moving average function ỹ is now defined as

ỹ(i) =
1

n

�(n−1)(1−θ)��

k=−�(n−1)θ�
y(i− k), (3.19)

with �(n− 1)(1− θ)� data in the past and �(n− 1)θ� in the future, where �(...)� means

the largest integer not greater than (...) and �(...)� means the smallest integer not smallest

than (...).

After this definition, the process continues with the following steps:

1. The detrended signal �(i) is obtained by removing ỹ from the integrated series y(i)

�(i) = y(i)− ỹ(i) (3.20)

where n− �(n− 1)θ� ≤ i ≤ N − �(n− 1)θ�

2. the residual �(i) is divided into Nn = �N/n− 1� segments �v of size n. Thus, the

root mean squared for each segment v i given by

F 2
v (n) =

1

n

n�

i=1

[�v(i)]
2 (3.21)

3. The average over all segments is calculated to obtain the qth-order fluctuation func-

tion:

Fq(n) =

�
1

Nn

Nn�

v=1

[�v(i)]
q

� 1
q

(3.22)
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where for q = 0, as indicated by L’Hôpital rule, Fq is given by

ln[F0(n)] =
1

Nn

Nn�

v=1

ln[Fv(n)] (3.23)

4. Likewise at the MF-DFA case, the fluctuation function Fq(n) increases as a power-

law in relation with n

Fq(n) ∼ nH(q). (3.24)

3.4.1 Two-Dimensional Multifractal Detrended Moving Average

As we can apply the MF-DFA and MF-DMA methods to observe the multifractality of

a time series, it is also possible to use these tools to a surface analysis (GU; ZHOU, 2010).

By considering an area as a two-dimensional matrix X(i1, i2) where i1 = 1, 2, ...N1 and

i2 = 1, 2, ...N2, we apply the 2D-MFDMA by the following six steps:

1. The surface X(i1, i2) is integrated in a sliding window of size n1 × n2, with n1 ≤
i1 ≤ N1 − �(n1 − 1)θ1� and n2 ≤ i2 ≤ N2 − �(n2 − 1)θ2�. This means, we obtain

from matrix X a smaller matrix Z(u1, u2) of size n1 × n2, where i1 − n1 ≤ u1 ≤ i1

and i2 − n2 ≤ u2 ≤ i2. From this submatrix, the sum Y (i1, i2) is:

Y (i1, i2) =

n1�

j1=1

n2�

j2=1

Z(j1, j2). (3.25)

2. The moving average function �Y (i1, i2) is calculated, considering n1 × n2, with n1 ≤
i1 ≤ N1−�(n1 − 1)θ1� and n2 ≤ i2 ≤ N2−�(n2 − 1)θ2�. After that, we obtain from

X the submatrix W (k1, k2), where n1 − �(n1 − 1)θ1� ≤ k1 ≤ k1 + �(n1 − 1)θ1� and

n2 − �(n2 − 1)θ2� ≤ k2 ≤ k2 + �(n2 − 1)θ2�. The cumulative sum �W (m1,m2) is

�W (m1,m2) =

m1�

d1=1

m2�

d2=1

W (d1, d2) (3.26)

where 1 ≤ m1 ≤ n1 and 1 ≤ m2 ≤ n2. The moving average function �Y (i1, i2) is

�Y (i1, i2) =
1

n1n2

n1�

m1=1

n2�

m2=1

�W (m1,m2) (3.27)

3. Remove the moving average function �Y (i1, i2) from Y (i1, i2) to obtain the detrended



CHAPTER 3. METHODOLOGY AND RESEARCH REVIEW 53

matrix �(i1, i2)

�(i1, i2) = Y (i1, i2)− �Y (i1, i2) (3.28)

where n1 ≤ i1 ≤ N1 − �(n1 − 1)θ1� and n2 ≤ i2 ≤ N2 − �(n2 − 1)θ2�.

4. The detrended matrix �(i1, i2) divided into Nn1 ×Nn1 matrices of size n1×n2, where

Nn1 = �(N1 − n1(1 + θ1))/n1� and Nn2 = �(N2 − n2(1 + θ2))/n2�. The submatrices

are so defined as �v1,v2(i1, i2) = �(l1+ i1, l2+ i2) where 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, l1 =

(v1 − 1)n1 and l2 = (v2 − 1)n2. So, the detrended fluctuation function Fv1,v2(n1, n2)

for each segment is:

F 2
v1,v2

(n1, n2) =
1

n1n2

n1�

i1=1

n2�

i2=1

�2(i1, i2) (3.29)

5. We calculate the qth-order fluctuation function:

Fq(n1, n2) =





1

Nn1Nn2

Nn1�

v1=1

Nn2�

v2=1

F q
v1,v2

(n1, n2)





1/q

(3.30)

where q is a non-zero real number.

6. Let n2 = 1
2
(n2

1 + n2
2). For different values of n, Fq increases as a power-law:

Fq ∼ nh(q). (3.31)

For this work, we use the same set of parameters defined in GU; ZHOU (2010) (n =

n1 = n2 and θ = θ1 = θ2). Applying the multifractal formalism, the following parameters

are also defined: the Renyi exponent (RENYI, 1976), the singularity exponent α and the

singularity spectrum f(α).

τ(q) = q h(q)−Df . (3.32)

where Df is the fractal dimension, e.g., for our scenario, Df = 2. Subsequently, via

Legendre transform, it is possible to obtain the α and f(α) parameters:

α = τ �(q) and f(α) = q α− τ(q) , (3.33)
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3.5 Surrogate Time Series

According to MADANCHI et al. (2017), there are two features in a time series that can

lead to its multifractality: (i) the presence of heavy-tailed probability density functions

(PDFs), and (ii) the existence of linear and non-linear correlations. In this section, we try

to identify the origin of the multifractality in the solar wind by means of two surrogate

time series derived from the original |B| data. As mentioned in the introduction, the

shuffled time series is a random permutation of the original time series in the real space

that destroys all temporal correlations, while keeping the same PDF for the amplitudes

of |B| (Fig. 3.11). On the other hand, the random phases surrogate is generated from

the Fourier Transform of the original |B| series. A new Fourier series is generated by

shuffling the phases of the Fourier modes while keeping their power spectrum (KOGA et

al., 2008; MAIWALD et al., 2008). The inverse Fourier transform of this new frequency

spectrum is the random phases surrogate, which keeps the power spectrum and linear

autocorrelation of the original series, but has a Gaussian PDF and breaks the nonlinear

correlations (Fig. 3.11). After generating these two surrogates, we repeat the multifractal

analysis described in the previous section; if the shuffled surrogate has a multifractal

spectrum that is considerably narrower than the spectrum of the original series, it means

that time correlations are an important source of multifractality in the original time series,

otherwise, fat-tailed PDFs are the main source of multifractality. If the random phases

surrogate has a multifractal spectrum that is considerably narrower than the spectrum

of the original series, it means that fat-tailed PDFs and/or nonlinear correlations are

important for the multifractality. Note that both kinds of multifractality mentioned above

can be present in a time series (NOROUZZADEH et al., 2007; MADANCHI et al., 2017). If both

the shuffled and random phases surrogates produce monofractal spectra, then nonlinear

correlations (but not fat-tailed PDFs) are the source of multifractality.
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FIGURE 3.11 – Upper: Solar wind time series of |B| for 2016 January 25 (blue) and the respective
surrogates: shuffled (green), and random phases (magenta). Lower-Left: Autocorrelation plot of original
time series and respective surrogates. Lower-Right: Histogram of original time series and respective
surrogates. Source: produced by author.

3.6 Zeta Function

Another function typically employed in multifractal analyses of time series is the zeta

function. Consider the structure function for |B| (FRISCH, 1995):

Sp(τ) = �[|B(t+ τ)|− |B(t)|]p� (3.34)

where �·� is the time average, τ is the time lag and p are the statistical moments for the

time series of B. Assuming scale invariance inside the inertial range, Sp follows a power

law

Sp(τ) ∼ τ ζ(p) (3.35)

where ζ(·) is the zeta function or scaling exponent. So, ζ(p) is obtain by the slope of the

log Sp(τ)×log τ plot. The importance of this parameter comes from the Kolmogorov’s K41

theory (KOLMOGOROV, 1941) and the IK (Iroshnikov-Kraichnan) theory (IROSHNIKOV,

1964; KRAICHNAN, 1965) of self-similarity and scale invariance inside the inertial range

for a homogeneous and isotropic turbulence, where the ζ function was shown to be a linear

function of p, with ζ(p) = p/3 for K41 and ζ(p) = p/4 for IK.
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FIGURE 3.12 – Upper: Structure functions from the magnetic field fluctuations of satelittes Cluster-1
and ACE with: p=1 (black), 2 (purple), 3 (light green), 4 (yellow), 5 (dark green) and 6 (light blue).
The grey interval indicates the inertial range. Lower: Zeta functions from the magnetic field fluctuations
of satelittes Cluster-1 (red) and ACE (blue). The dashed lines represent the Kolmogorov K41 scaling.
Source: (CHIAN; MIRANDA, 2009)

3.7 p-model

The p−model is a model for non-homogeneous energy-cascading process in the inertial

range of fully-developed turbulence (KOLMOGOROV, 1941; FRISCH, 1995), based on the

generalized Cantor set. Consider that the flux of kinetic energy from eddies of size L to

smaller eddies is represented by a dissipation EL. In the one-dimensional version of the

p−model, L is the length of an interval. Suppose that an eddy of size L is unequally divided

into two smaller eddies (i.e., two sub-intervals) of sizes l1L and l2L, where 0 < l1 < l2 < 1

are the size factors, with the flux of energy EL being distributed unto these sub-eddies

with different probabilities p1 and p2, i.e., the new dissipation values are p1EL and p2EL.

In practice, one can start the process with L = EL = 1. Then, each new eddy is further

sub-divided into two smaller eddies with the same size factors l1 and l2 and probabilities

p1 and p2. This process may be repeated until the sub-intervals reach the Kolmogorov

dissipation scale Fig. 3.13. At each cascading step n, there will be

�
n

m

�
segments with

length lm1 l
n−m
2 L and dissipation pm1 p

n−m
2 EL, for m = 0, 1, . . . , n.
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FIGURE 3.13 – Left: One-dimensional schematic of a cascade model where each eddie split into to two
new ones. Right: Different stages of the p-model time series (a. first, b. fifth, c. twelfth stage and d. is
an experimental signal). Source: (MENEVEAU; SREENIVASAN, 1987)

As shown by HALSEY et al. (1986) for the general two-scale Cantor set, it is possible to

obtain the analytic expressions for the singularity exponent α and the singularity spectrum

f as:

α =
ln p1 + (n/m− 1) ln p2
ln l1 + (n/m− 1) ln l2

, (3.36)

f =
(n/m− 1) ln(n/m− 1)− (n/m) ln(n/m)

ln l1 + (n/m− 1) ln l2
. (3.37)
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FIGURE 3.14 – Left: Analytical multifractal spectrum generated using p-model (p1 = 0.7, l1 = 0.65).
Right: p-model time series generated from multifractal spectrum parameters by 12th iteration. Source:
produced by author.
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For each n and given values of l1, l2, p1 and p2, the variation of m will provide the

different values of α and f for the singularity spectrum Fig. 3.14. Since 0 ≤ m ≤ n and

m is an integer, larger values of n provide a better definition of the spectrum. For a

cascading process with direct energy dissipation in the inertial range, we have p1+p2 < 1

(MENEVEAU; SREENIVASAN, 1987). This means that a new dp dissipation parameter must

be included, where dp = 1−p1−p2. Thus, we define p2 = 1−p1−dp, as well as l2 = 1− l1,

in Eqs. (3.36) and (3.37).

By obtaining a p−model fit of the singularity spectrum of the time series, it is possible

to define the probabilities and size factors related to the series and, from those parameters,

to generate a multifractal time series (NEELAKSHI et al., 2020; NEELAKSHI, 2020), Fig. 3.14.

3.8 Integrated Averaged Current Deviation

3.8.1 Vortex Detection

In two-dimensional fields, vortices are one of the typical coherent structures used to

describe turbulence, and several mathematical methods have been proposed to detect

them objectively. Objectivity or “frame-indifference” can be defined as the invariance of

time-dependent variables under a change of frame or observer (TRUESDELL et al., 2004).

This definition of objectivity is crucial to develop methods of detecting vortex structures,

which are known as area flows with observer invariance. However, most of the vortex

detecting methods are not objective so, to define and identify coherent vortices objectively,

HALLER et al. (2016) presented an efficient method called Lagrangian Averaged Vorticity

Deviation, LAVD. This method defines a spatial domain U which contains a velocity field

u and a fluid particle at the initial position x(t0) = x0 that follows a trajectory given by:

dx

dt
= u(x, t), x(t0) = x0 (3.38)

The LAVD of the trajectory of x0 is defined as

LAV Dt0+τ
t0 (x0) =

� t0+τ

t0

|ω(x(t), t)− �ω(t)�| dt, (3.39)

where ω = ∇× u is the vorticity, �·� is the spatial average and τ is a time interval. The

vorticity mean deviation |ω(x(t), t)− �ω(t)�| is invariant under a referential change. So, a
coherent lagrangian vortex is an evolving material region VL(t) where VL(t0) is filled with

a set of level curves of LAV Dt0+τ
t0 (x) with outward-decreasing LAVD values (REMPEL et

al., 2019).
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Now, with the focus on magnetic vortex detection, (REMPEL et al., 2016) proposed a

variation of the LAVD operator for magnetic fields. Define x(s) as the position vector on

a magnetic field line at t0, where s is a parameter related with a distance l over a field

line by dl = |B|ds. So, at time t0, the field-line equation is given by (SONSRETTEE et al.,

2014)

dx

ds
= B(x(s), t0), x(s0) = x0. (3.40)

Then, replacing ω = ∇×u in LAVD equation by the current density J = ∇×B/µ0,

the Integrated Averaged Current Deviation, IACD, is defined as

IACDs0+ξ
s0

(x0) =

� s0+ξ

s0

|J(x(s), t0)− �J(t0)�| dt, (3.41)

where �J(t0)� is the mean current density. From this definition, it is possible to obtain

two important method aspects. First, just like the LAVD, the IACD is an objective

quantity but distinctly from the original tool, the IACD calculation is done for a fixed

time. This means that the parameter interval is now given by [s0, s0 + ξ] and likewise the

LAVD, the magnetic vortex is expressed as a domain VL(t0) filled with level curves of set

IACDs0+ξ
s0

with outward decreasing IACD values; the VL(t0) border is the farthest convex

level curves in VL(t0). So, basically the detection of the magnetic vortices comes from the

IACD field calculation on the plane, finding the initial positions of these vortex centers

as IACD local peaks and then, finding vortex edges as external convex closed contours of

IACD surrounding the vortex center, as illustrated in Figure 3.15.

FIGURE 3.15 – Exemplification of objective magnetic vortices (IACD) using the Wu-Chang MHD model
of magnetotail. Source (REMPEL et al., 2019)



4 Results

In the present chapter we introduce the data that we investigated through multifractal

analysis and so report the obtained results for two problems. First, we investigate the

multifractality of two solar wind magnetic field time series and their respective volatilities,

with the goal of understanding the origin of the multifractality. Thereafter, we apply the

multifractal analysis to a series of magnetograms of an intense active region, and also apply

a method of vortex detection to this AR with the purpose of confirming the influence of

this kind of structure to the turbulence of the photosphere.

4.1 Solar Wind Data

We analyze solar wind magnetic field data detected with the Fluxgate Magnetome-

ter (FGM) onboard Cluster-1. The Cluster mission is a group of four identical space-

craft placed in a tetrahedral formation launched in 2000 by the European Space Agency

(ESA). During intervals when the spacecraft was near the Earth’s bow shock and outside

the Earth’s magnetosphere, we selected several 22 Hz time series of the magnetic field

magnitude1. In this work, two time series with 24 hours are investigated2), one from 2008

March 9 (Fig. 4.1a) and one from 2016 January 25 (Fig. 4.1b). Both days are at down-

ward regions of solar activity of their respective solar cycles (SC23 for March 9 and SC24

for January 25) but with a more intense flare activity related to January 25 (4 B-Class, 2

C-Class flares, F10.7 = 107.6 stu and Vmax = 539 km/s) if compared with March 9 (just 1

A-Class flare, F10.7 = 69.5 stu and Vmax = 691 km/s). For illustration and completeness,

Figure 4.2 provides an overview of the vector magnetic field components (Bx, By, Bz) and

the electron velocity V (e−) parameters for this interval. To reduce the computational

time of the analysis, the data length has been reduced by using a decimation process3.

The low-pass Chebychev Type I infinite impulse response filter was used with a reduction

factor M = 10, order 8 and 0.8/M cut-off frequency.

1https://www.cosmos.esa.int/web/csa
2In addition, as supplementary material to (BATISTA et al., 2022), we also analyzed two other time

series (Annex - A.2.
3The decimation method is described in (GOMES, 2018; GOMES et al., 2019).
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FIGURE 4.1 – Solar wind time series of |B|measured by Cluster-1. (a) For 2008 March 9 (red), containing
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(blue), without current sheets. Source: (BATISTA et al., 2022)
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FIGURE 4.2 – Solar wind time series of the vector magnetic field (Bx, By, Bz) and the electron velocity
measured by Cluster-1 for 2008 March 9 (left) and for 2016 January 25 (right).

After decimating the time series, we apply the MF-DFA method with four input pa-

rameters: minimum scale si, maximum scale sf , order of fluctuation function q and poly-

nomial order m. The scale refers to multiple segment sizes of the cumulative series and

varies from a minimum segment size si to a maximum sf . In this work, we use si = 10

and sf = N , where N is the length of the time series; q varies between −20 and 20 with

an increment of Δq = 0.25, and m = 3. This choice of parameters was supported by

several tests. The recommendation for large time series is to use a polynomial trend order

around m = 3; sf = N was chosen to avoid deformations in the shape of the multifractal

spectra. Meanwhile, for the q parameter the use of values larger than 20 does not change

the shape of the spectra significantly.

As it was explained in section 2.3.1, time-differencing is necessary in the case of 2008

March 9 due to the high nonstationarity of this series. Throughout the remaining of this

section, only the differenced time series will be used for March 9. This time series was

characterized by GOMES et al. (2019) as being permeated by large-scale current sheets. The

green regions in the original time series denote current sheets found with Li’s method (LI,

2007) (section 2.1.3). We apply the same parameters from (GOMES et al., 2019): θ = 60◦,
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L = 60% and τ = 120 s. The time series for 2016 January 25 is characterized by a higher

degree of stationarity and the absence of current sheets (GOMES et al., 2019). Due to its

higher stationarity, there is no need to perform a differencing in this series.

4.1.1 Volatility

As mentioned in section 2.1.3, the presence of current sheets is associated with abrupt

changes in the magnetic field. These abrupt changes are reflected in the time series formed

by two-point differences, δB(t) = |B(t + τ)| − |B(t)|, for a given time-scale τ (CHIAN;

MIRANDA, 2009). With the objective of enhancing these bursts in the original time series,

we implement a new quantity, which in econophysics is called volatility (POON, 2005).

Volatility can be defined as the conditional standard deviations at specific series periods

of the underlying asset return (or log return) (TSAY, 2010).
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FIGURE 4.3 – Volatility of solar wind magnetic field time series for (a) 2008 March 9, and (b) 2016
January 25. Source: (BATISTA et al., 2022)

For our context, the magnetic volatility, volmag (Fig. 4.3), can be calculated from the

standard deviations of the log magnetic return Δrmag(t) in a moving window of length ω

along N sample points (TSAY, 2010).

Δrmag(t) = log

� |B(t+ τ)|
|B(t)|

�
, (4.1)

volmag(j) =

���� 1

ω − 1

ω+j−1�

i=j

(Δrmag(i)− µ(j))2 , (4.2)

where τ is a time-lag, j = 1, . . . , N −ω+1 and µ(j) is the mean Δrmag inside the window

(GOMES et al., 2019).

The ω ant τ values are estimated from the Power Spectrum Density (PSD). Figure
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4.4 shows the PSD for the March 9 time series, where the inertial range is the blue region

between the dashed lines. This region was chosen as the frequency interval where the

slope of the fitted line is -5/3, following Kolmogorov’s K41 theory for fully developed

turbulence. The frequency in the middle of the inertial range marks the scale used to

define both τ and ω. In this way, we define τ = ω = 50s .
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FIGURE 4.4 – Power spectral density for solar wind magnetic field of 2008 March 9. The blue region is
the inertial range and the red line is the linear fit for this interval, with a slope equal to -5/3. Source:
(BATISTA et al., 2022)

4.2 Solar Wind Results

4.2.1 Multifractal Analysis of Solar Wind Data

4.2.1.1 MFDFA Analysis of the B Time Series

Fig. 4.5 shows different multifractal measures of the two magnetic field time series.

Figure 4.5(a) shows the multifractal spectra, which reveal a left asymmetry for the March

09 time series (red) and a right asymmetry for the January 25 series (blue). The left

asymmetry indicates the stronger contribution to multifractality coming from large fluc-

tuations associated with values of q > 0 in the intermittent time series of the current

sheet-filled times series of March 09; the right asymmetry found for the current sheet-free

time series of January 25 points to the greater contribution of small fluctuations to the

multifractality (IHLEN, 2012). The width of the spectrum can be used as a measure of

the degree of multifractality of the series (SHIMIZU et al., 2002). Comparing both spec-

tra, it can be seen that they have almost the same width (Δα ≈ 0.541 for March 9 and

Δα ≈ 0.555 for January 25), which may be surprising, since the time series of March 9

is visibly more intermittent, with strong bursts randomly interspersed in time. In this

case, the difference in multifractality can be better quantified by the Renyi exponent τ(q),

shown in Fig. 4.5(b). It reveals a nonlinear behavior for both series, but with R2 ≈ 0.804
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for March 9 and R2 ≈ 0.986 for January 25, thus, March 9 displays higher multifractality.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

f(
)

Singularity Spectrum

|B| 2008 March 9

|B| 2016 January 25

a

-20 -15 -10 -5 0 5 10 15 20

q

-30

-20

-10

0

10

20

(q
)

Renyi Exponent

|B| 2008 March 9

|B| 2016 January 25

b

FIGURE 4.5 – (a) Multifractal spectrum for 2008 March 9 (red) and 2016 January 25 (blue). (b) Scaling
exponents for 2008 March 9 (red) and 2016 January 25 (blue). Source: (BATISTA et al., 2022)

4.2.1.2 MFDFA Analysis of the Volatility Time Series

Figure 4.3 exhibits the volatility time series for 2008 March 9 (upper panel, red) and for

2016 January 25 (lower panel, blue) from the decimated magnetic field data. Recall that

the upper series has many current sheets while the lower one has none. Note that, unlike

the January 25 series, the March 9 volatility series has several extreme events. These

high peaks are due to the abrupt changes in the magnetic field that take place when the

satellite crosses a current sheet in the solar wind. As a consequence, the multifractal

spectra obtained from the volatility of both series are very different, as seen in Fig. 4.6.

Now, the spectrum of the intermittent time series of March 9 is much broader than the

one from January 25. The volatility has enhanced the contribution of the extreme events

due to current sheets, thus showing the signature of coherent structures present in the

solar wind that were partially hidden in the multifractal analysis of the original time

series. The Renyi exponents are shown in Fig. 4.6(b); once again, the curve for March 9 is

more concave than for January 25, reflecting its higher level of multifractality. It is clear

that the volatility has highlighted the role of current sheets in the multifractal singularity
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spectrum.
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FIGURE 4.6 – (a) Multifractal spectra for the volatility in 2008 March 9 (red), and 2016 January 25
(blue). (b) Renyi exponents for the volatility in 2008 March 9 (red), and 2016 January 25 (blue). Source:
(BATISTA et al., 2022)

4.2.2 Surrogate Analysis

In the following subsections, we perform Surrogate Analysis for both the |B| and
volatility time series of 2008 March 9 and 2016 January 25.

4.2.2.1 Magnetic Field time series, 2008 March 9

Figure 4.7 shows the differenced time series for March 9 (red) with its shuffled (green)

and random phases (magenta) surrogates. Clearly, the shuffled surrogate keeps the ex-

treme events of the differenced |B| series, but the same events are absent from the random

phases surrogate.
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FIGURE 4.7 – Differenced time series for 2008 March 9 (red) and the respective surrogates: shuffled
(green), and random phases (magenta). Source: (BATISTA et al., 2022)

Figure 4.8(a) displays the multifractal spectra for the March 9 original and surrogate

time series. For the shuffled spectrum (green) we see a small reduction in the width

when compared with the original one (red). This means that there is a contribution

from correlations to multifractality, along with the contribution of the PDF. Considering

the random phases spectrum (magenta), its width reduces drastically (the Δα variation is

about 0.32), which points to a significant contribution to multifractality coming from non-

Gaussianity and/or nonlinear correlations. The conclusion from both spectra is that the

PDF has the strongest contribution to multifractality. The contribution of the PDF is due

to the presence of strong intermittent bursts (extreme events) in the March 9 time series.

Since these bursts have been shown to be related to large current sheets (see (GOMES

et al., 2019)), the current sheets can be seen as the origin of most of the multifractality

in this time series. Fig. 4.8(b) confirms this conclusion by showing the Renyi exponent

as a function of q, where the random phases surrogate has a smaller concavity than the

shuffled surrogate.
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FIGURE 4.8 – (a) Multifractal spectrum of |B| for 2008 March 9 (red) and the respective surrogates:
shuffled (green), and random phases (magenta). (b) Renyi exponents for 2008 March 9 (red) and the
respective surrogates: shuffled (green), and random phases (magenta). Source: (BATISTA et al., 2022)

4.2.2.2 Magnetic Field time series, 2016 January 25

Figure 4.9 shows the time series for January 25 (black) with its shuffled (green) and

random phases (blue) surrogates. Figure 4.10 shows a significant width reduction in both

surrogate spectra in comparison with the original spectrum (blue). The spectrum of

the shuffled series (green) has a width Δα = 0.194, indicating a difference of 0.36 with

the spectrum of |B|. Similarly, the spectrum for the random phases series has a small

width, about Δα = 0.32, a difference of 0.23 with the spectrum of |B|. So, there is

strong influence from long-range correlations as well as non-gaussianity on the January

25 magnetic field multifractality, but the contribution of the correlations is preponderant,

since the shuffled spectrum is considerably narrower than the random phases spectrum.
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FIGURE 4.9 – Time series for 2016 January 25 (blue) and the respective surrogates: shuffled (green),
and random phases (magenta).
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FIGURE 4.10 – (a) Multifractal spectrum for 2016 January 25 (blue) and the respective surrogates:
shuffled (green), and random phases (blue). (b) Renyi exponents for 2016 January 25 (blue) and the
respective surrogates: shuffled (green), and random phases (magenta). Source: (BATISTA et al., 2022)
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4.2.2.3 Volatility time series, 2008 March 9

We proceed with the analysis of the origin of the multifractality for March 9 using the

volatility, as shown in Fig. 4.11 for the original (red), shuffled4 (green) and random phases

(magenta) time series. The corresponding multifractal spectra in Fig. 4.12 show a wide

parabola for the original volatility series (red) and two narrower parabolas related to its

shuffled (green) and random phases (magenta) series. The random phases spectrum has

a width of about Δα = 0.39 and the shuffled spectrum has a width of Δα = 0.35. Since

both spectra have approximately the same width, it shows an important feature that was

not so clear from the multifractal spectra of the |B| surrogate series (Fig. 4.11), that is,

the importance of the nonlinear correlations, which play a key role, together with the non-

gaussianity, in the origin of the multifractality for the March 9 series. Since the volatility

is computed with a lag-time of τ = 50s, it is better suited for measuring the relevance of

long-range nonlinear correlations than the time-differenced |B| series. Fig. 4.12 confirms

that the shuffled and random phases series have almost linear Renyi exponents, thus, the

series are closer to monofractal.

FIGURE 4.11 – Time series Volatility for 2008 March 9 (red) and the respective surrogates: shuffled
(green), and random phases (blue). Source: (BATISTA et al., 2022)

4Due to the formation of clusters in this time series, it was necessary to use the runs declustering
method (LEADBETTER, 1983). This declustering process is described in (GOMES, 2018; GOMES et al.,
2019)



CHAPTER 4. RESULTS 70

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

f(
)

Singularity Spectrum 

V 2008 March 9

Shuffled

Random Phases

a

-20 -15 -10 -5 0 5 10 15 20

q

-40

-30

-20

-10

0

10

20

30

(q
)

Renyi Exponent

V 2008 March 9

Shuffled

Random Phases

b

FIGURE 4.12 – (a) Multifractal spectrum for the volatility of 2008 March 9 (red) and the respective
surrogates: shuffled (green), and random phases (magenta). (b) Renyi exponents for the volatility of 2008
March 9 (red) and the respective surrogates: shuffled (green), and random phases (magenta). Source:
(BATISTA et al., 2022)

4.2.2.4 Volatility time series, 2016 January 25

Figure 4.13 shows the volatility time series of the January 25 time series (blue) and

its shuffled (green) and random phases (magenta) surrogates. Figure 4.14 shows the

corresponding multifractal spectra. Once again, the reduction in the width for both

surrogate spectra means that a mutual contribution to multifractality coming from long-

range correlations and non-Gaussianity is present, with a clear predominance of the long-

range correlations effects, since the shuffled spectrum is much narrower than the random

phases spectrum.
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FIGURE 4.13 – Time series of the volatility for 2016 January 25 (blue) and the respective surrogates:
shuffled (green), and random phases (magenta). Source: (BATISTA et al., 2022)
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FIGURE 4.14 – (a) Multifractal spectrum for the volatility of 2016 January 25 (blue) and the respective
surrogates: shuffled (green), and random phases (magenta). (b) Renyi exponents for the volatility of
2016 January 25 (blue) and the respective surrogates: shuffled (green), and random phases (magenta).
Source: (BATISTA et al., 2022)

4.2.2.5 Tables

A quantitative comparison of all the results for the |B| time series and volatility time

series of March 9 and January 25 is provided by Tables 4.1 and Fig. 4.15 to 4.3 and
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Fig. 4.17. Table 4.1 and Figure 4.15 show R2 for the Renyi exponent of |B| and its

volatility for March 9 and January 25; Table 4.2 and Figure 4.16 show the width of the

multifractal spectra, Δα; Table 4.3 and Figure 4.17 show the asymmetry of the spectra, A.

In general, all spectra for January 25 are right-asymmetric due to the importance of small

scale fluctuations; for March 9, some spectra are left-asymmetric due to the importance

of large-scale fluctuations, but the random phases show right asymmetry, since in the

random phases surrogate the effects of non-Gaussianity are destroyed.

TABLE 4.1 – R2 of the Renyi exponent for magnetic field and volatilities of 2008 March 9 and 2016
January 25. Source: (BATISTA et al., 2022)

March 9 (CS) January 25

|B| Volatility |B| Volatility

Original 0.80413 0.97464 0.98597 0.98125

Shuffle 0.97505 0.96748 0.99537 0.99573

Random Phases 0.98185 0.99637 0.99601 0.99424

R²
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FIGURE 4.15 – Coefficient of Determination, R2, of the Renyi exponent for magnetic field and volatilities
from 9th March, 2008, 25th January, 2016, and its surrogates.

TABLE 4.2 – Width of α, Δα, for magnetic field and volatilities of 2008 March 9 and 2016 January 25.
Source: (BATISTA et al., 2022)

March 9 (CS) January 25

|B| Volatility |B| Volatility

Original 0.54112 0.94134 0.55568 0.74921

Shuffle 0.36663 0.40332 0.19468 0.19873

Random Phases 0.21802 0.39299 0.32181 0.43088
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FIGURE 4.16 – Width of α, Δα, for magnetic field and volatilities from 9th March, 2008, 25th January,
2016, and its surrogates.

TABLE 4.3 – Spectrum Asymmetry, A, for magnetic field and volatilities of 2008 March 9 and 2016
January 25. Source: (BATISTA et al., 2022)

March 9 (CS) January 25

|B| Volatility |B| Volatility

Original 0.49873 0.63885 1.10709 1.31215

Shuffle 0.51279 0.53342 1.30854 1.18283

Random Phases 1.33583 1.41817 1.45999 1.47002

0 0.5 1 1.5

|B| March 9

|B| January 25

V March 9

V January 25

Original

Shuffled

Random Phases

Spectrum Asymmetry

00.10.20.30.40.50.60.7

|B| March 9 (CS)

|B| January 25

V March 9 (CS)

V January 25

RIGHT-SKEWEDLEFT-SKEWED

FIGURE 4.17 – Spectrum Asymmetry, A, for magnetic field and volatilities from 9th March, 2008, 25th
January, 2016, and its surrogates.

4.2.3 Zeta Function

In Fig. 4.18, the linear K41 theoretical zeta scaling exponent function is shown by the

black dashed line while the IK scaling exponent is denoted by a dotted line. The top
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panel (a) also shows the zeta scaling exponent computed from the time series of |B| for
the intermittent series of March 09 (red line with circles) and for the current sheet-free

series of January 25 (blue line with diamonds). The zeta function for the March 09 series

clearly departs from the linear behavior, as expected for multifractal intermittent series,

but, surprisingly, the zeta function exhibits an almost linear relation with p in the case

of January 25, despite the fact that both series have multifractal spectra with similar

widths (see Fig. 4.5). Thus, one should be cautious before using the behavior of the

scaling exponent as a definite measure of multifractality, although it is a good measure

of intermittency. To confirm this result, Fig. 4.18 (left panel) compares the zeta scaling

exponents of the March 09 |B| series (red line with circles) with the zeta scaling exponents

of its random phases series (magenta line with triangles). Since the random phases series

has a Gaussian PDF, it removes from the original series the intermittent extreme events

responsible for the fat-tailed PDF and the zeta scaling exponent becomes linear, following

the K41 line.
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FIGURE 4.18 – (a) Zeta functions for the magnetic field time series for 2008 March 9 (red circles) and
2016 January 25 (blue diamonds). (b) Left: Zeta functions |B| 2008 March 9 and its Random Phases
(magenta triangles). (c) Right: Zeta functions for |B| 2016 January 25 and its Random Phases (magenta
triangles). The dashed lines represent the Kolmogorov K41 scaling and the dotted line, IK. Source:
(BATISTA et al., 2022)

This result confirms the importance of the contribution from a fat-tailed PDF to the

multifractality of the March 09 series. In Fig. 4.18 (right panel), the same analysis is
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done for the January 25 series, where both the original series and its random phases show

an IK linear behavior, since none of the series has fat-tailed PDF, although they have

multifractal spectra (see the blue and magenta spectra in Fig. 4.9). We conclude from

this that the ζ-function is a good measure of multifractality due to PDF, but misses the

contribution of long-range correlations to the multifractality.

4.2.4 p-model

Figure 4.19 shows the MF-DFA multifractal spectra for the volatility series of March

9th (red circle) and January 25th (blue diamond). The p−model fits obtained from Eqs.

(3.36) and (3.37) in Section 3.7 are also shown (black line with dots). The values of p1, dp

and l1 were obtained with a Monte Carlo method that minimized the mean squared error

between the original and fitted spectra. For March 9th, we obtained p1 = 0.71, dp = 0.17

and l1 = 0.68. For January 25th, we obtained p1 = 0.51, dp = 0.11 and l1 = 0.66. The

agreement between the observational and theoretical curves confirms that the solar wind

multifractal spectra can be obtained from a turbulence cascade process.
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FIGURE 4.19 – Left: Multifractal spectrum for the volatility of 2008 March 9 (red circle) and its p−model
fit (black line with dots). Right: Multifractal spectrum for the volatility of 2016 January 25 (blue
diamond) and its p−model fit (black line with dots). Source: (BATISTA et al., 2022)

This is a remarkable result, since the p−model was specifically elaborated to represent

turbulent cascade processes, and will usually not be able to approximate the multifractal

spectra of purely stochastic processes in general.
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TABLE 4.4 – p-model fit values (p1, l1 and dp) for volatilities from 9th March, 2008 and 25th January,
2016

Volatility March 9 (CS) January 25

p1 0.71 0.51

l1 0.68 0.66

dp 0.17 0.11

p-Model Fit Parameters
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FIGURE 4.20 – p-model fit values (p1, l1 and dp) for volatilities from 9th March, 2008 and 25th January,
2016

Figure 4.21 presents a comparative analysis between the solar wind volatility time

series and the p−model time series. The upper panels display the solar wind series for

March 9 (a) along with its corresponding p−model representation (b), while the lower

panels showcase the solar wind series for January 25 (c) and its corresponding p−model

depiction (d). In both instances, a noticeable qualitative resemblance is observed between

the observational and p−model time series.

FIGURE 4.21 – (a) Volatility time series for 2008 March 9 (red) and (b) generated p−model time series
(black) by 10th iteration. (c) Volatility time series for 2016 January 25 (blue) and (d) generated p−model
time series (black) by 15th iteration. Source: (BATISTA et al., 2022)
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Afterward, we proceed to compare the Power Spectral Densities (PSDs) obtained from

p−model turbulent time series and the observational solar wind volatility time. Fig. 4.22

displays a comparative analysis between observed and simulated Power Spectral Densities

(PSDs). The upper panels of Fig. 4.22 exhibit the PSDs for the volatility time series of

March 9, 2008 (left) and January 25, 2016 (right). The blue region delimited by vertical

dashed lines corresponds to the inertial range, while the red line represents the linear

regression with slope −5/3 for the March 9 series and −3/2 for the January 25 series.

Consequently, the March 9 series, characterized by its high intermittency and presence

of current sheets, exhibits a K41 scaling. In contrast, the January 25 series, which lacks

current sheets, displays an IK scaling. These findings were previously established by LI et

al. (2011) and confirmed by GOMES et al. (2019) through PSDs computed from the time

series of |B|.

FIGURE 4.22 – (a) Left: Power spectral density for 2008 March 9 volatility. (a) Right: Power spectral
density for 2016 January 25 volatility. (b) Left: Power spectral density for generated p−model time series
from 2008 March 9 volatility. (b) Right: Power spectral density for generated p−model time series from
2016 January 25 volatility. The blue regions mark the inertial range and the red lines are the linear fits
for those intervals. Source: (BATISTA et al., 2022)

It is important to note that in both cases, the inertial range extends almost throughout

the entire PSDs, primarily due to the small dissipation term of p−model. From our

analysis, we can confidently conclude that a K41 intermittent turbulence cascade is the
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driving mechanism behind the multifractality observed in the current sheet-filled time

series on March 9, while an IK turbulence cascade is responsible for the multifractality

observed in the January 25 series. This finding aligns with our previous investigations of

other time series, demonstrating that current sheets are responsible for K41 turbulence

multifractality, whereas the absence of current sheets leads to IK turbulence multifractality

in the solar wind (refer to Table 4 in (GOMES et al., 2019)).

4.3 Active Region Data

4.3.1 AR 11158

In this second problem, we focus on observation of a specific active region. The

AR 11158, observed by the Solar Dynamics Observatory (SDO) spacecraft, presents a

substantial flare activity, with emphasis on the presence of a X-class flare. The vector

magnetograms have been obtained by Space-Weather Helioseismic and Magnetic Imager

(HMI) Active Region Patches (SHARP) (SCHERRER et al., 2012), with a pixel resolution

of 0.5�� (≈ 360 km) and a time resolution of 12 minutes (Figure 4.23(a,b,c)). As cited

before, the AR 11158 is know by its intense flare activity and because of this, has been

continuously studied through the years (TORIUMI et al., 2014; GEORGOULIS, 2013; LI; LIU,

2015; SORRISO-VALVO et al., 2015). This active region started its development on February

9th 2011 with a lifetime about 11 days in the solar southern hemisphere. During this

period, it was possible to detect about ten C-class, five M-class, and one X-class flare,

which is the first one of Solar Cycle 24 (SCHRIJVER et al., 2011). All these events are

directly related to the quadrupole (N1-P1 and N2-P2, Fig.4.23) system which evolves

thought the days generating a large number of Emerging Flux Regions (EFR). Based on

these informations, we defined a 150 hours interval of observation time for this region,

representing about 750 SHARP magnetogram data frames (Figure 4.23). By setting

the initial measurement time at February 9th at 22:00:00 UT, we can follow the most

important flare events, in particular for this work, two M-class flares (first at February

13th 17:28:00 UT and the second one at February 16th at 7:35:00 UT) and in the X-class

flare (February 15th at 1:44:00 UT).

For these two-dimensional structures we have applied the 2-D MFDMA method (sec-

tion 3.4.1) with the following parameters: ni = 10 and nf = N/2, where N is the length

of the smallest size axis; q varies between −5 and 5 with an increment of Δq = 0.25,

and θ = 0 (BMA) (Figure 4.23(d)). From this point, it was possible to obtain the Renyi

exponent and the singularity spectrum from each magnetogram and at last generate dif-

ferent time series of multifractal parameters as A, Δα and R2 with respect the the active

region’s progress (BATISTA et al., 2022).
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4.4 Active Region Results

4.4.1 Multifractal Analysis of AR 11158

Figure 4.24 shows the time evolution of the multifractal parameters of AR 11158

magnetograms. As we can see in Figure 4.24(a), the multifractal strength parameter Δα

grows, especially in the first 38 hours, following the appearance and growth of the active

region. After this first continuous increase, it is possible to see a slight decay until ≈
58 hours (just 5 hours before the flaring activity begins). Subsequently, we see a growth

recovery that goes through the first M-class flare (M6.6) and it has a new decay between

the second M-class (M2.2) flare and the X-flare (X2.2) in February 15 (100 hours later).

Afterwards, we detect a small decline in the Δα value, but remaining in a plateau interval

varying from ≈ 1.7 − 2.1. Now, for the R2 parameter, we known from Eq. (3.12) that

when the values are moving away from 1 the structure is more multifractal. In Figure

4.24(c) it is observed a significant reduction of R2 parameter until 38 hours of active region

evolution. In general, the R2 parameter behavior follows the same mode pattern noted

for Δα data, but due to its smoother behavior, it is possible to see a slight multifractal

decrease in relation with time.
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FIGURE 4.23 – (a, b, c) Spatial distribution of the vertical component of the magnetic field (Bz) for
AR 11158 at three different times and (d) the multifractal parameters (Renyi Exponent and Singularity
Spectrum) for the X-class flare instant (15-Feb-2011 2:00 UT). N1, N2, P1, P2 are the negative and
positive polarities respectively of AR and the black contour points the region of the X2.2 flare event.

Another important parameter obtained from the multifractal spectrum is the asym-

metry A (Eq. (3.11)). In this case, the first point observed in Figure 4.24(b) that needs

to be emphasized is the range where the parameter is kept. All values are lower than 1,
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i.e., all singularity spectra are left-skewed asymmetric. This left asymmetry points to a

larger contribution of large fluctuations to multifractality of all Bz frames. Low A values

denote a high left asymmetry. In the first 20 hours (≈ 11-Feb-2011 18:00 UT) we see a

maximum asymmetry and after that, the spectra continuously become less asymmetric

if compared with the initial activity. Skipping the first M-class flare, we also see minor

variations nearby the flares, e.g. M2.2 and X2.2-class flares.

FIGURE 4.24 – Multifractal parameters (Renyi Exponent and Multifractal Spectrum) evolution for Mag-
netic field (Bz) of AR 11158. (a) and (b) represent theΔα variation and the alpha asymmetry respectively
(both obtained from singularity spectrum); (c) is the R2 variation from Renyi exponent. The gray area
refers to flare activity interval, the red (M-class) and blue (X-class) dashed lines show the flare moments.
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4.4.2 Vortex Detection in AR 11158

The detection of photospheric Lagrangian coherent structures is primary to understand

the evolution of its magnetic field. In 2018, SILVA et al. proposed the use of the lagrangian

averaged vorticity deviation (LAVD) method to detect persistent objective velocity field

vortices on the quiet Sun photosphere. Later, CHIAN et al. (2019) kept the study by linking

with attracting/repelling LCS. So, CHIAN et al. (2023), also detected objective magnetic

vortices on the quiet Sun region, but through the z component of the current. This work

presents the first objective magnetic vortex detection by applying the IACD method in

the AR photosphere. We compute the Integrated Averaged Current Deviation (IACD) to

AR 11158 interval SHARP data using the horizontal components of the magnetic fields

(Figure 4.25).
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FIGURE 4.25 – Spatial distribution of IACD for AR 11158 in different times. (b) Presents the first
magnetic vortex VM in a 22 × 22 Mm window and (c) shows a second active vortex VX in a 18 × 18 Mm
window.

In addition to the primary goal of vorticiy detection, our intent, after obtaining the

IACD fields from the AR 11148, was also analyzing the multifractality of theses fields

in the same way as previously done for the Bz frames. We detected persistent objective

vortices in particular regions and time intervals of the data, as shown in the Figure 4.25.

So, from now on, the analysis of these vortical patterns becomes our main focus.

A first objective magnetic vortex VM was detected at about 2011 February 13 22:48

UT in the region shown in Fig. 4.25(b), nearby a region formed by two merging magnetic

structures. Figure 4.26 shows the time evolution of this 4 Mm vortex during its almost

18 hours lifetime through a 179-200 Mm (x axis) × 66-87 Mm (2 axis) zoom region.

This persistent objective vortex oscillates across the AR 11158 for 12 hours and then
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lowers the intensity for about 3 hours, until it regains the strength for a few hours before

completely disappearing at 2011 February 14 17:24 UT. In addition to the evidence of

vortex detection, another intriguing observation can be pointed out. The instant at which

the vortex disappears matches with the M2.2-class flare beginning (2011 February 14 17:20

UT). This observation suggests that these phenomena are inextricably linked, and that

the processes which generated the appearance of the M-class flare effectively caused the

destruction of the vortex, i.e., the disappearance of a persistent objective vortex can be

an indication of the formation of a flare of a higher intensity.
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FIGURE 4.26 – Spatial distribution of the IACD around the vortex VM region (179-200 Mm × 66-87
Mm) for different times. The first frame (a) marks the beginning of the vortex formation and the last
one (f) its end. The blue contours denote the objective vortex boundary.

We also found a second objective vortex VX formed at ≈ 2011 February 14 10:00 UT

in the region shown in Fig. 4.25(c). Figure 4.27 shows the 16 hours lifetime of this second

magnetic vortex with ≈ 6 Mm of diameter observed in a (151-169 (x axis) × 90-108 Mm

(y axis) ) window. Unlike the first one, the IACD intensity of this vortex doesn’t vary as

much over time, at least for the first 14 hours. Then, for the next 2 hours, this coherent

structure significantly reduces its intensity reaching a total vanishing at 2011 February 15

2:00 UT. Following the same pattern as VM , the point of extinction of this vortex coincides

with the moment of an X-class flare emergence (2011 February 15 1:44 UT).
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FIGURE 4.27 – Spatial distribution of IACD for the magnetic vortex VX region (151-169 × 90-108 Mm)
at different times. The first frame (a) marks the beginning of the vortex formation and the last one (f)
its end. The blue contours denote the objective vortex boundary.

When we analyze the region of Lagrangian vortex formation VX under the magnetic

field perspective, it is possible to see the evolution of the fast rotating sunspot related to it.

As already observed in JIANG et al.; SONG et al. (2011,2013), this negative polarity structure

evolves in the P2 region direction until it hits it at the exact moment of the X2.2 flare

event, Figure 4.28. The SONG et al. (2013) study also related the acceleration of a southwest

rotating sunspot and reaching positive polarities near the N2 region (Figure 1.2). However,

our results lead to the objective vortex VM , which is placed in a different region of the

AR, just above the region P1. The observation of magnetic field evolution in the vortical

zoom region also suggests an interaction of the related fast rotating sunspot and the P2

region, as we can see in Figure 4.29.
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FIGURE 4.28 – Bz component of the magnetic field for the region of active vortex VX (151-169 × 90-108
Mm) at different times. The black contours denote the objective vortex.

These observations confirm the results from SONG et al. (2013) which tracked the evo-

lution of all polar structures of AR 11158. That work proposed a relation between a

negative polarity region (clockwise rotating sunspot) and P2 at the moment they are get-

ting near the X2.2 flare (Figure 1.2). Our detection of the objective vortex confirms the

idea proposed by JIANG et al. (2011) that suggests that the cancellation and the collision

of these opposite polarity structures are the trigger for an energy releasing of major flare.
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FIGURE 4.29 – Bz component of the magnetic field for the region of active vortex VM (179-200 Mm ×
66-87) at different times. The black contours denote the objective vortex.

Given the intensity of the X-class flare, we concentrate our interest on time evolution of
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the objective vortex VX , associated with such powerful event (JIANG et al., 2011; SUN et al.,

2012). With that being said, we analyzed the multiscale behavior of the region containing

the related vortex by applying the same methodology proposed in section 4.4.1, using

the two dimensional MFDMA method (section 3.4.1, (GU; ZHOU, 2010)) over a 25 hours

observation which involves the 16 h lifetime flare. We select the same window size region

(151-169 × 90-108 Mm) for the 126 frames of the IACD field. For this new window, we

set the scale parameters (ni = 5 and nf = N/2; −5 ≤ q ≤ 5 with Δq = 0.25 increment,

and θ = 0 (BMA)).
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FIGURE 4.30 – Time evolution of multifractal spectrum of IACD field for active vortex VX region (151-
169 × 90-108 Mm). The first frame (a) marks the beginning of the vortex formation and the last one (f)
its end.

Figure 4.30 shows the evolution of the multifractal spectrum calculated inside the VX

vortex window. As we can see, the multifractal spectrum remains left asymmetric, i.e., a

bigger contribution of large fluctuations for the image multifractality, over all vortex life-

time; but it turns right-skewed, i.e., with a larger contribution to multifractality coming

from small fluctuations, just after the vortex vanishing (see, also, Fig. 4.31b). Another

important point observed in Figs. 4.30 and 4.31a is the Δα size variation through time.

Figure 4.31 brings out more precisely the parameters variations observed in the multi-

fractal spectrum (Fig. 4.30) and Renyi exponent. Both Δα and R2 evolution highlight

the multifractality growth following the vortex emergence, the first one through the value

increase and R2 via value reduction. For Fig. 4.31a, it is possible to see significant oscilla-

tion of Δα values before the vortex beginning of ≈ 1.1. However, this value grows to 1.5

at 2011 February 14 10:00 UT and continues to rise for the next 5 hours until it reaches

values around 1.8. After that, we see a small decrease (1.4), but followed by a substan-

tial recovery for 6 hours later, with ≈ 1.9 values. Figure 4.31a even shows the intensity
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reduction 2 h before the vortex extinction observed at Fig. 4.27 and for Fig. 4.31b, a left-

asymmetry reduction until it reaches a transition region with right-asymmetric spectra.

These results enhance the idea that such coherent structure contributes to multifractality

increase in this region.

FIGURE 4.31 – Multifractal parameters (Renyi Exponent and Multifractal Spectrum) evolution for IACD
field of the vortex VX region (137-192 × 73-128 Mm) during its activity interval. (a) and (b) represent
the Δα variation and the α asymmetry respectively (both obtained from singularity spectrum); (c) is
the R2 variation from Renyi exponent. The blue dashed line refers to X2.2-class flare. The gray region
represents the vortex lifetime.

Next, we compare the result for Δα value evolution over a 25 hours interval with other

IACD vortex parameters. Fig. 4.32 shows the temporal evolution of the vortex area, the

IACD maximum value (IACDmax) obtained inside the vortex boundary, and the total
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IACD (IACDtotal) (black line) value inside the boundary (blue contour in Fig. 4.27) at

each frame. As demonstrated by Fig. 4.32, all three parameters follow the global behavior

of Δα (red line) during the entire existence of the vortex. In particular, IACDmax and

IACDtotal present a noticeable proximity to Δα variations, even the intensity reduction at

2011 February 14 14:48 UT. This correlation with the multifractal intensity value suggests

that multifractality of each frame is sensitive not only to the vortex dimensions, but also

to local intensity of IACD inside the vortex.

FIGURE 4.32 – Temporal evolution of parameters related to boundary of the objective vortex VX in the
region (137-192 × 73-128 Mm) during the its activity interval. (a) represent the area of the vortex, (b)
is the maximum IACD value inside the vortex, and (c) shows the total IACD contained in boundary
contour. The red line refers to Δα evolution and blue dashed line refers to X2.2-class flare. The gray
region represents the vortex lifetime.



5 Conclusion

We have presented a new methodologies for multifractal analysis of solar wind and pho-

tospheric magnetic field data. For the solar wind, we employed the MF-DFA, volatility

and surrogate time series. The MF-DFA provides a standard way to generate the singular-

ity spectrum and the Renyi exponent; the volatility enhances the extreme events, stressing

the differences between series with current sheets and series without current sheets; the

surrogate time series provide a way to infer the origin of multifractality (BATISTA et al.,

2022). Additionally, the p-model was used to reproduce the multifractal behavior of the

solar wind series, indicating that a nonlinear turbulence energy cascade process is behind

the observed dynamics. A similar framework for multifractal analysis, but without the

volatility and the p-model, was used by CHATTOPADHYAY et al. (2018) in the analysis of

CME linear speed data in the solar wind.

Just like in GOMES et al. (2019), we found the volatility to be very useful to highlight

the role of current sheets. In our case, they increase the signature of multifractality due

to PDF in the singularity spectra. The surrogate analysis of both original and volatil-

ity series shows that for time series with current sheets, multifractality is due to both

intermittency and nonlinear correlations; for time series without current sheets, it is pre-

dominantly produced by the long-range correlations. The p−model analysis reveals that

those are mainly nonlinear correlations, since the process behind the statistics is a nonlin-

ear turbulent energy cascade. So, turbulence is the common source of the multifractality,

but current sheets are the source of the left asymmetry of the singularity spectrum, as

well as the nonlinear scaling exponent for the structure functions. In the absence of cur-

rent sheets, the small-amplitude fluctuations are the main source of the right asymmetry

of the singularity spectrum. It is important to stress that despite being a multifractal

process, the current sheet-free series exhibits an almost linear scaling exponent for the

structure functions, which is sometimes confused with a monofractal process in the liter-

ature. Our results indicate that the Renyi exponent is more sensitive to multifractality

due to correlations than the structure function scaling exponent (zeta function).

In dealing with separate cases where the presence or absence of current sheets is con-

sidered, we are attacking one of the “nine outstanding questions of solar wind physics”,

related by VAILL; BOROVSKY (2020), namely, the origin and evolution of the mesoscale
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(timescales in the range of minutes up to a few hours) plasma and magnetic-field structure

of the solar wind. These current sheets have been associated with the border between

adjacent flux tubes (BRUNO, 2019), while also being related to nonlinear turbulent inter-

actions rather than the presence of advected pre-existing flux-tube structures (BOWEN et

al., 2018). In the present work, we did not focus on the origin of those coherent structures,

but measured their weight on the statistics of solar wind fluctuations. We did this not

only through Fourier spectral indices and the scaling of structure functions, as in SALEM

et al. (2009) , but their contribution to multifractality was explored in depth through

the MF-DFA, volatility and surrogate techniques. As we said, our results reveal that

although the scaling of the structure functions may be almost linear for series without

current sheets, the singularity spectra may still display broad parabolas, the signature of

highly multifractal signals. Thus, the scaling exponent of structure functions is adequate

to measure multifractality due to PDFs, but not for multifractality due to long-range

correlations, where the Renyi exponent and singularity spectra should be adopted.

Considering the results obtained from AR 11158, we once again presented an un-

precedented methodology to active regions research. The previous works usually used

restricted methods, e.g., WTMM method (MCATEER et al., 2007), and fractal dimension

(GEORGOULIS, 2005) to see any possible multifractal behavior in these turbulent regions.

The use of the MF-DMA method to process and measure the complexity of active regions

brings a new perspective over a possible prediction when linked with LCSs analysis. The

results related with multifractal parameters of the magnetograms leads to growth of the

multifractality tracking the active region progression. Therefore, our results agree with

the results presented at ABRAMENKO; ABRAMENKO (2005). Now, considering the level of

self-similarity for pre-flare and post-flare events, e.g. M6.6 and X2.2 flare (GEORGOULIS,

2005; GEORGOULIS, 2013), until the present moment it is not possible to differ both mo-

ments. However, if we compare with the region before the flaring activity Fig. 1(4.24),

there is a significant variation of parameters.

Furthermore, the results obtained from the IACD method confirm the concepts defined

at ZHANG et al.; JIANG et al.; SONG et al. (2007, 2011, 2013). As the papers suggest, the

rotation evolution of a negative sunspot deeply relates to objective vortex formation and

M2.2 flare formation and fast rotation of the sunspot related to P2 linked to X2.2 flare

event. So, we consider that the fast sunspot rotation is responsible for magnetic vortex

formation, injecting helicity and shearing in the magnetic fields and giving the needed

energy to an extreme flare eruption. As an extra analysis, we observed how the two-

dimensional MFDMA is an effective tool to analyse vortical structures and its link with

the measurements of intensity of the inner boundary regions of the magnetic vortex.

In conclusion, the apllication of Integrated Averaged Current Deviation (IACD) defined

by REMPEL et al.; REMPEL et al. (2016) provides an efficient tool not only for quiet Sun
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regimes (CHIAN et al., 2020) but also to active regions, reinforcing the relation of turbulent

flows present at the photosphere and lagrangian coherent structures.

Still regarding the multifractal analysis of active regions, it is important to empha-

size that we are in the first steps of this exploration. An important improvement to our

work would be a comparative analysis with the magnetograms of different AR with high

and low levels of magnetic activity and flares. This study would provide a robust con-

firmation of our preliminary results. Alongside this approach, we are currently applying

other nonlinear data analysis methods, such as the Complex Entropic Form (ROSA et al.,

2000; RAMOS et al., 2000), which measures the disorder in amplitude and phase related

to magnetic field components. Finally, we plan to perform a more careful examination of

AR 11158 in terms of objective vortex detection and a possible relation with other flare

events, e.g. M2.2, M1.0, and M1.6. Positive results would provide strong evidence for the

influence of intense sunspot rotation on eruptions.
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fluctuation analysis based on moving average filtering. Physica A: Statistical Mechanics
and its Applications, v. 354, p. 199–219, 2005. ISSN 0378-4371.

ATTIE, R.; INNES, D.; POTTS, H. Evidence of photospheric vortex flows at
supergranular junctions observed by fg/sot (hinode). Astronomy & Astrophysics,
v. 493, n. 2, p. L13–L16, 2009.

BAI, T.; STURROCK, P. A. Classification of solar flares. Annual review of astronomy
and astrophysics, v. 27, n. 1, p. 421–467, 1989.

BARRETT, J. P. The coefficient of determination: sme limitations. The American
Statistician, v. 28, n. 1, p. 19–20, 1974.

BARUNIK, J. et al. Understanding the source of multifractality in financial markets.
Physica A, v. 391, p. 4234–4251, 2012.

BATISTA, L. F. G. et al. Origin of multifractality in solar wind turbulence: the role of
current sheets. Monthly Notices of the Royal Astronomical Society, v. 519, n. 3, p.
3623–3634, 12 2022.

BISKAMP, D. Magnetohydrodynamic turbulence. Cambridge: Cambridge University
Press, 2003.

BOLZAN, M. J. A.; ROSA, R. R. Multifractal analysis of interplanetary magnetic field
obtained during cme events. Annales Geophysicae, v. 30, p. 1107, 2012.



BIBLIOGRAPHY 92

BOWEN, T. A. et al. Impact of residual energy on solar wind turbulent spectra. ApJ,
v. 865, p. 45, 2018.
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A B S T R A C T 

In this work, a multifractal framework is proposed to investigate the effects of current sheets in solar wind turbulence. By using 

multifractal detrended fluctuation analysis coupled with surrogate methods and volatility, two solar wind magnetic field time 
series are investigated, one with current sheets and one without current sheets. Despite the lack of e xtreme-ev ents intermittent 
bursts in the current sheet-free series, both series are shown to be strongly multifractal, although the current sheet-free series 
displays an almost linear behaviour for the scaling exponent of structure functions. Long-range correlations are shown to be the 
main source of multifractality for the series without current sheets, while a combination of heavy-tail distribution and non-linear 
correlations is responsible for multifractality in the series with current sheets. The multifractality in both time series is formally 

shown to be associated with an energy-cascade process using the p -model. 

Key words: turbulence – methods: data analysis – methods: statistical – solar wind. 

1  INTRODU CTION  

Fractals have been widely employed in non-linear analysis along 
the past decades as a form of representing the complex topolog- 
ical structures produced by dynamical systems. These topological 
structures are subsets of the phase space that may represent chaotic 
attractors, stable or unstable manifolds, boundaries between basins 
of attraction, etc. Thus, when dynamical systems are investigated 
through non-linear time series analysis, the fractal indices computed 
from the time series somehow represent the complexity of the 
structure of an underlying set on which the solution lies. Addi- 
tionally, the dynamical structure could be represented by either a 
monofractal or a multifractal process. A monofractal process has 
a scaling law for a fluctuation function that is a linear function of 
statistical moments with a single scaling exponent. A multifractal 
process has a power-law scaling that is a non-linear function of
statistical moments with a range of scaling exponents (Salat, Murcio 
& Arcaute 2017 ). A monofractal scaling is to be expected from 

dynamical processes behind perfectly self-similar fractal sets, like 
deterministically generated Cantor sets (Cantor 1883 ), or even from 

white noise time series (Ihlen 2012 ); multifractals, on the other 
hand, are observed in inhomogeneous systems, such as strongly 
intermittent turbulence, where the presence of strong fluctuations 
related to coherent structures localized in space generates a departure 
from Gaussianity in probability distribution functions (PDFs) of 
small-scale structure functions (Carbone et al. 2004 ), as seen in 
several analyses of observational magnetohydrodynamic (MHD) 

� E-mail: erico rempel@yahoo.com.br 

data [see e.g. Marsch & Tu ( 1998 ), Burlaga ( 2001 ), and Bruno ( 2019 ) 
for re vie ws on turbulence, intermittency, and multifractal scalings in 
the solar wind]. 

A series of recent works have confirmed the complex and 
multifractal nature of solar wind fluctuations. Chang, Tam & Wu 
( 2004 ) studied the origin of complexity in space plasmas using 
MHD simulations, dynamic renormalization group, and wavelet 
analysis, arguing that the turbulent plasmas in the solar wind and 
auroral regions are dominated by a combination of propagating 
modes and non-propagating intermittent non-linear structures, whose 
interactions with charged particles may lead to the energization of 
plasma populations such as auroral ions. Macek ( 2007 ) employed 
Voyager magnetic field data in the outer heliosphere and Helios 
plasma data in the inner heliosphere to show that multifractal spectra 
of intermittent solar wind fluctuations are consistent with those of the 
generalized two-scale weighted Cantor set. Bolzan & Rosa ( 2012 ) 
analysed magnetic field data from the ACE satellite and conjectured 
that the presence of large-scale coherent structures during coronal 
mass ejections (CMEs) decreases the multifractality, when compared 
with periods after the CME ev ents. Wav elet-leader multifractal anal- 
ysis of magnetospheric dissipations, as measured by the AL index, 
reveals that the magnetosphere is a multiscale, complex, turbulent 
system, driven into a non-equilibrium self-organized state, which 
may explain the observations of repeatable and coherent substorm 

phenomena with underlying complex multifractal behaviour in the 
plasma sheet (Valdivia et al. 2013 ). The interaction of the solar wind 
with the Earth’s magnetosphere also contributes for multifractality in 
measurements of the geomagnetic activity, such as the geomagnetic 
induced current (Wirsing & Mili 2020 ) and the Dst index (Ogunjo 
et al. 2021 ), although internal sources of multifractality must also 
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be considered, as Gopinath ( 2016 ) suggests that multifractality 
of the auroral electrojet index is fairly independent of the solar 
activity c ycle. Wa wrzaszek, Echim & Bruno ( 2019 ) characterized 
multifractality in intermittent turbulence of heliospheric magnetic 
field fluctuations from the Ulysses spacecraft, concluding that inter- 
mittency/multifractality decreases with heliospheric distance, a result 
that was confirmed by Kiran et al. ( 2021 ). Recent analysis of electron 
density fluctuations in the E–F valley region of the ionosphere 
performed with the multifractal detrended fluctuation analysis (MF- 
DFA) method showed that irregularities are multifractal, asymmetric, 
intermittent, and non-homogeneous (Neelakshi et al. 2022 ). 

The direct link between intermittency and multifractality of 
magnetic and velocity field fluctuations in the solar wind was made 
clear in Salem et al. ( 2009 ). Using data from the Wind spacecraft, 
they applied the Haar wavelet transform to filter out intermittency 
from the time series and showed that the scaling exponents for the 
structure functions behave as a linear function of statistical moments, 
as in monofractal processes, therefore attributing multifractality in 
the solar wind to intermittency. Gomes et al. ( 2019 ) obtained a similar 
linear scaling after filtering out the current sheets from Cluster-1 
intermittent magnetic field data, suggesting that the current sheets 
are the coherent structures responsible for the non-linear scaling of 
the structure functions in the solar wind. This was confirmed after 
inspection of time series of days when current sheets were absent, 
which also showed a linear scaling. 

A question remained on whether the linear scalings found by 
Salem et al. ( 2009 ) and Gomes et al. ( 2019 ) indeed imply that the 
filtered time series are monofractal or not; i.e. is the non-linearity of 
the distribution of scaling exponents of structure functions a general 
measure of multifractality or is it just an indication of intermittency, 
one among different possible sources of multifractality? One of the 
goals of the current work is to answer this question. In this sense, it 
is important to stress that the origin of multifractality is not al w ays 
related to fat-tailed PDFs, as it may also be caused by different 
correlations in small and large fluctuations, such as linear or non- 
linear correlations (Kantelhardt et al. 2002 ; Wu et al. 2018 ). The 
source of multifractality can be investigated by producing surrogates 
from the original time series. Two types of surrogates are useful 
in this context (Theiler et al. 1992 ; Lancaster et al. 2018 ). First, 
shuffling the amplitudes of the original signal breaks all long-range 
correlations, while keeping the PDF unchanged. Therefore, if the 
multifractality is due to fat-tailed PDFs, it cannot be remo v ed by 
shuffling the series. If it is due, solely, to time correlations, the 
corresponding shuffled series will be monofractal. If both fat-tailed 
PDF and linear/non-linear correlations are present, the multifractality 
of the shuffled series should be smaller than that of the original series 
(Barunik et al. 2012 ). The second type of surrogate is produced by 
randomizing the phases of the Fourier modes of the original time 
series, producing a new series with Gaussian PDF, but preserving the 
linear correlations of the original series. If the random phase time 
series becomes monofractal, then non-linear correlations and/or non- 
Gaussian PDFs are the source of multifractality. If the multifractality 
is preserved in the random phase time series, then linear correlations 
are its source. 

Studies of surrogate time series have been conducted to probe 
the origin of multifractality in a wide range of contexts, including 
financial markets (Barunik et al. 2012 ), human gate diseases (Dutta, 
Ghosh & Chatterjee 2013 ), near-fault earthquake ground motions 
(Yang, Zhang & Liu 2015 ), solar irradiance fluctuations (Madanchi 
et al. 2017 ), air pollutants (Dong, Wang & Li 2017 ), meteorological 
time series of air pressure, air temperature and wind speed (Gos 
et al. 2021 ), and rainfall records (Sarker & Mali 2021 ). The surrogate 

method was also employed in time series of CME linear speed during 
solar cycle 23 to conclude that the multifractality is due to both 
the broad PDF and long-range time correlations (Chattopadhyay, 
Khondekar & Bhattacharjee 2018 ). In this paper, we use the method 
to reveal the role of current sheets in the origin of multifractality in 
the solar wind. By analysing two qualitatively different magnetic 
field time series from Cluster-1, one filled with current sheets 
and another one void of current sheets, we develop a non-linear 
methodology based on the MF-DFA method coupled with the 
volatility and surrogate time series. Thus, the contribution of small- 
and large-scale magnetic fluctuations can be quantified in different 
types of multifractal solar wind series. It is revealed that when the 
multifractality is not mainly due to the PDF, the scaling exponents 
display an almost linear behaviour as a function of the moments of 
the structure function, despite the presence of strong multifractality 
in the series. In addition, we employ the p -model (Halsey et al. 1986 ; 
Meneveau & Sreenivasan 1987 ) to confirm that the multifractality in 
both types of solar wind time series can be attributed to a turbulent 
energy-cascade process. 

This paper is organized as follows: In Section 2 , the MF-DFA 

methodology is briefly described; in Section 3 , the multifractal 
analysis of two solar wind time series is conducted, including their 
volatility time series; Section 4 analyses the surrogate of the original 
and volatility time series, to determine whether the source of the 
multifractality in the solar wind is due to PDF or correlations; 
Section 5 presents the scaling exponent analysis of the original and 
surrogate times series; and Section 6 describes the p -model analysis. 
Finally, Section 7 presents the conclusions. 

2  MF-DFA  

The MF-DFA method is a generalization of the DFA method for 
quantifying long-range correlations in non-stationary time series 
(Kantelhardt et al. 2002 ). The method identifies the scaling of q th- 
order moments of the time series (Norouzzadeh, Dullaert & Rahmani 
2007 ). The MF-DFA method consists of the following five steps: 

(i) The time series x k ( k = 1, 2, ..., N ) is integrated: 

Y ( i) = 

i � 

k= 1 

[ x k − � x � ] , i = 1 , ..., N, (1) 

where � x � is the average value of the data set. 
(ii) The series Y ( i ) is divided into N s ≡ int( N / s ) non-o v erlapping 

segments with equal lengths s . Since N is usually not a multiple of 
s , some of the data points in the time series may be left out of the 
last segment. To fix this, the procedure is repeated starting from the 
opposite end of the time series and going backwards. Consequently, 
2 N s segments are obtained. 

(iii) The local trend for each of the 2 N s segments is calculated. 
Then, the variance is given by 

F 

2 ( s , ν) = 

1 

s 

s � 

i= 1 

{ Y [ ( ν − 1 ) s + i ] − y ν( i ) }2 , (2) 

for each segment indexed by ν = 1, . . . , N s and 

F 

2 ( s , ν) = 

1 

s 

s � 

i= 1 

{ Y [ N − ( ν − N s ) s + i ] − y ν( i ) } 2 (3) 

for ν = N s + 1 , . . . , 2 N s , where y ν is the m -th degree fitting poly- 
nomial of each segment ν. This polynomial detrending of order m in 
the Y profile eliminates trends up to order m − 1 in the original time 
series and specifies the type of MF-DFA applied. 
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(iv) The average over all segments is calculated to obtain the q th- 
order fluctuation function: 

F q ( s) = 

� 

1 

2 N s 

2 N s � 

ν= 1 

[ F 

2 ( s, ν)] 
q 
2 

� 

1 
q 

, (4) 

where, in general, the q parameter can take any real value except 
zero. For q = 2, the equation returns the DFA method. Steps 2–4 are 
repeated for different time-scales s . 

(v) The scaling behaviour of the fluctuation function is defined by 
the log–log plot of F q ( s ) × s for each value of q . If x i have long-range 
correlations, for large values of s , F q ( s ) increases as a power law, 

F q ( s) ∼ s h ( q) . (5) 

The scaling exponents h ( q ) are the generalized Hurst exponents, 
defined as the slope of the log F q ( s ) × log ( s ) graph, where for h (2) we 
have the standard Hurst Exponent (Hurst, Black & Simaika 1965 ). 
F or positiv e values of q , h ( q ) describes the scaling behaviour of 
segments with large fluctuations and for ne gativ e values of q , h ( q ) 
describes the scaling behaviour of segments with small fluctuations. 
For monofractal series, h ( q ) is independent of q , but for multifractal 
series h ( q ) depends on q . The generalized Hurst exponent is directly 
related to the Renyi exponent (Renyi 1976 ) τ ( q ) by 

τ ( q) = q h ( q) − 1 . (6) 

Besides h ( q ), another way to characterize the multifractality of a 
time series is by the singularity spectrum f ( α), which is related to 
τ ( q ) via a Legendre transform, 

α = τ � ( q) and f ( α) = q α − τ ( q) , (7) 

where α is the singularity exponent. This f ( α) × α relation represents
the multifractal spectrum and has a concave parabolic shape. 

From the multifractal spectrum, it is possible to obtain a set of 
parameters to characterize each series: (i) the α value where f ( α) is 
maximum, α0 ; (ii) the α width, �α = αmax − αmin , where αmin and 
αmax are, respectively, the minimum and maximum values of α that 
mark the base of the concave parable in the multifractal spectrum 

( �α is a measure of multifractal strength); and (iii) the asymmetry 
parameter: 

A = 

αmax − α0 

α0 − αmin 
, (8) 

where A = 1 means that the spectrum is symmetric, for A > 1 the 
spectrum is right-skewed asymmetric, and for A < 1 the spectrum 

is left-skewed asymmetric (Shimizu, Thurner & Ehrenberger 2002 ; 
de Freitas et al. 2016 ). A multifractal spectrum with a long right 
tail has a greater contribution from small fluctuations. By contrast, a 
multifractal spectrum with left asymmetry has a greater influence by 
local fluctuations with large values (Ihlen 2012 ). 

Another useful multifractal parameter can be extracted from the 
τ ( q ) × q relation. As can be seen from equation ( 6 ), τ ( q ) has 
a linear dependence with q for monofractal series, where h ( q ) is 
constant. In contrast, for multifractal series, this dependence is non- 
linear. The q dependence of the Renyi exponent can be quantified 
by the coefficient of determination, R 

2 . R 

2 measures the proportion 
of the variance for a dependent variable that is predictable by an 
independent variable in a linear regression model (Barrett 1974 ). 
The coefficient of determination is given by 

R 

2 = 1 −
� n 

i= 1 ( τi − � τi )2 

� n 

i= 1 ( τi − τ̄ ) 2 
, (9) 

where τ i = τ ( q i ) is the observed dependent variable, � τi is the 
corresponding predicted value, and τ̄ is the mean of the observed 
data. R 

2 varies from 0 to 1, where in our case 1 represents a perfect 
fit to the linear dependence model. In other words, the measure of 
R 

2 for the τ ( q ) × q relation will be closer to 0 for multifractal series 
and closer to 1 for monofractal series. 

The MF-DFA method has best results if the time series are 
reasonably stationary, i.e. if they have a noise-like structure. As 
suggested by Eke et al. ( 2002 ), it is possible to determine whether 
the time series have noise-like structure by computing a monofractal 
DFA prior to conducting the MF-DFA analysis. Time series are noise 
like if their Hurst exponent h (2) is between 0 and 1, and they are 
random walk like (non-stationary) if h (2) is abo v e 1. Ihlen ( 2012 ) 
suggests that time series with h (2) abo v e 1.2 should be differentiated 
before application of the MF-DFA analysis. 

3  MUL  TIFRACTAL  ANA L  YSIS  OF  SOLAR  WIND  

DATA  

We analyse solar wind magnetic field data detected with the Fluxgate 
Magnetometer onboard Cluster-1, with 22 Hz sampling frequency. 
Two time series with 24 hours are investigated, one from 2008 
March 9 and one from 2016 January 25. To reduce the computational 
time of the analysis, the data length has been reduced by using a 
decimation process. The low-pass Chebychev Type I infinite impulse 
response filter was used with a reduction factor M = 10, order 8, 
and 0.8/ M cut-off frequency. This decimation process is described in 
Gomes et al. ( 2019 ). 

After decimating the time series, we apply the MF-DFA method 
with four input parameters: minimum scale s i , maximum scale s f , 
order of fluctuation function q , and polynomial order m . The scale 
refers to multiple segment sizes of the cumulative series and varies 
from a minimum segment size s i to a maximum s f . In this work, we 
use s i = 10 and s f = N , where N is the length of the time series; q 
varies between −20 and 20 with an increment of � q = 0.25, and m 

= 3. This choice of parameters was supported by several tests. The 
recommendation for large time series is to use a polynomial trend 
order around m = 3; s f = N was chosen to av oid deformations in the 
shape of the multifractal spectra. Meanwhile, for the q parameter the 
use of values larger than 20 does not change the shape of the spectra 
significantly. 

3.1 MF-DFA analysis of the | B | time series 

Fig. 1 shows the solar wind magnetic field time series studied in 
this section for days 2008 March 9 and 2016 January 25. In the 
upper panel, the time series for 2008 March 9 (red) and its first-order 
differencing (black) are shown. As it was explained in the previous 
section, time differencing is necessary in this case due to the high non- 
stationarity of this series [ h (2) = 1.23]. Throughout the remaining of 
this section, only the differenced time series will be used for March 
9. This time series was characterized by Gomes et al. ( 2019 ) as being 
permeated by large-scale current sheets. The green regions in the 
original time series denote current sheets found with Li’s method 
(Li 2008 ). The lower panel shows the time series for 2016 January 
25, which is characterized by a higher degree of stationarity and 
the absence of current sheets (Gomes et al. 2019 ). Due to its higher 
stationarity [ h (2) = 0.96], there is no need to perform a differencing 
in this series. 

Fig. 2 sho ws dif ferent multifractal measures of the two magnetic 
field time series. Fig. 2 (a) shows the multifractal spectra, which 
reveal a left asymmetry for the March 9 time series (red) and a 
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Figure 1. Solar wind time series of | B | measured by Cluster-1: (a) for 2008 March 9 (red), containing current sheets (green), and its first-order differencing 
(black); and (b) for time series of | B | for 2016 January 25 (blue), without current sheets. 
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Figure 2. (a) Multifractal spectrum of | B | for 2008 March 9 (red) and 2016 
January 25 (blue). (b) Renyi exponents for 2008 March 9 (red) and 2016 
January 25 (blue). 

right asymmetry for the January 25 series (blue). The left asymmetry 
indicates the stronger contribution to multifractality coming from 

large fluctuations associated with values of q > 0 in the intermittent 
time series of the current sheet-filled time series of March 9; the right 
asymmetry found for the current sheet-free time series of January 
25 points to the greater contribution of small fluctuations to the 
multifractality (Ihlen 2012 ). The width of the spectrum can be used 
as a measure of the degree of multifractality of the series (Shimizu 
et al. 2002 ). Comparing both spectra, it can be seen that the y hav e 
almost the same width ( �α ≈ 0.541 for March 9 and �α ≈ 0.555 
for January 25), which may be surprising, since the time series of 
March 9 is visibly more intermittent, with strong bursts randomly 

interspersed in time. In this case, the difference in multifractality can 
be better quantified by the Ren yi e xponent τ ( q ), shown in Fig. 2 (b). 
It reveals a non-linear behaviour for both series, but with R 

2 ≈ 0.804 
for March 9 and R 

2 ≈ 0.986 for January 25; thus, March 9 displays 
higher multifractality. 

3.2 MF-DFA analysis of the volatility time series 

In the previous section, the degree of multifractality, as provided by 
the width of the multifractal spectra, could not properly distinguish 
between the two time series under investigation, which is unexpected, 
given that the original series are not only visually very different, but 
one of them is known to be permeated by coherent structures (current 
sheets) and the other is not. This is probably because although 
the differenced time series of 2008 March 9 is apparently more 
intermittent than the series of 2016 January 25, most of the abrupt 
changes in | B | caused by the current sheets in the March 9 series have 
a small amplitude and, therefore, do not produce strong bursts in the 
time-differenced series. Such abrupt changes in | B | can be enhanced 
by employing the volatility, thus providing a way to investigate the 
role of current sheets in the multifractality. In the present section, we 
employ the volatility to enhance the distinct features of each series 
due to current sheets before repeating the MF-DFA analysis. 

The magnetic v olatility, v ol mag , can be calculated from the standard 
deviations of the log magnetic return � r mag ( t ) in a moving window 

of length ω along N sample points (Tsay 2010 ) 

�r mag ( t) = log 

� | B ( t + τ ) | 
| B ( t) | 

�
, (10) 

vol mag ( j ) = 

� � � � 

1 

ω − 1 

ω+ j−1 � 

i= j 

( �r mag ( i) − μ( j )) 2 , (11) 

where τ is a time lag, j = 1, . . . , N − ω + 1, and μ( j ) is the mean 
� r mag inside the window (Gomes et al. 2019 ). Note that since � r mag 

involves computing a time difference with lag τ , there is no need to 
difference the original time series to remo v e non-stationarities prior 
to computation of the volatility. The ω and τ values are estimated 
from the power spectrum density (PSD). Fig. 3 (a) shows the PSD 

for the March 9 time series, where the inertial range is the blue 
region between the dashed lines. This region was chosen as the 
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Figure 3. Power spectral density for solar wind magnetic field of (a) 2008 
March 9 and (b) 2016 January 25. The blue region is the inertial range and 
the red line is the linear fit for this interval, with a slope equal to −5/3 for 
March 9 and slope −3/2 for January 25. 
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Figure 4. Volatility of solar wind magnetic field time series for (a) 2008 
March 9 and (b) 2016 January 25. 

frequency interval where the slope of the fitted line is −5/3, following 
Kolmogorov’s K41 theory (Kolmogorov 1941 ) for fully developed 
turbulence (Frisch 1995 ). The frequency in the middle of the inertial 
range marks the scale used to define both τ and ω. It is also the scale 
used in Li’s method to detect the current sheets, shown in Fig. 1 . In 
this way, we define τ = ω = 50 s . Fig. 3 (b) shows the PSD for the 
January 25 series. 

Fig. 4 exhibits the volatility time series for 2008 March 9 (upper 
panel, red) and for 2016 January 25 (lower panel, blue) from the 
decimated magnetic field data. Recall that the upper series has many 
current sheets, while the lower one has none. Note that, unlike the 
January 25 series, the March 9 volatility series has several extreme 
events. Most of these high peaks are due to the abrupt changes in the 
magnetic field that take place when the satellite crosses a current sheet 
in the solar wind, as evidenced by the coincidence between extreme 
events in the volatility and current sheets detected by Li’s method (see 
figs 2a and b in Gomes et al. 2019 ). As a consequence, the multifractal 
spectra obtained from the volatility of both series are very different, as 
seen in Fig. 5 (a). Now, the spectrum of the intermittent time series of 
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Figure 5. (a) Multifractal spectra for the volatility in 2008 March 9 (red) and 
2016 January 25 (blue). (b) Ren yi e xponents for the volatility in 2008 March 
9 (red) and 2016 January 25 (blue). 

March 9 is much broader than the one from January 25. The α width 
is �α = 0.941 34 for March 9 and �α = 0.749 21 for January 25. The 
volatility has enhanced the contribution of the extreme events due 
to current sheets, thus showing the signature of coherent structures 
present in the solar wind that were partially hidden in the multifractal 
analysis of the original time series. The Renyi exponents are shown 
in Fig. 5 (b); once again, the curve for March 9 is more concave 
than for January 25, reflecting its higher level of multifractality. The 
coefficient of determination for the Renyi exponents is R 

2 = 0.974 64 
for the volatility of March 9 and R 

2 = 0.981 25 for the volatility of 
January 25. It is clear that the volatility has highlighted the role of 
current sheets in the multifractal singularity spectrum. 

4  MF-DFA  OF  SURROG ATE  TIME  SERIES  

According to Madanchi et al. ( 2017 ), there are two features in a time 
series that can lead to its multifractality: (i) the presence of heavy- 
tailed PDFs, as in highly intermittent series, and (ii) the existence of 
linear and non-linear correlations. In this section, we try to identify 
the origin of the multifractality in the solar wind by means of two 
surrogate time series derived from the original | B | data. As mentioned 
in the introduction, the shuffled time series is a random permutation 
of the original time series in the real space that destroys all temporal 
correlations, while keeping the same PDF for the amplitudes of | B | . 
On the other hand, the random phase surrogate is generated from 

the Fourier transform of the original | B | series. A new Fourier series 
is generated by shuffling the phases of the Fourier modes while 
keeping their power spectrum (Maiwald et al. 2008 ). The inverse 
Fourier transform of this new frequency spectrum is the random phase 
surrogate, which keeps the power spectrum and linear autocorrelation 
of the original series, but has a Gaussian PDF and breaks the non- 
linear correlations. After generating these two surrogates, we repeat 
the multifractal analysis described in the previous section; if the 
shuffled surrogate has a multifractal spectrum that is considerably 
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Figure 6. Differenced time series for 2008 March 9 (red) and the respective 
surrogates: shuffled (green) and random phases (magenta). 

narrower than the spectrum of the original series, it means that 
time correlations are an important source of multifractality in the 
original time series. If the random phase surrogate has a multifractal 
spectrum that is considerably narrower than the spectrum of the 
original series, it means that fat-tailed PDFs and/or non-linear 
correlations are important for the multifractality. Note that both kinds 
of multifractality mentioned abo v e can be simultaneously present in 
a time series (Norouzzadeh et al. 2007 ; Madanchi et al. 2017 ). If 
both the shuffled and random phase surrogates produce monofractal 
spectra, then non-linear correlations (but not fat-tailed PDFs) are the 
source of multifractality. In the following subsections, we perform 

this analysis for both the | B | and volatility time series of 2008 March 
9 and 2016 January 25. 

4.1 Magnetic field time series, 2008 March 9 

Fig. 6 shows the differenced time series of | B | for March 9 (red) with 
its shuffled (green) and random phase (magenta) surrogates. Clearly, 
the shuffled surrogate keeps the extreme events of the differenced 
| B | series, but the same events are absent from the random phase 
surrogate. 

Fig. 7 (a) displays the multifractal spectra for the March 9 original 
and surrogate time series. For the shuffled spectrum (green), we see 
a small reduction in the width when compared with the original one 
(red). This means that there is a contribution from correlations to 
multifractality, along with the contribution of the PDF. Considering 
the random phase spectrum (magenta), its width reduces drastically 
(the �α variation is about 0.32), which points to a significant 
contribution to multifractality coming from a non-Gaussian DF 

and/or non-linear correlations. The conclusion from both spectra 
is that the PDF has the strongest contribution to multifractality. The 
contribution of the PDF is due to the presence of strong intermittent 
bursts (e xtreme ev ents) in the March 9 time series. Since these bursts 
have been shown to be related to large current sheets (see Gomes 
et al. 2019 ), the current sheets can be seen as the origin of most of the 
multifractality in this time series. Fig. 7 (b) confirms this conclusion 
by showing the Renyi exponent as a function of q , where the random 

phase surrogate has a smaller concavity than the shuffled surrogate. 

4.2 Magnetic field time series, 2016 January 25 

Fig. 8 shows the time series for January 25 (blue) with its shuffled 
(green) and random phase (magenta) surrogates. Fig. 9 (a) shows a 
significant width reduction in both surrogate spectra in comparison 
with the original volatility spectrum (blue). The spectrum of the 
shuffled series (green) has a width �α = 0.194, indicating a 
difference of 0.36 with the spectrum of | B | . Similarly, the spectrum 
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Figure 7. (a) Multifractal spectrum of | B | for 2008 March 9 (red) and 
the respective surrogates: shuffled (green) and random phases (magenta). 
(b) Ren yi e xponents for 2008 March 9 (red) and the respective surrogates: 
shuffled (green) and random phases (magenta). 
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Figure 8. Time series for 2016 January 25 (blue) and the respective 
surrogates: shuffled (green) and random phases (magenta). 

for the random phase series has a small width, about �α = 0.32, 
a difference of 0.23 with the spectrum of | B | . So, there is strong 
influence from long-range correlations as well as non-Gaussianity 
on the January 25 magnetic field multifractality, but the contribution 
of the correlations is preponderant, since the shuffled spectrum is 
considerably narrower than the random phase spectrum. 

4.3 Volatility time series, 2008 March 9 

We proceed with the analysis of the origin of the multifractality for 
March 9 using the volatility, as shown in Fig. 10 for the original 
(red), shuffled (green), and random phase (magenta) time series. 
The corresponding multifractal spectra in Fig. 11 (a) show a wide 
parabola for the original volatility series (red) and two narrower 
parabolas related to its shuffled (green) and random phase (magenta) 
series. The random phase spectrum has a width of about �α = 0.39 
and the shuffled spectrum has a width of �α = 0.35. Since both 
spectra have approximately the same width, it shows an important 
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Figure 9. (a) Multifractal spectrum for 2016 January 25 (blue) and the 
respecti ve surrogates: shuf fled (green) and random phases (blue). (b) Renyi 
exponents for 2016 January 25 (blue) and the respective surrogates: shuffled 
(green) and random phases (magenta). 

Figure 10. Time series volatility for 2008 March 9 (red) and the respective 
surrogates: shuffled (green) and random phases (blue). 

feature that was not so clear from the multifractal spectra of the | B | 
surrogate series (Fig. 7 ), that is, the importance of the non-linear 
correlations, which play a key role, together with the PDF, in the 
origin of the multifractality for the March 9 series. Since the volatility 
is computed with a lag time of τ = 50 s , it is better suited for 
measuring the rele v ance of long-range non-linear correlations than 
the time-differenced | B | series. Fig. 11 (b) confirms that the shuffled 
and random phase series have almost linear Renyi exponents; thus, 
the series are closer to monofractal. 

4.4 Volatility time series, 2016 January 25 

Fig. 12 shows the volatility time series of the January 25 time 
series (blue) and its shuffled (green) and random phase (magenta) 
surrogates. Fig. 13 (a) shows the corresponding multifractal spectra. 
Once again, the reduction in the width for both surrogate spectra 
means that a mutual contribution to multifractality coming from 

long-range correlations and non-Gaussianity is present, with a 
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Figure 11. (a) Multifractal spectrum for the volatility of 2008 March 9 (red) 
and the respective surrogates: shuffled (green) and random phases (magenta). 
(b) Renyi exponents for the volatility of 2008 March 9 (red) and the respective 
surrogates: shuffled (green) and random phases (magenta). 
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Figure 12. Time series of the volatility for 2016 January 25 (blue) and the 
respective surrogates: shuffled (green) and random phases (magenta). 

clear predominance of the long-range correlations effects, since the 
shuffled spectrum is much narrower than the random phase spectrum. 

A quantitative comparison of all the results for the | B | time series 
and volatility time series of March 9 and January 25 is provided by 
T ables 1 –3 . T able 1 shows R 

2 for the Ren yi e xponent of | B | and its 
volatility for March 9 and January 25; Table 2 shows the width of the 
multifractal spectra, �α; Table 3 shows the asymmetry of the spectra, 
A . In general, all spectra for January 25 are right-asymmetric due to 
the importance of small-scale fluctuations; for March 9, some spectra 
are left-asymmetric due to the importance of large-scale fluctuations, 
but the random phases show right asymmetry, since in the random 

phase surrogate the effects of non-Gaussian PDFs are destroyed. 

5  ZETA  FUNCTI ON  

Another function typically employed in multifractal analyses of time 
series is the zeta function. Consider the structure function for | B | 
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Figure 13. (a) Multifractal spectrum for the volatility of 2016 January 25 
(blue) and the respecti ve surrogates: shuf fled (green) and random phases 
(magenta). (b) Ren yi e xponents for the volatility of 2016 January 25 (blue) 
and the respective surrogates: shuffled (green) and random phases (magenta). 

Table 1. R 

2 of the Renyi exponent for magnetic field and volatilities of 2008 
March 9 and 2016 January 25. 

March 9 January 25 
| B | Volatility | B | Volatility 

Original 0.804 13 0.974 64 0.985 97 0.981 25 
Shuffle 0.975 05 0.967 48 0.995 37 0.995 73 
Random phases 0.981 85 0.996 37 0.996 01 0.994 24 

Table 2. Width of α, �α, for magnetic field and volatilities of 2008 March 
9 and 2016 January 25. 

March 9 January 25 
| B | Volatility | B | Volatility 

Original 0.541 12 0.941 34 0.555 68 0.749 21 
Shuffle 0.366 63 0.403 32 0.194 68 0.198 73 
Random phases 0.218 02 0.392 99 0.321 81 0.430 88 

Table 3. Spectrum asymmetry, A , for magnetic field and volatilities of 2008 
March 9 and 2016 January 25. 

March 9 January 25 
| B | Volatility | B | Volatility 

Original 0.498 73 0.638 85 1.107 09 1.312 15 
Shuffle 0.512 79 0.533 42 1.308 54 1.182 83 
Random phases 1.335 83 1.418 17 1.459 99 1.470 02 

(Frisch 1995 ): 

S p ( τ ) = � [ | B ( t + τ ) | − | B ( t) | ] p � , (12) 

where � · � is the time average, τ is the time lag, and p are the statistical 
moments for the time series of B . Assuming scale invariance inside 
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Figure 14. (a) Zeta functions for the magnetic field time series for 2008 
March 9 (red circles) and 2016 January 25 (blue diamonds). (b) Zeta functions 
for | B | 2008 March 9 (red circles) and its random phases (magenta triangles). 
(c) Zeta functions for | B | 2016 January 25 (blue diamonds) and its random 

phases (magenta triangles). The dashed lines represent the K41 scaling and 
the dotted lines represent the IK scaling. 

the inertial range, S p follows a power law 

S p ( τ ) ∼ τ ζ ( p) , (13) 

where ζ ( ·) is the zeta function or scaling exponent of the structure 
function. So, ζ ( p ) is obtained by the slope of the log S p ( τ ) × log τ
plot. The importance of this parameter comes from Kolmogorov’s 
K41 theory (Kolmogorov 1941 ) and the Iroshnikov–Kraichnan (IK) 
theory (Iroshnikov 1964 ; Kraichnan 1965 ) of self-similarity and scale 
invariance inside the inertial range for a homogeneous and isotropic 
turbulence, where the ζ function was shown to be a linear function 
of p , with ζ ( p ) = p /3 for K41 and ζ ( p ) = p /4 for IK. 

In Fig. 14 (a), the linear K41 theoretical zeta scaling exponent 
function is shown by the black dashed line, while the IK scaling 
exponent is denoted by a dotted line. The top panel (a) also shows 
the zeta scaling exponent computed from the time series of | B | for 
the intermittent series of March 9 (red line with circles) and for the 
current sheet-free series of January 25 (blue line with diamonds). 
The zeta function for the March 9 series clearly departs from the 
linear behaviour, as expected for multifractal intermittent series, 
but, surprisingly, the zeta function exhibits an almost linear relation 
with p in the case of January 25, despite the fact that both series 
have multifractal spectra with similar widths (see Fig. 2 a). Thus, 
one should be cautious before using the behaviour of the scaling 
exponent as a definite measure of multifractality, although it is a 
good measure of intermittency. To confirm this result, Fig. 14 (b) 
compares the zeta scaling exponents of the March 9 | B | series (red 
line with circles) with the zeta scaling exponents of its random 

phase series (magenta line with triangles). Since the random phase 
series has a Gaussian PDF, it remo v es from the original series the 
intermittent extreme events responsible for the fat-tailed PDF and 
the zeta scaling exponent becomes linear, following the K41 line. 
This result confirms the importance of the contribution from a 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/3/3623/6881729 by Instituto T
ecnologico de A

eronautica (IT
A

) user on 13 January 2023



Origin of multifractality in solar wind 3631 

MNRAS 519, 3623–3634 (2023) 

fat-tailed PDF to the multifractality of the March 9 series. In
Fig. 14 (c), the same analysis is done for the January 25 series, where 
both the original series and its random phases show an IK linear 
behaviour, since none of the series has a fat-tailed PDF, although 
the y hav e multifractal spectra (see the blue and magenta spectra in 
Fig. 9 a). We conclude from this that the ζ function is a good measure 
of multifractality due to PDF, but misses the contribution of long- 
range correlations to the multifractality. 

6  p -MODEL  

In Section 4 , we showed that the multifractal spectra of the volatility 
of the solar wind are predominantly due to non-linear and linear 
correlations in the time series of January 25 and due to PDF and non- 
linear correlations for the March 9 time series. The presence of long- 
range non-linear correlations in both series is the signature of a non- 
linear dynamical system (possibly with some stochastic component) 
go v erning the behaviour of both series. In the present section, we 
employ the p- model (Halsey et al. 1986 ; Meneveau & Sreeni v asan 
1987 ) to show that both the correlations and the extreme events 
mentioned abo v e are actually a consequence of turbulent energy- 
cascade processes with different scaling laws that depend on the 
presence or absence of current sheets in the original time series. 

The p- model is a model for non-homogeneous energy-cascading 
process in the inertial range of fully developed turbulence based 
on the generalized Cantor set. Consider that the flux of kinetic 
energy from eddies of size L to smaller eddies is represented by 
a dissipation E L . In the one-dimensional version of the p- model, L is 
the length of an interval. Suppose that an eddy of size L is unequally 
divided into two smaller eddies (i.e. two subintervals) of sizes l 1 L and 
l 2 L , where 0 < l 1 < l 2 < 1 are the size factors, with the energy flux 
E L being distributed unto these subeddies with different probabilities 
p 1 and p 2 ; i.e. the new dissipation values are p 1 E L and p 2 E L . In 
practice, one can start the process with L = E L = 1. Then, each new 

eddy is further subdivided into two smaller eddies with the same 
size factors l 1 and l 2 and probabilities p 1 and p 2 . This process may 
be repeated until the subintervals reach the Kolmogorov dissipation 

scale. At each cascading step n , there will be 

�
n 

m 

�
segments with 

length l m 

1 l 
n −m 

2 L and dissipation p 

m 

1 p 

n −m 

2 E L , for m = 0, 1, . . . , n . As 
shown by Halsey et al. ( 1986 ) for the general two-scale Cantor set, 
it is possible to obtain the analytical expressions for the singularity 
exponent α and the singularity spectrum f as 

α = 

ln p 1 + ( n/m − 1) ln p 2 

ln l 1 + ( n/m − 1) ln l 2 
, (14) 

f = 

( n/m − 1) ln ( n/m − 1) − ( n/m ) ln ( n/m ) 

ln l 1 + ( n/m − 1) ln l 2 
. (15) 

For each n and given values of l 1 , l 2 , p 1 , and p 2 , the variation of m will 
provide the different values of α and f for the singularity spectrum. 
Since 0 ≤ m ≤ n and m is an integer, larger values of n provide a better 
definition of the spectrum. For a cascading process with direct energy 
dissipation in the inertial range, we have p 1 + p 2 < 1 (Meneveau & 

Sreeni v asan 1987 ). This means that a new dp dissipation parameter 
must be included, where dp = 1 − p 1 − p2 . Thus, we define p 2 = 1 
− p 1 − dp , as well as l 2 = 1 − l 1 , in equations ( 14 ) and ( 15 ). 

Fig. 15 shows the MF-DFA multifractal spectra for the volatility 
series of March 9 (red circles) and January 25 (blue diamonds). 
The p -model fits obtained from equations ( 14 ) and ( 15 ) are also 
shown (black line with dots). The values of p 1 , dp , and l 1 were 
obtained with a Monte Carlo method that minimized the mean 
squared error between the original and fitted spectra. For March 
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Figure 15. Left: Multifractal spectrum for the volatility of 2008 March 9 (red 
circle) and its p- model fit (black line with dots). Right: Multifractal spectrum 

for the volatility of 2016 January 25 (blue diamond) and its p -model fit (black 
line with dots). 

Figure 16. (a) Volatility time series for 2008 March 9 (red) and (b) generated 
p -model time series (black) by 10th interation. (c) Volatility time series for 
2016 January 25 (blue) and (d) generated p -model time series (black) by 15th 
interation. 

9, we obtained p 1 = 0.71, dp = 0.17, and l 1 = 0.68. For January 25, 
we obtained p 1 = 0.51, dp = 0.11, and l 1 = 0.66. The agreement 
between the observational and theoretical curves confirms that the 
solar wind multifractal spectra can be obtained from a turbulence 
cascade process. This is a remarkable result, since the p -model was 
specifically elaborated to represent turbulent cascade processes, and 
will usually not be able to approximate the spectra of other processes. 

Next, we compare the turbulent time series behind the p -model 
spectra with the observational solar wind volatility time series in 
terms of their PSDs. To obtain the p -model PSDs, we use the 
probabilities and size factors previously obtained with the Monte 
Carlo method. By iterating the generalized two-scale Cantor set 
model, we produce two p -model time series. Fig. 16 shows a 
comparison of the solar wind volatility time series with the p- model 
time series. The two upper panels depict the solar wind series for 
March 9 (a) and the corresponding p -model (b); the two lower panels 
depict the solar wind series for January 25 (a) and the corresponding 
p -model (b). The qualitative similarity between observational and 
p -model time series is apparent in both cases. 
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Figure 17. (a) Left: power spectral density for 2008 March 9 volatility. Right: 
power spectral density for 2016 January 25 volatility. (b) Left: power spectral 
density for generated p -model time series from 2008 March 9 volatility. Right: 
power spectral density for generated p -model time series from 2016 January 
25 volatility. The blue regions mark the inertial range and the red lines are 
the linear fits for those intervals. 

A comparison of observed and simulated PSDs is shown in Fig. 17 . 
Fig. 17 (upper panels) shows the PSDs for the volatility time series 
of 2008 March 9 (left) and 2016 January 25 (right). The blue region 
between the vertical dashed lines represents the inertial range and 
the red line is the linear regression with a slope of −5/3 for the 
March 9 series and −3/2 for the January 25 series. Thus, the highly 
intermittent series of March 9 (with current sheets) exhibits a K41 
scaling, whereas the January 25 series (without current sheets) shows 
an IK scaling. This fact had been previously established by Li et al. 
( 2011 ) and confirmed by Gomes et al. ( 2019 ) using PSDs computed 
from the time series of | B | . The PSDs computed from the p -model 
time series are shown in Fig. 17 (lower panels), and they reveal 
K41 scaling for the March 9 series and IK scaling for the January 
25 series, just like in the original solar wind series. Note that in 
both cases the inertial range can be extended almost throughout the 
whole PSDs shown, since our p -model has small dissipation. We 
conclude that a K41 intermittent turbulence cascade is behind the 
multifractality of the current sheet-filled time series of March 9 and 
an IK turbulence cascade is the origin of the multifractality of the 
January 25 series. This result is consistent with other time series 
analysed by us, which show that current sheets are responsible for 
the K41 turbulence multifractality and the absence of current sheets 
results in an IK turbulence multifractality in the solar wind (see table 
4 in Gomes et al. 2019 ). 

7  CONCLU SIONS  

We have presented a new methodology for multifractal analysis of 
solar wind magnetic field data, based on MF-DFA, volatility, and 
surrogate time series. The MF-DFA provides a standard way to gen- 
erate the singularity spectrum and the Renyi exponent; the volatility 
enhances the extreme events, stressing the differences between series 
with current sheets and series without current sheets; the surrogate 

time series provide a way to infer the origin of multifractality. 
Additionally, the p -model was used to reproduce the multifractal 
behaviour of the solar wind series, indicating that a non-linear 
turbulence energy-cascade dynamical system is behind the observed 
dynamics. A similar framework for multifractal analysis, but without 
the volatility and the p -model, was used by Chattopadhyay et al. 
( 2018 ) in the analysis of CME linear speed data in the solar wind. 
In order to keep the paper reasonably short, we have limited our 
presentation to only two time series, but we have tested our techniques 
in other series and found that the conclusions presented are robust. 
An example of analysis with two other time series is included 
in the supplementary material (online). Further exploration of the 
methodology is left for future works. 

Just like in Gomes et al. ( 2019 ), we found the volatility to be 
very useful to highlight the role of current sheets. In our case, they 
increase the signature of multifractality due to PDF in the singularity 
spectra. The surrogate analysis of both original and volatility series 
shows that for time series with current sheets, multifractality is due 
to both intermittency and non-linear correlations; for time series 
without current sheets, it is predominantly produced by the long- 
range correlations. The p -model analysis reveals that those are mainly 
non-linear correlations, since the process behind the statistics is a 
non-linear turbulent energy cascade. So, turbulence is the common 
source of the multifractality, but current sheets are the source of 
the left asymmetry of the singularity spectrum, as well as the non- 
linear scaling exponent for the structure functions. In the absence of 
current sheets, the small-amplitude fluctuations are the main source 
of the right asymmetry of the singularity spectrum. It is important to 
stress that despite being a multifractal process, the current sheet-free 
series exhibits an almost linear scaling exponent for the structure 
functions, which is sometimes confused with a monofractal process 
in the literature. Our results indicate that the Renyi exponent is 
more sensitive to multifractality due to correlations than the structure 
function scaling exponent (zeta function). 

In dealing with separate cases where the presence or absence 
of current sheets is considered, we are attacking one of the ‘nine 
outstanding questions of solar wind physics’, related by Vaill & 

Boro vsk y ( 2020 ), namely the origin and evolution of the mesoscale 
(time-scales in the range of minutes up to a few hours) plasma and 
magnetic field structure of the solar wind. These current sheets have 
been associated with the border between adjacent flux tubes (Bruno 
2019 ), while also being related to non-linear turbulent interactions 
rather than the presence of advected pre-existing flux-tube structures 
(Bowen et al. 2018 ). In this work, we do not focus on the origin of 
those coherent structures, but measure their weight on the statistics of 
solar wind fluctuations. We do this not only through Fourier spectral 
indices and the scaling of structure functions, as in Salem et al. 
( 2009 ), b ut their contrib ution to multifractality is explored in depth 
through the MF-DFA, volatility, and surrogate techniques. As we 
said, our results reveal that although the scaling of the structure 
functions may be almost linear for series without current sheets, the 
singularity spectra may still display broad parabolas, the signature of 
highly multifractal signals. Thus, the scaling exponent of structure 
functions is adequate to measure multifractality due to PDFs, but not 
for multifractality due to long-range correlations, where the Renyi 
exponent and singularity spectra should be adopted. Multifractal 
series with nearly linear behaviour of the scaling exponents were 
also reported in Tam et al. ( 2010 ) (see their fig. 4), where the rank- 
order multifractal analysis is employed in the description of auroral 
zone electric field fluctuations. 

In conclusion, the basic question related to mesoscale plasma 
turbulence in the solar wind is not whether it is monofractal or 
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multifractal, but whether the source of the ubiquitous multifractality 
is the PDF or the long-range correlations. The short answer is that in 
the presence of current sheets, the PDF has a strong contribution for 
multifractality, but in their absence, it is mainly due to correlations. 
It would be interesting to check whether the monoscaling of the 
structure functions reported in previous solar wind time series, as 
in Kiyani et al. ( 2009 , 2013 ) and Bruno ( 2019 ) for turbulence 
at kinetic scales, indeed reveals monofractality or whether they 
indicate, in fact, multifractal series due to correlations and not due to 
intermittency. 
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Figure S7 . Multifractal spectra for the volatility of 2009 February 
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Figure S8 . Multifractal spectra for the volatility of 2003 February 
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Origin of Multifractality in Solar Wind Turbulence:

the Role of Current Sheets

Supplementary Material

November 22, 2022

1 Introduction

In order to confirm our results, in addition to the two time series analyzed in the paper, we show here the results for
another pair of time series of solar wind magnetic field. We apply the same methodology described in the paper for
the data of 2009 February 24 and 2003 February 1. The time series of February 24 is characterized by the presence of
large-scale current sheets. Meanwhile, the time series for February 1 is characterized by the absence of current sheets.

Figure 1 shows the two new solar wind magnetic field time series, detected through the Fluxgate Magnetometer (FGM)
onboard Cluster-1. The data have a length of 24 hours with a cadence of 22 Hz. Due to the high nonstationarity present
in the two time series (the Hurst exponents are hcs = 1.277 for February 24 and hncs = 1.178 for February 1), it was
necessary to differentiate both of them before applying the MF-DFA method.

Figure 1: Solar wind time series of |B| (a) for 2009 February 24 (red), containing current sheets (black) and (b) for 2003
February 1 (blue), without current sheets.

2 MF-DFA of the |B| time series

Figure 2 shows the multifractal spectra for the time-differenced series of the two data sets shown in Fig. 1. Figure
2 evidence the left asymmetry for the multifractal spectrum of February 24 (with current sheets (CS)) (red), which
indicates that multifractality is predominantly related to large-scale fluctuations. However, for February 1 (blue), a right
asymmetry is observed, i.e., the multifractality is more related to the small-scale fluctuations. Now comparing the α width
of both spectra, we can see a considerable difference between them (∆αcs ≈ 0.46 for February 24(CS) and ∆αncs ≈ 0.35
for February 1). Thus, the singularity spectrum is wider for the time series with current sheets.
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Figure 2: Multifractal spectra of |B| for 2009 February 24 (red) and 2003 February 1 (blue).

3 MF-DFA of the Volatility time series

With the goal of enhancing the extreme events present in the series due to current sheets, we applied the volatility to
the two data sets shown in Fig. 1. The results are depicted in Fig. 3. Figure 4 shows the corresponding multifractal
spectra, with a significant difference of width between them. For February 24(CS), ∆αcs ≈ 0.84, while for February 1,
∆αncs ≈ 0.56. Thus, the volatility has enhanced the difference between the spectra and highlighted the role of current
sheets in multifractality.
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Figure 3: Volatility of solar wind magnetic field time series for (a) 2009 February 24 (red), and (b) 2003 February 1
(blue).
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Figure 4: Multifractal spectra for the volatility in 2009 February 24 (red), and 2003 February 1 (blue).

4 MF-DFA OF SURROGATE TIME SERIES

In order to identify the origin of the multifractal behavior, we have applied the surrogate method for all |B| and volatility
time series. After obtaining the shuffled and the random phases time series for each data set we computed the multifractal
spectra.

Figure 5 shows the multifractal spectra for February 24(CS) and its surrogates. Both surrogate spectra have a
significant width reduction when compared with the original. However, the random phases multifractal spectrum has a
stronger reduction. This behavior confirms the idea of a larger contribution of the PDF to this multifractal process, as a
consequence of the current sheets.

Now, looking at the multifractal spectra of the solar wind magnetic field without current sheets (Fig. 6), we see a
different behavior. Even though there is a width reduction in both surrogates spectra, we observe a larger decrease in the
shuffled spectrum. That is, the contribution from long-range correlations to multifractality is more dominant in the time
series without current sheets. This result is consistent with what is proposed in the main paper.
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Figure 5: Multifractal spectra of |B| for 2009 February 24 (red) and the respective surrogates: shuffled (green), and
random phases (magenta).

As was done with the paper examples, we also applied the surrogate method to the volatility time series. As expected,
the same general behavior is observed in the multifractal spectra.

Figure 7 confirms a major influence of extreme events to multifractality for February 24(CS), since ∆α of the random
phases surrogate has a smaller value than the one from the shuffled surrogate. Figure 8 exhibits the singularity spectra
for the volatility time series of February 1. Unsurprisingly, these spectra also follow the same general behavior as the
corresponding spectra obtained from the |B| time series. As expected, the results from Fig.8 highlight the long-range
correlations influence on the multifractality of the volatility time series.
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0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

f(
)

Multifractal Spectrum Volatility 2009 February 24

V February 24

Random Phases

Shuffled
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and random phases (magenta).
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and random phases (magenta).
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A summary of all values provided by the multifractal analysis can be found on Tables 1 and 2. Table 1 shows the
variation of the α width, ∆α, while Table 2 emphasizes the spectral asymmetry.

Table 1: Width of α, ∆α, for magnetic field and volatilities of 2009 February 24 (CS) and 2003 February 1.

February 24 (CS) February 1
|B| Volatility |B| Volatility

Original 0.4614 0.84202 0.3480 0.5695
Shuffle 0.2527 0.44506 0.20122 0.1941
Random Phases 0.17934 0.36611 0.2260 0.3161

Table 2: Spectral asymmetry, A, for magnetic field and volatilities of 2009 February 24 (CS) and 2003 February 1.

February 24 (CS) February 1
|B| Volatility |B| Volatility

Original 0.4626 0.62344 1.18403 1.0156
Shuffle 0.7764 0.47176 1.1017 1.1842
Random Phases 1.4568 1.44489 1.5630 1.6386

In summary, in order to reinforce the conclusions of the main work we have applied the MF-DFA method on two new
solar wind magnetic field time series. The new findings of this supplementary material confirm our theoretical conclusions
described in the paper. In other words, the presence of current sheets indeed impacts the turbulent process of the solar
wind and is responsible for the increase of multifractality due to PDFs. In the absence of current sheets, multifractality
is mainly due to nonlinear correlations.
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