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Resumo

Investigamos a massa e as funções de onda do estado ligado de três bósons dentro de uma

estrutura relativ́ıstica de três corpos no espaço de momento tridimensional. Utilizamos

potenciais aumentados de Kamada e Glöcke com um potencial separável de curto alcance

não relativ́ıstico, caracterizado por fatores de forma de Yamaguchi e Gaussianos. Ao

conduzir esses fatores de forma para o limite de alcance zero, mantendo a energia de

ligação de dois corpos fixa, demonstramos que as massas relativ́ısticas de três bósons e as

funções de onda tornam-se independentes do modelo, e o colapso de Thomas é evitado.

Curiosamente, o limite não relativ́ıstico mantém o efeito Efimov. A estabilidade no limite

de alcance zero é atribúıda à redução do potencial aumentado com o aumento do momento

do centro de massa do par virtual dentro do sistema de três bósons. Uma comparação

é feita com os cálculos em coordenadas na frente de luz e Euclidianos, dispońıveis na

literatura, para validar nossas descobertas.

Em seguida, desenvolvemos um formalismo fundamental para estudar tŕıons em mate-

riais semicondutores em , dispońıveis na literatura. As equações de Faddeev no espaço de

momento descrevem a interação de três part́ıculas diferentes que se encontram em duas

dimensões. Resolvemos as equações integrais acopladas de Faddeev do tŕıon usando tanto

um potencial separável de curto alcance de um termo de Yamaguchi quanto a interação

repulsiva Rytova-Keldysh (RK), que é aplicada à monocamadas de MoS2. Devido ao de-

safio apresentado pelo potencial repulsivo elétron-elétron RK, dois métodos distintos de

regularização são elaborados. O primeiro método regula a interação repulsiva na região do

infravermelho, enquanto o segundo método a regula na região do ultravioleta. Através da

extrapolação da energia do tŕıon para a situação sem blindagem, resultados consistentes

são obtidos para a camada de MoS2, revelando uma energia de ligação do tŕıon de �49,5(1)

meV para uma energia do éxciton de �753,3 meV. A estrutura do tŕıon para ambos os

potenciais RK e Yamaguchi é analisada em detalhes, enfatizando suas semelhanças gerais

e a estrutura de cluster dominante, onde um éxciton fortemente ligado está fracamente

ligado a um elétron. Isso é ainda manifestado na dominância de dois componentes de

Faddeev sobre aquele em que o buraco é um espectador do par de elétrons em interação.

Na etapa seguinte, o trion foi estudado no espaço real. Para isso, transformamos as

funções de onda do tŕıon do momento para o espaço de configuração usando transfor-
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madas de Fourier. Essa abordagem fornece a informações sobre o arranjo espacial e as

correlações entre as part́ıculas constituintes do tŕıon. Investigamos a estrutura do tŕıon no

espaço de configuração usando ambos os potenciais de Yamaguchi e RK, demonstrando

a importância dos efeitos de blindagem na distribuição espacial do tŕıon. As funções de

correlação e os valores esperados das coordenadas de Jacobi são calculados, revelando

as configurações geométricas e a estrutura interna dos tŕıons. O estudo confirma a pre-

cisão dos métodos numéricos e fornece uma compreensão abrangente das propriedades de

ligação e estruturas dos tŕıons em materiais semicondutores 2D.

Além dos estados ligados de três corpos em três dimensões e duas dimensões, estu-

damos os sistemas de quatro corpos (4B) no espaço de momento bidimensional usando

o esquema de Faddeev-Yakubovsky (FY). O caṕıtulo começa com uma base teórica da

abordagem FY, seguida pela derivação das equações FY para um sistema 4B no espaço

2D. Apresentamos resultados numéricos para um sistema de part́ıculas idênticas inter-

agindo por meio de um potencial separável, demonstrando a eficácia do método iterativo

na resolução das equações FY. Os resultados destacam as energias de ligação e as funções

de onda do sistema 4B, fornecendo sobre as interações e a estabilidade dos biexcitons

em materiais 2D. Este trabalho é uma etapa preparatória para estudos futuros mais de-

talhados, com o objetivo de explorar as propriedades f́ısicas e potenciais aplicações de

biexcitons em f́ısica da matéria condensada.

Ao combinar esses estudos de pesquisa, contribúımos para a compreensão dos estados

ligados em sistemas de três bósons e fornecemos sobre as propriedades e estruturas de

tŕıons e biexcitons em materiais semicondutores em camadas.



Abstract

We investigate the three-boson bound-state mass and wave functions within a three-body

relativistic framework in three-dimensional momentum space. We utilize Kamada, and

Glöcke boosted potentials with a non-relativistic short-range separable potential charac-

terized by Yamaguchi and Gaussian form factors. By driving these form factors towards

the zero-range limit while keeping the two-body binding energy fixed, we demonstrate

that the three-boson relativistic masses and wave functions become model-independent,

and the Thomas collapse is avoided. Interestingly, the non-relativistic limit retains the

Efimov e↵ect. The stability in the zero-range limit is attributed to the reduction of the

boosted potential with the increase of the virtual pair center of mass momentum within the

three-boson system. A comparison is made with Light-Front and Euclidean calculations

to validate our findings.

Next, we develop a fundamental formalism for studying trions in semiconductor lay-

ered materials. The Faddeev equations in momentum space describe the interaction of

three di↵erent particles lying in two dimensions. We solve the trion Faddeev coupled

integral equations using both a short-range one-term separable Yamaguchi potential and

the repulsive Rytova-Keldysh (RK) interaction, which is applied to the MoS2 layer. Due

to the challenge posed by the repulsive electron-electron RK potential, two distinct regu-

larization methods are devised. The first method regulates the repulsive interaction in the

infrared region, while the second method regulates it in the ultraviolet region. Through

extrapolation of the trion energy to the situation without screening, consistent results are

obtained for the MoS2 layer, revealing a trion binding energy of �49.5(1) meV for an

exciton energy of �753.3 meV. The trion structure for both RK and Yamaguchi poten-

tials is analyzed in detail, emphasizing their overall similarities and the dominant cluster

structure, where a firmly bound exciton is weakly bound to an electron. This is further

manifested in the dominance of two Faddeev components over the one where the hole is

a spectator of the interacting electron pair.

To investigate the trion further, we study it in real space by transforming the trion wave

functions from momentum to configuration space using Fourier transforms. This approach

provides insights into the spatial arrangement and correlations among trion constituent

particles. We investigate the trion structure in configuration space using both Yamaguchi
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and RK potentials, demonstrating the importance of screening e↵ects on the trion’s spatial

distribution. The correlation functions and expectation values of Jacobi coordinates are

calculated, revealing the geometrical configurations and internal structure of trions. The

study confirms the accuracy of the numerical methods and provides a comprehensive

understanding of trions’ binding properties and structures in 2D semiconductor materials.

In addition to three-body bound states in three-dimensional and two-dimensional,

we study the four-body (4B) systems in two-dimensional momentum space using the

Faddeev-Yakubovsky (FY) scheme. The chapter begins with a theoretical foundation of

the FY approach, followed by deriving the FY equations for a 4B system in 2D space.

We present numerical results for a system of identical particles interacting through a

separable potential, demonstrating the e↵ectiveness of the iterative method in solving the

FY equations. The results highlight the binding energies of the 4B system, providing

insights into the interactions and stability of a 4B system in 2D materials. This work

is a preparatory step for more detailed future studies, aiming to explore the physical

properties and potential applications of biexcitons in condensed matter physics.

By combining these research studies, we contribute to understanding bound states in

three-boson systems and provide insights into the properties and structures of trions and

biexcitons in semiconductor monolayer materials.
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is take from (MOHSENI et al., 2023). . . . . . . . . . . . . . . . . . . 89

FIGURE 3.9 – Extraction of trion binding energy Et with a linear extrapolation on

energies obtained from two screenings (see Table 3.9) at the physical

points l�1
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1 Introduction

1.1 Motivation

Quantum few-body physics has been a significant and influential aspect of atomic,

molecular, and nuclear physics since the early stages of quantum mechanics. Since the

mid-1950s, considerable advancements have been achieved within the scientific community

regarding the development of theoretical physics methods to address few-body problems

across various fields of physics.

In contrast to the two-body (2B) problem, which can be quickly and accurately solved,

a quantum system with more than two nucleons is complicated. Many research groups

worldwide have extensively studied and investigated bound three- and four-body systems,

and specialized techniques for calculating binding energies, considering nucleon-nucleon

(NN) and 3N interactions, have been developed.

In condensed matter physics, semiconductors facilitate the formation of bound states

between electrons (e) and holes (h). An exciton represents an excitation within condensed

matter, emerging when an electron from the conduction band and a hole from the valence

band become bound due to the Coulomb attraction. This formation can be prompted

by the absorption of a photon within a semiconductor, causing the electron to transition

from the valence band to the conduction band, leaving a hole in the valence band behind.

Notably, the exciton exists as an electrically neutral quasiparticle, enabling energy trans-

port without simultaneous transfer of net electric charge. Although the exciton (electron

and hole bound state) in traditional semiconductors is weakly bound as a result of in-

trinsic screening, the interaction between electrons and holes remains a crucial aspect for

comprehending the optical properties of semiconductors and insulators (DRESSELHAUS,

1957; ELLIOTT, 1957).

In 1957, Skornyakov and Ter-Martirosyan (SKORNIAKOV; TER-MARTIROSIAN, 1957)

successfully tackled the quantum three-body problem and formulated equations to deter-

mine the wave function of a system consisting of three identical fermions in the scenario

of zero-range forces. In 1958, Lampert introduced more intricate few-body systems com-

prising electrons and holes, namely, negatively charged trions (eeh) and positively charged
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trions (ehh). These entities arise by binding an electron within a conduction band or a

hole within a valence band to an exciton (LAMPERT, 1958).

Subsequently, Faddeev (FADDEEV, 1961) extended the integral equation approach

(SKORNIAKOV; TER-MARTIROSIAN, 1957) to encompass interactions of both finite and

long ranges. However, the study of trions was initially hindered due to their weak binding

energy, which resulted from the strong screening of the Coulomb interaction in ordinary

materials. The emergence of quantum wells, however, paved the way for the exploration

of trion properties, as the reduced dimensionality in these structures e↵ectively reduced

the screening e↵ects and allowed for more stable trion formation.

It is worth noting that trions in semiconductors are di↵erent from traditional 3B

systems like the triton or the 4He3 atomic trimer. The constituents of a trion experience

two attractive interactions and one repulsive interaction.

In the following, the primary motivations of the author for undertaking this disserta-

tion are succinctly addressed.

1.2 The power of Faddeev-Yakubovsky equations in solving

three- and four-body systems

The Faddeev equations are a common and well-established method for studying sys-

tems composed of three-body (3B), including both bound and scattering states. These

equations serve as a generalization of the three-particle Lippmann-Schwinger (LS) equa-

tion, which is commonly used to analyze two-particle systems in bound and scattering

states. The key distinction is that for 2B systems, the Schrödinger equation can be directly

utilized instead of the LS equation. However, when dealing with few-body systems consist-

ing of three or more particles, employing the Schrödinger equation directly presents chal-

lenges regarding convergence and solution uniqueness (YAMASHITA et al., 2018; GREENE

et al., 2017). To address these challenges, Faddeev proposed a solution by formulating

a 3B system using the Schrödinger equation, which resulted in the development of an

integral equation called the Faddeev equation (FADDEEV, 1961). This approach was later

extended by Yakubovsky to encompass four-body (4B) systems, leading to the formu-

lation of the Faddeev-Yakubovsky equations. The Faddeev-Yakubovsky (FY) equations

provide a powerful non-perturbative method for solving the Schrödinger equation in three-

and four-body systems, o↵ering reliable and converged solutions. These equations have

been extensively studied in the nonrelativistic regime across various branches of physics,

including atomic, nuclear, and particle physics, for both bound and scattering states. The

success of nonrelativistic three-body Faddeev calculations has been convincingly demon-

strated in various studies, such as Refs. (CORNELIUS et al., 1990; GLOECKLE et al., 1996;
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GLÖCKLE, 2012). We can also mention references concerning the bound-state four-body

FY formalism, such as Refs. (GIBSON; LEHMAN, 1988; KAMADA et al., 2001; FILIKHIN et

al., 2002; HADIZADEH et al., 2012; LAZAUSKAS; CARBONELL, 2004; BAYEGAN et al., 2008a)

and references therein.

1.3 Implications of relativistic e↵ects in the zero range limit

on three-Boson systems

Understanding the interactions between nucleons is essential to understanding the

structure and properties of few-body quantum system. It is also essential for accurately

describing nuclear reactions.

Many experiments have been conducted at low energies (below the pion-production

threshold), where nonrelativistic descriptions of nucleons are su�cient. The pion-production

threshold is the energy at which pions are produced in NN scattering, which is approx-

imately 300 MeV in the laboratory frame. The short-range part of the NN interaction,

which occurs at distances less than 1.5 femtometers, can only be observed in scattering

experiments with energies greater than 300 MeV. At the high energies, the kinetic energy

of each nucleon is comparable to or even greater than the mass of a nucleon. This requires

the development of relativistic nuclear theories and the use of Poincaré-invariant quantum

mechanics to study these interactions. This research provides valuable insights into NN

interactions and 3N forces.

The study of 3N systems o↵ers an excellent avenue for microscopically examining

inter-nucleon interactions. The Faddeev theory, which dates back to the 1960s (FADDEEV,

1960), serves as the foundation for investigating 3N problems. Nonrelativistic Faddeev

calculations have been extensively conducted to analyze the 3N bound state and 3N

scattering processes in the low-energy regime. However, the calculations have shown

di↵erences from experimental values. These discrepancies are attributed to two factors:

the impact of 3B forces and relativistic e↵ects.

While many studies have explored the impact of relativistic e↵ects on bound states

(KONDRATYUK et al., 1981; GLÖCKLE et al., 1986; KONDRATYUK et al., 1989; SAMMAR-

RUCA et al., 1992; STADLER; GROSS, 1997; CARBONELL; KARMANOV, 2003; KAMADA et al.,

2010; HADIZADEH et al., 2014; POLYZOU; ELSTER, 2014) and scattering states (KAMADA,

2000; SEKIGUCHI et al., 2005; KEISTER; POLYZOU, 2006; WITA LA et al., 2006; SKIBIŃSKI et

al., 2006; WITA LA et al., 2011) in quantum mechanical few-body system, there has been

limited studies of the specific case of relativistic e↵ects in the zero range limit using the

FY equations, which in this limit, the short-range part of the interaction, where the wave

function is most influenced, is neglected, and the focus is directed towards the long-range



CHAPTER 1. INTRODUCTION 28

part characterized by the scattering length (NAIDON; ENDO, 2017).

The distinction between relativistic and nonrelativistic dynamics arises from three

factors (HADIZADEH et al., 2020):

(i) The momentum-dependent nature of the kinetic energy or free propagator,

(ii) The relationship between potential operators and the 2B t�matrices,

(iii) The structure of the momentum basis, which results in a non-identical Jacobian for

the change of momentum variables and includes a permutation coe�cient in the

relativistic case.

In this work, we will utilize the aforementioned formulation to investigate the stabil-

ity of three-boson systems under separable potentials, specifically Yamaguchi-type and

Gaussian-type potentials, as they approach the zero-range limit. Our objective is to solve

the relativistic Faddeev equations and extract the binding energies and corresponding

wave functions. By studying these properties, we aim to gain insights into the behavior

of the systems as the interaction range approaches zero.

1.4 Binding and structural properties of negatively charged

trions in a suspended two-dimensional MoS2 layer

The observation of a trion peak in quantum wells, which are two-dimensional (2D)

systems, was first reported in 1993 (KHENG et al., 1993). It was predicted that the trion

energies in these systems would be approximately ten times higher than in the 3D case

(STÉBÉ; AINANE, 1989). Hence, the experimental detection of trions should be consider-

ably easier in 2D semiconductors compared to their 3D counterparts. The synthesis of

2D semiconductors (SONG et al., 2013) has revealed that excitons and trions exhibit sig-

nificantly larger binding energies (UGEDA et al., 2014) compared to traditional materials.

This enhancement arises from reduced screening e↵ects, as the electric field lines extend

beyond the boundaries of the 2D semiconductor (MAK et al., 2013). In these systems,

the strength of the interaction can be externally controlled by implementing appropriate

dielectric engineering techniques (CHAVES et al., 2020).

In terms of materials, the other highly researched 2D materials besides graphene are

the semiconducting transition metal dichalcogenides (TMDs). These have the chemical

formula MX2, where M stands for a transition metal like Mo or W, and X stands for a

chalcogenide like S, Se, or Te (KORMÁNYOS et al., 2015). In TMDs, the interaction between

charge carriers primarily occurs through the screened Coulomb interaction, which, in the
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classical regime, is described by the Rytova-Keldysh (RK) potential. This potential is

obtained as the solution to the Poisson equation for an infinitesimally thin dielectric slab

(CUDAZZO et al., 2011).

Novel 2D materials o↵er exciting opportunities for exploring few-body systems. A wide

range of materials, including TMDs, hexagonal boron nitride, and graphene, host excitons,

trions, and biexcitons. Furthermore, in these systems, excitons and trions can exhibit

strong coupling with light, giving rise to exciton-polaritons (LIU et al., 2015; EPSTEIN et al.,

2020) and trion-polaritons (EMMANUELE et al., 2020), respectively. These phenomena open

up new avenues for studying the interactions and collective behavior of these excitations

in the realm of 2D materials. Trion investigations in 2D materials have been the subject of

several experiments. In the case of MoS2, large trion binding energies have been observed.

Experimental values ranging from 20-43 meV have been reported for samples deposited

on SiO2 substrates (MAK et al., 2013; ROSS et al., 2013; SOKLASKI et al., 2014; ZHANG et

al., 2015b), while a value of 80 meV was measured for suspended samples(LIN et al., 2019).

Another study (LIN et al., 2014) explored di↵erent substrates and provided an extrapolation

curve indicating a trion binding energy of 44 meV for the suspended case. It is important

to note that the trion binding energy is influenced by the dielectric environment (LIN et

al., 2014), doping levels (MAK et al., 2013), and temperature (JADCZAK et al., 2017). These

factors contribute to the variations observed in the measured trion binding energies.

In the field of cold-atom physics, three-particle bound states also emerge. By employ-

ing trapping techniques, it becomes possible to gradually reduce the system’s dimension-

ality from 3D to 2D (PETHICK; SMITH, 2008; BELLOTTI et al., 2012; BELLOTTI et al., 2013;

BELLOTTI et al., 2013; YAMASHITA et al., 2014; BELLOTTI et al., 2014). Consequently, the

notable Efimov e↵ect (EFIMOV, 1970) vanishes, and the previously observed log-periodic

behavior of the wave function transforms into a power law dependence (ROSA et al., 2022;

ROSA et al., 2018; YAMASHITA, 2019).

In the current work, we will focus on the study of trions in an undoped suspended MoS2

layer at zero temperature. It is important to note that due to the idealized conditions of

our investigation, we do not anticipate an exact match with experimental measurements

conducted at finite temperatures and with residual doping. Nonetheless, our analysis aims

to provide valuable insights and theoretical understanding of trion properties in this spe-

cific system. Numerous theoretical calculations have already been conducted to determine

trion binding energies (BERKELBACH et al., 2013a; KIDD et al., 2016a; SZYNISZEWSKI et al.,

2017b; DONCK et al., 2017; FILIKHIN et al., 2018; KEZERASHVILI; TSIKLAURI, 2017; CHANG;

CHANG, 2021). Trions introduce a scenario where the system involves two identical parti-

cles, either eeh or ehh , thereby giving rise to a three-body system AAB when considering

the two identical particles. To thoroughly explore such a three-body configuration, the

Faddeev formalism emerges as the most rigorous method (KEZERASHVILI, 2019).
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The objective of this work is to investigate negatively charged trions in a MoS2 layer

using the Faddeev equations approach in momentum and configuration space. Our focus

will be on exploring the binding and structural properties of these trions within this

specific material system.

1.5 Outline

In chapter 2, our focus is on investigating the structure of the relativistic and boosted

potential in three dimensions (3D). To achieve this, we calculate the relativistic potential

by deriving it from the corresponding nonrelativistic potential. Specifically, we employ

various nonrelativistic Yamaguchi separable potential types. Subsequently, we proceed

to calculate the relativistic binding energy of a three-body (3B) system in 3D. This is

accomplished by utilizing the Faddeev equation and incorporating the boosted potential

obtained in the previous step. Throughout this analysis, we maintain the fixed value of

the binding energy for the two-body (2B) system. Moreover, we aim to investigate the

behavior of the 3B system when the potential range approaching zero. This investigation

is carried out while keeping the 2B binding energy constant by increasing the potential

parameters for the Yamaguchi and Gaussian form factor. We also explore the behavior of

the 3B system when the potential range is fixed, and the 2B binding energy is varied.

In chapter 3, we focus on the study of nonrelativistic trions in a two dimensions

(2D) momentum space MoS2 layer. We begin by studying the 2B properties in 2D.

Subsequently, we proceed to calculate the trion binding energy in this system. This is

accomplished by solving the three coupled Faddeev equations in momentum space. We

also investigate the cluster structure of a system consisting of charged particles with

attractive and repulsive interaction.

In chapter 4, we study the nonrelativistic trions in configuration space. By employing

a Fourier transform, we convert the momentum space wave function into its configuration

space representation, enabling us to analyze the spatial distribution and correlations of

the trion’s constituent particles. We investigate the trion structure using the Yamaguchi

and Rytova-Keldysh (RK) potentials, employing regularization techniques to address the

challenges posed by the long-range nature of the RK potential. Our calculations provide

insights into the geometrical arrangement of the particles within the trion and highlight

the accuracy of our numerical methods.

In chapter 5, we extend our investigation to four-body systems in two-dimensional

momentum space using the Faddeev-Yakubovsky (FY) equations. We discuss the the-

oretical framework of the FY approach and its application to four interacting particles.

The chapter outlines the derivation of the FY equations in 2D space, emphasizing per-
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mutation symmetries and the decomposition of the wave function. Numerical results for

a specific case involving identical particles interacting through a separable potential are

presented, demonstrating the e↵ectiveness of our iterative method. This chapter serves as

a stepping stone for future studies on the physical problem of biexcitons in 2D systems.

In Chapter 6, we delve into the potential for uncovering new dimensions within few-

body systems, extending the scope of this research.

It is noteworthy to mention that the outcomes presented in Chapter 2 have been built

upon the work previously published in Ref. (MOHSENI et al., 2021), while the results in

Chapter 3 published in Ref. (MOHSENI et al., 2023).



2 Zero-Range Limits and Three-Boson

Stability in Boosted Potentials

2.1 Overview

In the study of the relativistic three-boson system, a key issue is its stability when con-

sidering a zero-range interaction (YDREFORS et al., 2020). The zero-range 2B interaction

represents a significant limiting scenario that captures essential characteristics observed

in nuclear and atomic few-body systems (CARBONELL; KARMANOV, 2003; YAMASHITA et

al., 2003; BELLOTTI et al., 2011). The concern arises from the known occurrence of the

Thomas collapse (THOMAS, 1935; COUTINHO et al., 1995) in the nonrelativistic three-boson

system with contact potentials. In other words, the binding energy of a three-body system

approaches �1 as the range of the interaction between the particles approaches zero. To

address this issue, stability has been demonstrated by solving the Light-Front (LF) re-

duction of the Faddeev-Bethe-Salpeter (FBS) equation (CARBONELL; KARMANOV, 2003;

KARMANOV; CARBONELL, 2004). Furthermore, stability in the three-boson system has

been confirmed by solving the four-dimensional FBS equation for the contact interaction

in Euclidean space (YDREFORS et al., 2017b). These investigations have highlighted the

significance of the implicit 3B interactions that arise from relativistic e↵ects (KARMANOV;

MARIS, 2009).

Given this background, it becomes relevant to explore the stability of the three-boson

system with contact interactions using alternative frameworks for formulating the rela-

tivistic Faddeev equations. For instance, one approach is to employ boosted potentials

(KAMADA; GLÖCKLE, 2007). This motivation arises from the need to understand the

stability properties of the system under di↵erent theoretical formulations, which can shed

light on the interplay between relativistic e↵ects and contact interactions. The boost con-

cept comes from the moving 2B subsystem in the rest frame of the three-particle system.

At the 2B level, the relativistic 2B potentials are specifically designed to ensure the

preservation of dimer properties and 2B observables. These relativistic 2B potentials serve

as inputs for calculating t�matrices. Several methods exist for computing the relativistic
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2B t�matrices, including the following options:

• One approach involves solving the relativistic Lippmann-Schwinger equation using

relativistic 2B potentials. These potentials can be derived from their nonrelativistic

counterparts by solving a quadratic equation. Several computational methods have

been developed to tackle this nonlinear equation, including the spectral expansion

method (KAMADA et al., 2002; GLÖCKLE et al., 1986) and an iterative approach (KA-

MADA; GLÖCKLE, 2007). In the spectral expansion method, a completeness relation

of the 2B bound and scattering states is inserted into the right side of the quadratic

equation, followed by a projection into momentum space. alternatively, Kamada

and Glöckle proposed a highly e↵ective iterative scheme that has been successfully

applied in two- and three-body calculations involving bound and scattering states,

using a partial wave decomposition. In this study, we extend the implementation of

the iterative scheme to 3B bound state calculations within a three-dimensional (3D)

and partial wave (PW) framework. This extension involves directly computing the

relativistic 2B t�matrices from the relativistic 2B potentials.

• Another option involves directly calculating the relativistic 2B t�matrices from

their nonrelativistic counterparts. This approach employs a two-step process to

achieve the desired results. In the first step, the relativistic right-half-shell 2B

t�matrices are analytically computed based on the nonrelativistic right-half-shell

2B t�matrices. This calculation is followed by the determination of the fully o↵-

shell 2B t�matrices in the second step. The second step involves solving the first

resolvent equation using the Coester-Piper-Serduke transformation (COESTER et al.,

1975; KEISTER; POLYZOU, 2006). Notably, this method eliminates the need for

the matrix elements of the relativistic 2B potentials. Its successful implementation

has been demonstrated in 3B bound and scattering calculations employing a 3D

approach (LIN et al., 2007; LIN et al., 2008; POLYZOU; ELSTER, 2014; ELSTER et al.,

2007; HADIZADEH et al., 2014).

While these approaches have been e↵ectively applied in the context of the NN problem

and 3D framework (HADIZADEH; RADIN, 2017) with Malfliet Tjon (MT) potential, but its

feature in the short and zero range limit has not been investigated. In order to investigate

the stability of the three-boson system under contact potentials, we employ the framework

of boosted potentials (KAMADA; GLÖCKLE, 2007), i.e., the moving 2B subsystem in the

rest frame of the three-particle system (MOHSENI et al., 2021). Once the boosted potential

is determined, the 2B t�matrix within the rest frame of the 3B system can be computed,

as required for the kernel of the relativistic Faddeev equations (HADIZADEH et al., 2014;

HADIZADEH et al., 2020). The above formulation will be employed to investigate the sta-

bility of the three-boson system using separable potentials (specifically, Yamaguchi-type
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and Gaussian-type potentials) as they approach the zero-range limit. Our objective is

to solve the relativistic Faddeev equations, enabling us to determine the binding energies

and corresponding wave functions and study their properties when the potential range is

driven towards zero. It is important to emphasize that the relativistic Faddeev approach

utilizing boosted potentials is not based on field theory; rather, it utilizes a relativistic

version of the phenomenological 2B potential. This approach belongs to “instant” form,

one of the three forms of relativistic dynamics proposed by Dirac in 1949 (DIRAC, 1949):

the “instant” form, the “LF” form, and the “point” form. Each form of dynamics is char-

acterized by the number of kinematical and dynamical boosts, which correspond to the

generators of the Poincaré group. The kinematical boosts keep the initial state hyper-

surface invariant and do not contain the potential, while the dynamical ones depend on

the potential. In the instant form, six out of the ten Poincaré group generators are kine-

matical, while the remaining four are dynamical and involve the potential. In the LF

form, seven generators are kinematical, and three are dynamical. A comprehensive dis-

cussion on applying these dynamics forms to nuclear few-body systems can be found in

Ref. (CARBONELL et al., 1998).

The relativistic framework developed by Kamada and Glöckle falls within the class

of “instant” form dynamics. Their approach, applied to few-nucleon systems, aims to

preserve the relativistic 2B bound state (dimer) energy and nucleon-nucleon phase shifts

as obtained in nonrelativistic calculations. Furthermore, it provides energy states with

good angular momentum quantum numbers, as usual in the nonrelativistic frameworks.

Consequently, the relativistic Faddeev approach with boosted potential can be viewed

as one practical implementation of the instant form of dynamics. Furthermore, we will

provide a quantitative comparison between the outcomes of the Kamada and Glöckle

instant form framework and the results derived from LF and field theoretical models in

the limit of zero-range potentials (CARBONELL et al., 1998; CARBONELL; KARMANOV,

2003; KARMANOV; CARBONELL, 2004; YDREFORS et al., 2017a; YDREFORS et al., 2017b;

ROSA et al., 2022).

In Section 2.2.1 and Section 2.2.2, we present the formalism and numerical results

for the relativistic and boosted potentials. Moving on, in Section 2.3, we explore the

formalism and present our numerical results for the nonrelativistic and relativistic 2B

binding energy. Finally, in Section 2.4, we examine the nonrelativistic and relativistic 3B

bound states.
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2.2 Nonrelativistic, relativistic, and boosted potentials

2.2.1 Relativistic potentials

As we discussed in Section 2.1 the first step toward the calculation of relativistic

t�matrices and then 3B bound and scattering state is the calculation of the relativistic

potentials from nonrelativistic ones (KAMADA; GLÖCKLE, 2007; HADIZADEH; RADIN, 2017;

MOHSENI et al., 2021; HADIZADEH et al., 2021). The relationship between relativistic

and nonrelativistic nucleon-nucleon (NN) potentials, denoted as Vr and Vnr respectively,

emerges from a comparison of the nonrelativistic and relativistic Schrödinger equations.

The well-known nonrelativistic Schrödinger equation is given by

✓
p̂
2

m
+ Vnr

◆
 nr =

p
2
0

m
 nr, (2.1)

where we are assuming ~c = 1. In the relativistic framework, the Schrödinger equation

takes the form

⇣
2
p

m2 + p̂2 + Vr

⌘
 r = 2

q
m2 + p

2
0 r. (2.2)

By comparing Eqs (2.1) and (2.2), we arrive at a quadratic operator equation that relates

the nonrelativistic and relativistic potentials (COESTER et al., 1975; FRIAR, 1999; KAMADA;

GLÖCKLE, 2007)

Vnr =
1

4m

⇣
!(p̂)Vr + Vr!(p̂) + V

2
r

⌘
, (2.3)

where !(p) = 2E(p) = 2
p

p2 +m2, m is the mass of the nucleon, and p is the relative

momentum of the two-nucleon.

As is it shown in Ref. (HADIZADEH; RADIN, 2017), the matrix elements of relativistic

potential, Vr, can be obtained from the nonrelativistic potential Vnr, by solving a quadratic

integral equation

hp|Vr|p0i+ 1

!(p) + !(p0)

Z 1

0

d
3
p
00hp|Vr|p00i hp00|Vr|p0i = 4m hp|Vnr|p0i

!(p) + !(p0)
. (2.4)

The nonrelativistic potential used in our study, as described by Eq. (2.4), is a spin-

independent one-term separable potential (YAMAGUCHI, 1954a). The one-term separable

potential can be represented in momentum space as

V (p, p0) = � g(p) g(p0), (2.5)
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here, � represents the potential strength, and g(p) is the form factor. For the Yamaguchi

form factor (YAMAGUCHI, 1954b), g(p) is defined as

g(p) =
1

p2 + �2
. (2.6)

Table 2.1 provides the parameters for di↵erent models of the Yamaguchi potential

used in our calculations. It is worth noting that we employ the value ~2/m = 41.470

(MeV.fm2), where ~ is the reduced Planck’s constant and m represents the relevant mass.

TABLE 2.1 – Parameters for di↵erent models of the Yamaguchi (Y) potential.

Yamaguchi potential type ��⇥m [fm�3] � [fm�1]

Y-I 0.415 1.45

Y-II 0.353 1.45

Y-III 0.182 1.15

Y-IV 0.179 1.15

In general, to determine the potential strength �, one can utilize the pole property

of separable t-matrices and employ the following relation (SCHMID; ZIEGELMANN, 1974;

PLATTER et al., 2004a; HADIZADEH et al., 2011; FREDERICO et al., 2012)

1

�nr
= 4⇡

Z 1

0

dp p
2 g

2(p)

Ed �
p
2

m

, (2.7)

where �nr is the nonrelativistic potential strength and Ed is the binding energy of 2B bound

state, also called dimer. Derivation of Eq. (2.7) is given in Appendix B. This equation

allows us to determine the potential strength �nr by evaluating the integral involving the

form factor g(p) by fitting the dimer binding energy Ed.

For solving Eq. (2.4) in 3D, we define a coordinate system by choosing the relative

momentum vector p parallel to z�axis and vector p0 in the x� z plane
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FIGURE 2.1 – The geometry of vectors, p ,p0 &p00. The vector p is chosen to be parallel to the z�axis
and vector p0 is in the x � z plane, and p00 is free in the 3D space. The angle variables defined in Eqs.
(2.9) are indicated.

Using this coordinate system, Eq. (2.4) can be written explicitly as
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where
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In s�wave, Eq. (2.8) can be expressed as
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To solve Eq. (2.10), we employ an iteration technique. The iteration process begins

with an initial guess for the relativistic potential V (0)
r (p, p0), which is set to the right-hand

side of Eq.(2.10)

V
(0)
r (p, p0) =

4mVnr(p, p0)

!(p) + !(p0)
. (2.11)
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The iteration continues until the calculated relativistic potential satisfies Eq. (2.10) at

each set point (p, p0) with a relative error of 10�6. This convergence criterion ensures that

the obtained relativistic potential su�ciently satisfies the equation.

Table A.1 presents an example of the convergence of the matrix elements of the rela-

tivistic potential Vr(p, p0) as a function of the iteration number.

In Fig. 2.2 we have shown our numerical results for the nonrelativistic, and relativistic

potential calculated from the Yamaguchi potential when the potential strength is calcu-

lated by Eq. (2.7) with Ed = �2.225 MeV. The di↵erence between the nonrelativistic and

constructed relativistic potentials is also shown in the right panel.

FIGURE 2.2 – The matrix elements of the nonrelativistic (left panel), the relativistic (middle panel) NN

potentials and their di↵erences (right panel) calculated by separable Yamaguchi potential with � = 1 as
a function of 2B relative momenta p and p

0. Results are obtained with �nr calculated with Eq. (2.7) with
Ed = �2.225 MeV.

From the figures, it is evident that the constructed relativistic potential closely re-

sembles the nonrelativistic potential. The main di↵erence between nonrelativistic and

constructed relativistic potential is observed at low momenta. In this region, the rela-

tivistic potential deviates slightly from the nonrelativistic one. Overall, the two poten-

tials exhibit similar behavior and are in close agreement, indicating that the relativistic

corrections have a limited impact on the potential shape, particularly at higher momenta.

2.2.2 Boosted potentials

The 2B boosted potentials, denoted as Vkij ⌘ Vk, which are embedded in the 3B

Hilbert space, can be derived from the relativistic 2B potential Vr through a nonlinear

relationship (HADIZADEH et al., 2020)

Vk =

✓�
!(p̂) + Vr

�2
+ k̂

2

◆ 1
2

�
✓
!
2(p̂) + k̂

2

◆ 1
2

, (2.12)

where k = ki+kj is total momentum of the subsystem (ij), !(p̂) = 2E(p̂) = 2
p

m2 + p̂2,

and p is the relative momentum in the 2B subsystem (ij). As mentioned in Section 2.1,
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the dependence on k arises due to the fact that in a 3B system the 2B subsystems are not

at rest. Obviously, for k = 0 the boosted potential reduces to the relativistic potential,

i.e. Vk = Vr.

Alternatively, according to the approach described in (KAMADA; GLÖCKLE, 2007), the

boosted potential can be derived from the nonrelativistic potential using the quadratic

equation

Vnr =
1

4m

✓
!k(p̂)Vk + Vk !k(p̂) + V

2
k

◆
, (2.13)

where !k(p̂) =
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!
2(p̂) + k̂

2

◆ 1
2

. By solving this quadratic equation, the boosted potential

Vk can be obtained based on the given nonrelativistic potential Vnr. Indeed, when k = 0,

the Eq. (2.13) simplifies and confirms that for k = 0, the boosted potential can be reduced

to the relativistic potential, as given by Eq. (2.3). This result is expected since in the case

of k = 0, there is no boost in momentum, and the relativistic e↵ects are fully captured

by the relativistic potential. Therefore, the boosted potential becomes equivalent to the

relativistic potential in this limit.

The Eqs. (2.3) and (2.13) have same operator forms, where Vr and ! are replaced by

Vk and !k, respectively. Hence, the boosted potential matrix elements can be obtained

by utilizing the nonrelativistic potential elements and solving the following 3D integral

equation
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00
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. (2.14)

An important feature of the boosted potential, as shown in Eq. (2.14), is its decreasing

e↵ect as the momentum of the spectator particle k increases. This behavior leads to a

repulsive influence in the ultraviolet region (UV), counteracting the attractive forces at

short range. We will explore these properties while studying the three-boson bound state

in the limit of a zero range.

Similar to the calculation of the relativistic potential from the nonrelativistic one, the

matrix elements of the boosted potential Vk can also be computed using the coordinate

system defined in Fig. 2.1. Hence, Eq. (2.14) can be explicitly written as
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In this study, we adopt a similar methodology to the one employed in Section 2.2.1 for
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calculating the boosted potential. This approach is based on the iterative technique pro-

posed by Kamada and Glöckle (KAMADA; GLÖCKLE, 2007), which we previously utilized

for deriving the relativistic potential from its nonrelativistic counterpart. The goal was

to obtain the matrix elements of the boosted potential Vk(p, p0, x0) based on the nonrela-

tivistic potentials Vnr(p, p0, x0). By iteratively evaluating the integral equation, we aimed

to find a solution that satisfies the equation and provides the desired matrix elements of

the boosted potential. The iteration process allows us to gradually improve the accuracy

of the calculated values until convergence is achieved. To solve for the matrix elements of

the boosted potential Vk(p, p0), we project Eq. (2.15) onto the s�wave channel, resulting

in Eq. (2.16)
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the iterative process begins with an initial guess for the matrix elements given by Eq.

(2.17).

V
(0)
k (p, p0) =

4mVnr(p, p0)

!k(p) + !k(p0)
. (2.17)

The iteration is then performed until convergence is achieved in the matrix elements

of the boosted potential. Convergence is considered reached when the relative error falls

below 10�6 for each grid point (p, p0). By iteratively improving the matrix elements using

Eq. (2.16), we can obtain the desired solutions that satisfy the equation and provide

accurate values for the boosted potential.

Table A.2 illustrates an example of the convergence of the matrix elements of the

boosted potential Vk(p, p0) as a function of iteration number.

Fig. 2.3 presents the matrix elements of the nonrelativistic and boosted potentials,

as well as the di↵erence between them. Similar to the di↵erence between the relativistic

and nonrelativistic potentials (see Fig. 2.2), the di↵erence between the boosted and

nonrelativistic potentials is primarily noticeable in the low momentum region. The results

show that the constructed boosted potential closely matches the nonrelativistic potential,

but there are some di↵erences, especially at low momenta. These di↵erences become more

pronounced as the boosted momenta increase.
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(a)

(b) (c)

(d) (e)

(f) (g)

FIGURE 2.3 – The matrix elements of the nonrelativistic (a), and the boosted (b,d & f) 2B potentials
and their di↵erences (c,e & g) calculated by Yamaguchi separable potential as a function of 2B relative
momenta p and p

0 with k = 1, 5, 10 fm�1. Results are obtained with �nr calculated with Eq. (2.7) with
Ed = �2.225 MeV.
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For a comprehensive study of the properties of boosted potential we adopted Gaussian

form factor which is given as (DELTUVA et al., 2011)

g(p) = exp
⇣
� p

2

⇤2

⌘
. (2.18)

Fig. 2.4 shows the diagonal matrix elements of the nonrelativistic and boosted potentials

for Yamaguchi-type potentials (upper panel) and Gaussian potentials (lower panel). The

calculations are performed for various values of the boosted momentum k and a broad

range of form factor parameters � for Yamaguchi potentials and ⇤ for Gaussian potentials.

The potential strength �nr is determined using Eq. (2.7) with a fixed dimer binding energy

of Ed = �2.225 MeV.
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FIGURE 2.4 – The diagonal matrix elements of nonrelativistic and boosted potentials are computed for a
diverse set of form factor parameters � for Yamaguchi-type potentials (upper panel) and ⇤ for Gaussian
potentials (lower panel). The calculations are performed using various values of the boosted momentum
k. These Figures are taken from (MOHSENI et al., 2021).

From the Fig. 2.4, it is evident that the magnitude of the boosted potentials decreases

as the boosted momentum k increases. This behavior is observed for both Yamaguchi-
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type potentials and Gaussian potentials, indicating a general trend. The form factor

parameters � and ⇤ control the range and smoothness of the potentials, and di↵erent

values of these parameters lead to variations in the potentials’ behavior.

2.3 Two-body bound state

2.3.1 Nonrelativistic NN bound state

The total Hamiltonian of two identical interacting particles in the center of mass (CM)

of system in momentum space is given as

H
nr = H

nr
0 + Vnr, (2.19)

where H
nr
0 =

p
2

m
is nonrelativistic free Hamiltonian, p is the relative momentum between

two particles and V12 = V21 = Vnr is nonrelativistic 2B potential. The Schrödinger

equation for 2B bound system is given as

(Hnr
0 + Vnr) | nri = E

nr
d | nri, (2.20)

where Enr is 2B binding energy. One can rewrite the Schrödinger equation, Eq. (2.20) in

integral form

| nri =
1

E
nr
d �H

nr
0

Vnr| nri, (2.21)

the projection of nonrelativistic Schrödinger equation, Eq. (2.21) in momentum space can

be written as

 
nr
d (p) =

1

E
nr
d � p2

m

Z
d
3
p
0
Vnr(p,p

0) nr
d (p0), (2.22)

where the completeness relation of 2B basis states is given as

Z
d
3
p |pihp| ⌘

Z 1

0

dp p
2

Z +1

�1

dx

Z 2⇡

0

d� |pihp| = 1. (2.23)

For a central potential and s�wave states, the integral form of the Schrödinger equa-

tion, Eq. (2.22), can be further simplified to

 
nr
d (p) =

4⇡

E
nr
d � p2

m

Z 1

0

dp
0
p
02
Vnr(p, p

0) nr
d (p0). (2.24)

By solving this integral equation, one can obtain the s�wave component of the dimer wave
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function  nr
d (p), which describes the bound state of the two nucleons in the nonrelativistic

framework.

2.3.2 Relativistic NN bound state

The form of the relativistic Schrödinger equation for the bound state of two identical

interacting particles for mass operator h, is given by (BAKAMJIAN; THOMAS, 1953; FONG;

SUCHER, 1964)

h| r
di = Md| r

di, (2.25)

where Md = Ed+2m is the dimer mass, and Ed in dimer binding energy. The relativistic

dimer wave function | r
di satisfies the eigenvalue equation (HADIZADEH et al., 2020)

 
r
d(p) =

1

Md � !(p)

Z
d
3
p
0
Vr(p,p

0) d(p
0). (2.26)

where !(p) = 2E(p) = 2
p

m2 + p2, m is the mass of the nucleons and p is the relative

momentum of two nucleons.

Similar to nonrelativistic case, Eq. (2.26) for an s�wave potential can be simplified

as

 
r
d(p) =

4⇡

Md � !(p)

Z 1

0

dp
0
p
02
Vr(p, p

0) r
d(p

0). (2.27)

2.3.3 Numerical results for dimer binding energy

To discretize the continuous momentum for solving Eqs. (2.24) and (2.27), we em-

ployed the Gauss-Legendre quadrature method. We used a hyperbolic plus linear map-

ping to divide the integration domain [0,1) into subintervals [0, p1]
S
[p1, p2]

S
[p2, pmax]

(HADIZADEH; RADIN, 2017)

p =
1 + x

1
p1

+ ( 2
p2

� 1
p1
) x

, p =
pmax � p2

2
x+

pmax + p2

2
. (2.28)

Table A.3 presents the numerical result for the nonrelativistic (Enr
d ) and relativistic (Erel

d )

dimer binding energy as function of number of mesh points for relative momentum Np.

An interesting and important characteristic of the boosted potential method is that the

boosted potential Vk(p,p0) calculated for a specific momentum k satisfies the relativistic

Schrödinger equation, as represented by Eq. (2.27). This means that the calculated

boosted potentials accurately describe the behavior of a moving dimer with momentum
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k. To show this we rewrite the Eq. (2.27) for a moving dimer with momentum k as

 
boosted
d (p) =

4⇡p
M

2
d + k2 � !k(p)

Z
dp

0
p
02
Vk(p, p

0) boosted
d (p0). (2.29)

Here we suppose that when the nonrelativistic potential is separable, the boosted potential

can be written in separable form. Consequently, we can express the boosted potential as

Vk(p, p0) = �k g(p) g(p0). Analogous to Eq. (2.7), we can determine the potential strength

�k by solving the equation

1

�k
= 4⇡

Z 1

0

dp
00
p
002 g

2(p00)p
M

2
d + k2 � !k(p00)

. (2.30)

We first consider the separable form for the boosted potential and calculate the potential

strength �k using Eq. (2.30) with Md = �2.225 MeV. Next, we calculate the boosted

potential Vk by using the seperable form of the boosted potential. Then, using the cal-

culated Vk as input for the quadratic equation (2.16), we calculate the nonrelativistic

potential Vnr for di↵erent boosted momenta k and potential parameters �. Finally, we

solve Eq. (2.24) to calculate the nonrelativistic dimer binding energies for the obtained

nonrelativistic potentials.

The numerical results for boosted and nonrelativistic dimer binding energies for di↵er-

ent boosted momentum k and potential parameters � are given in Table A.5. As one can

see, calculated boosted potentials Vk(p, p0) for a given momentum k satisfies Eq. (2.29) for

moving dimer with momentum k with high accuracy. The consistency between the calcu-

lated potentials and the relativistic Schrödinger equation underscores the reliability and

applicability of the boosted potential approach in studying the dynamics of interacting

particles.

In Fig. 2.5 we show the diagonal matrix elements of the nonrelativistic potential

obtained from a separable boosted potential, that reproduces the moving dimer binding

energy, from the solution of Eq. (2.16). The plot is obtained for the potential parameter

� = 1 fm�1 and di↵erent values of the boosted momentum k. As one can see, the diagonal

matrix elements of the nonrelativistic potential are almost identical for di↵erent values of

the boosted momentum k.
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FIGURE 2.5 – The diagonal matrix elements of the nonrelativistic potential obtained from a separable
boosted potential, that reproduces the moving dimer binding energy, from the solution of Eq. (2.16). The
plot is obtained for the potential parameter � = 1 fm�1 and di↵erent values of the boosted momentum
k.

2.4 Three-body bound state

2.4.1 Nonrelativistic Faddeev equations in momentum space

The nonrelativistic Schrödinger equation for the 3B bound system is given by

(H0 +
3X

i=1

Vi)| i = E| i, (2.31)

where we have introduced the notation

V1 ⌘ V23 , V2 ⌘ V13, V3 ⌘ V12. (2.32)
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To express Eq. (2.31) in integral form, we can rewrite it as

| i = 1

E �H0

3X

i=1

Vi| i = G0

3X

i=1

Vi| i, (2.33)

where G0 =
1

E �H0
is free propagator. The wave function can be obtained by summing

all Faddeev components, as

| i =
3X

i=1

| ii, (2.34)

where

| ii = G0Vi| i = G0Vi

3X

i=1

| ii. (2.35)

By separating the Faddeev components  i from the right-hand side of Eq. (2.35) we

can write

(1�G0Vi)| ii = G0Vi

X

j 6=i

| ji

| ii = (1�G0Vi)
�1
G0Vi

X

j 6=i

| ji. (2.36)

By expanding the term (1�G0Vi)�1, we have

(1�G0Vi)
�1
G0Vi = (1 +G0Vi +G0ViG0Vi + . . .)G0Vi

= (G0Vi +G0ViG0Vi +G0ViG0ViG0Vi + . . .)

= G0(Vi + ViG0Vi + ViG0ViG0Vi + . . .)

⌘ G0ti. (2.37)

Here, ti is the two-body t-matrix defined as

ti = Vi + ViG0ti, (2.38)

Substituting this back into Eq. (2.36), we obtain

| ii = G0ti

X

j 6=i

| ji. (2.39)

In the general case of three di↵erent particle (GLÖCKLE, 2012) we can write these
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three coupled equations as

| 1i = G0t1(| 2i+ | 3i),
| 2i = G0t2(| 3i+ | 1i),
| 3i = G0t3(| 1i+ | 2i). (2.40)

Considering the three identical particles, we can express | 2i and | 3i in terms of | 1i as

| 2i ⌘ G0V2| i = P12P23G0V1| i ⌘ P12P23| 1i,
| 3i ⌘ G0V3| i = P13P23G0V1| i ⌘ P13P23| 1i. (2.41)

Thus, Eq. (2.40) reduces to a single equation:

| 1i = G0t1(P12P23 + P13P23)| 1i, (2.42)

| i = G0t P | i, (2.43)

where P = P12P23 +P13P23, and in the last equation for simplifying the notation we drop

the indices. The 3B bound state wave function can be obtained from Eqs. (2.34) and

(2.41) as

| i = | 1i+ | 2i+ | 3i = | 1i+ P12P23| 1i+ P13P23| 1i = (1 + P ) | i. (2.44)

The free Hamiltonian H0 in the laboratory frame can be expressed as a sum of the

kinetic energies of each particle

H0 =
3X

i=1

k
2
i

2mi
, (2.45)

To address 3B problems e↵ectively, a set of Jacobi momenta, shown in Fig. 2.6, are

commonly employed. This choice of coordinates allows for the separation of the CM

motion, thereby simplifying the problem. Consequently, the free Hamiltonian Eq. (2.45),

takes the following form

H0 =
p
2
i

2µjk
+

q
2
i

2µi,jk
+

K
2

2(mi +mj +mk)
. (2.46)

Here, pi represents the relative momentum in the 2B subsystem (jk), qi is the mo-

mentum of the third particle (i) with respect to the 2B subsystem (jk), µjk is the reduced

mass of the (jk) pair, µi,jk is the reduced mass of the 3B system, and K =
P3

i=1 ki is the

total CM momentum.
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FIGURE 2.6 – Set of Jacobi momenta for 3B system.

In General case of three di↵erent particle the Jacobi momenta are defined as

pi =
mkkj �mjkk

mj +mk
, (2.47)

qi =
mj +mk

mi +mj +mk


ki �

mi

mj +mk
(kj + kk)

�
, (2.48)

where

µjk =
mjmk

mj +mk
, (2.49)

µi,jk =
mi(mj +mk)

mi +mj +mk
. (2.50)

In the case of three identical particles with masses mi = mj = mk = m, we can

simplify Eqs. (2.47) and (2.48) as

p =
k2 � k3

2
, (2.51)

q =
2

3
(k1 �

k2 + k3

2
), (2.52)

and in the 3B CM framework, where the total momentum K is zero, Eq. (2.46) simplifies

as

H0 =
p
2

m
+

3q2

4m
. (2.53)

For projecting the Faddeev equation onto momentum space, we introduce the 3B (3B)

basis states denoted by |pqi. These basis states are complete and normalized, satisfying
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the completeness relation

Z
d
3
p

Z
d
3
q |pqihpq| = 1. (2.54)

Using these momentum basis, Eq. (2.43) can be written in momenta space as

 
nr(p,q) =

1

E � p
2

m
+

3q2

4m

Z
d
3
q
0
ts(p,

1

2
q+ q

0; ✏) (q+
1

2
q
0
,q

0), (2.55)

where ✏ = E � 3q2

4m
is 2B subsystem energy and ts(p,p0

, ✏) is symmetric 2B t-matrix

ts(p,p
0
, ✏) = t(p,p0

, ✏) + t(p,�p
0
, ✏). (2.56)

The 2B t-matrix can be obtained by solving the Lippmann-Schwinger (LS) equation

in momentum space. The LS equation for the 2B t-matrix is given by

t(p,p0
, ✏) = V (p,p0) +

Z
d
3
p
00
V (p,p00)

1

✏� p
2

m

t(p00
,p

0
, ✏). (2.57)

In the CM of the 3B system, where q = k1 = k as given by Eq. (2.52), we can rewrite

Eq. (2.55) as

 
nr(p,k) =

1

E � p2

m + 3k2

4m

Z
d
3
k
0
ts(p,

1

2
k+ k

0; ✏) (k+
1

2
k
0
,k

0). (2.58)

To solve the 3D integral equation given by Eq. (2.58), we choose a coordinate system

as shown in Fig. (2.7). In this coordinate system, the vectors p, k, and k
0 are defined.

The vector k is chosen to be parallel to the z-axis, and the vector p lies in the x�z plane,

and the vector k0 is free to move in the 3D space.
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FIGURE 2.7 – The geometry of vectors p ,k&k0. The vector k is chosen to be parallel to the z�axis
and vector p is in the x � z plane, and k0 is free in the 3D space. The angle variables defined in Eqs.
(2.59) are indicated.

The angle variables are defined as

y = p̂ · k̂0 = xx
0 +

p
1� x2

p
1� x02 cos�0

,

x = p̂ · k̂,
x
0 = p̂ · k̂0. (2.59)

By using the coordinate system in Fig. (2.7) we can write Eq. (2.58) as

 
nr(p, k, x) =

1

E � p
2

m
+

3k2

4m

Z 1

0

dk0
k

02

Z +1

�1

dx0
Z 2⇡

0

d�0
ts(p, |

1

2
k+k

0|; ✏) (|k+ 1

2
k
0|, k0).

(2.60)

The s�wave projection of Eq. (2.58) can be written as

 
nr(p, k) = 4⇡Gnr

0 (p, k)

Z 1

0

dk0
k
0
2
2
Z 1

�1

dx0
ts(p, |

1

2
k+ k

0|; ✏) (|k+
1

2
k
0|, k0), (2.61)

with

t(p, p0, ✏) = V (p, p0) + 4⇡

Z 1

0

dp
00
p
002V (p, p00)

✏� p2

m

t(p00, p0, ✏). (2.62)

For a one-term separable potential, the 2B t-matrix can be written in a separable form
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as (PLATTER et al., 2004a)

t(p, p0, ✏) = ⌧(✏) g(p) g(p0), (2.63)

here ⌧(✏) can be obtained by

⌧(✏) =
h 1

�nr
� 4⇡

Z 1

0

dp
00
p
002 g

2(p00)

✏� p2

m

i�1

. (2.64)

By utilizing the separable property of the t�matrix and the Faddeev component

 
nr(p, k), given in Eq. (2.63) and Eq. (2.66), respectively, the integral equation (2.65)

can be further simplified.

By utilizing the separable property of t�matrix, Eq. (2.63), the Faddeev integral Eq.

(2.61) can be simplify as

 
nr(p, k) = 4⇡Gnr

0 (p, k) g(p) ⌧(✏)

Z 1

0

dk0
k
0
2
2
Z 1

�1

dx0
g

✓
|1
2
k+ k

0|
◆
 

✓
|k+

1

2
k
0|, k0

◆
.(2.65)

This is an homogeneous integral equation in two variables. Let’s define F
nr(k) as the

Faddeev component depending solely on the relative momentum k. Then, Eq. (2.65) can

be further simplified as

 
nr(p, k) = G

nr
0 (p, k) g(p) ⌧(✏)F nr(k), (2.66)

where

F
nr(k) = 4⇡

Z 1

0

dk0
k
02
Z 1

�1

dx0
g

✓
|1
2
k+ k

0|
◆
G

nr
0

✓
|k+

1

2
k
0|, k0

◆
g

✓
|k+

1

2
k
0|
◆

⇥ ⌧(✏)F nr(k0), (2.67)

which can be solved by direct diagonalization of the kernel, with no need for the iteration

method.

2.4.2 Relativistic Faddeev equation

The 3B mass operator of three identical particles with mass m and momentum ki,

interacting with pairwise potentials, in the relativistic quantum mechanics is defined as

M = M0 +
X

i<j

Vkij . (2.68)
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The free-body mass operator M0 in the 3B Hilbert space is given by

M0 =
3X

i=1

(m2 + k
2
i )

1
2 . (2.69)

Similar to nonrelativistic case, in the relativistic limit we work in the CM frame of 3B

system, i.e. K = 0. In the relativistic framework, free propagator G0 in Eq. (2.43) define

as, G0 = (Mt �M0)�1 where Mt = Et + 3m is the 3B mass eigenvalue.

The 3B relativistic Jacobi momentum p and q are obtained through a two-step process.

Firstly, the momenta of individual particles, k, in the 3B system are boosted to the 3B

CM, where the total momentum of the system is zero. Subsequently, the momenta of

each 2B subsystem are boosted to their respective rest frames. The relativistic relative

momenta p and q by assuming that all nucleons have the same mass, m, are defined as

(FONG; SUCHER, 1964)

p(kj,kk) =
1

2

(
(kj � kk)�

0

@kjk
E(kj)� E(kk)

E(kj) + E(kk) +
⇥
(E(kj) + E(kk))2 � k

2
jk

⇤ 1
2

1

A
)
,

q(ki,kjk) =
1

2
(ki � kjk) +

K

2M0

 
(k2

i � k
2
jk)

E0 +
p

E
2
0 �K2

�
�
E(ki)� E(kjk)

�
!
, (2.70)

where kjk = kj + kk. As mentioned earlier, in the 3B CM frame, denoted by K = 0, the

momentum vectors q and k are equivalent, i.e., q = k.

In order to solve the Faddeev equation, Eq. (2.43), in momentum space, one needs the

3B basis states which are composed of two relativistic Jacobi momentum vectors |pki.
The free-body mass operator M0, given in Eq. (2.69), is diagonal in these basis states as

M0|pki =
✓�
!
2(p) + k

2
� 1

2 + ⌦(k)

◆
|pki, (2.71)

where ⌦(k) = (m2 + k
2)

1
2 . As shown in Ref. (HADIZADEH et al., 2014) the representation

of Faddeev equation (2.43) in the relativistic basis states |pki leads to the following 3D

integral equation

 
r(p ,k) =

1

Mt �M0(p, k)

Z
d
3
k
0
N(k,k0) tsymk

�
p, ⇡̃; ✏

�
 
�
⇡,k0�

, (2.72)

where ✏ = Mt � ⌦(k) is 2B subsystem energy, tsymk (p,p0; ✏) is symmetrized boosted 2B

t-matrix defined as t
sym
k (p,p0; ✏) = tk(p,p0; ✏) + tk(p,�p

0; ✏), and the Jacobian function

N(k,k0) is defined as

N(k,k0) = N�1(�k� k
0
,k

0)N�1(�k� k
0
,k), (2.73)



CHAPTER 2. ZERO-RANGE LIMITS AND THREE-BOSON STABILITY IN
BOOSTED POTENTIALS 55

here, N represents the square root of the Jacobian associated with the conversion from

the individual momenta k and k
0 of the subsystem to the relative momentum p and the

total 2B momentum k+ k
0 (LIN, 2008; HADIZADEH et al., 2014),

N (k,k0) =

✓
@(k,k0)

@(p,k+ k0)

◆ 1
2

=

✓
!(p) + !(p)

⌦(k) + ⌦(k0)

⌦(k)⌦(k0)

!(p)!(p)

◆ 1
2

. (2.74)

In the limit of nonrelativistic, when the momenta are significantly smaller than the

masses, the Jacobian function N simplifies to one, resulting in the relativistic Jacobi

momenta being equivalent to their nonrelativistic counterparts. The relativistic shifted

momentum arguments in Eq. (2.72) are defined as

⇡̃ = k
0 +

1

2
C(k,k0)k,

⇡ = k+
1

2
C(k0

,k)k0
, (2.75)

where the permutation coe�cients C(k,k0) are defined as (LIN et al., 2007)

C(k,k0) ⌘ 1 +
⌦(k0)� ⌦(|k+ k

0|)

⌦(k0) + ⌦(|k+ k0|) +

s✓
⌦(k0) + ⌦(|k+ k0|)

◆2

� k2

. (2.76)

In the nonrelativistic regime, when the momenta are much smaller than the masses, the

permutation coe�cient C(k,k0) equals one. This leads to the reduction of the relativistic

shifted momenta ⇡̃ and ⇡ to their corresponding nonrelativistic counterparts. Same as

Eq. (2.57) we can calculate the fully-o↵-shell boosted 2B t�matrices tk(p,p0; ✏) by solving

the following relativistic LS equation

tk(p,p
0; ✏) = Vk(p,p

0) +

Z
d
3
p
00 Vk(p,p00)

✏�
✓
!2(p00) + k2

◆ 1
2

tk(p
00
,p

0; ✏). (2.77)

Using the coordinate system defined in Fig. 2.7, Eq. (2.72) in s�wave channel can be

written as following integral equation

 
r(p, k) = 4⇡Gr

0(p, k)

Z 1

0

dk0
k
0
2
2
Z 1

�1

dxN(k, k0
, x) Tk(p, ⇡̃; ✏) (⇡, k

0), (2.78)

where

tk(p, p
0; ✏) = Vk(p, p

0) + 4⇡

Z
dp

00
p
002 Vk(p, p00)

✏�
✓
!2(p00) + k2

◆ 1
2

tk(p
00
, p

0; ✏). (2.79)
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For a one-term separable boosted potential, the Faddeev integral equation (2.78) can

be written as

 
r(p, k) = 4⇡Gr

0(p, k) g(p) ⌧k(✏)

Z 1

0

dk0
k
0
2
2
Z 1

�1

dx g(⇡̃) N(k, k0
, x) (⇡, k0), (2.80)

where ⌧k(✏), similar to Eq. (2.64), can be obtained by

⌧k(✏) =
h 1

�k
� 4⇡

Z 1

0

dp
00
p
002 g

2(p00)

✏� !k(p00)

i�1

. (2.81)

Similar to Eq. (2.66) the relativistic Faddeev component  r(⇡, k0) can be written as

 
r(p, k) = G

r
0(p, k) g(p) ⌧k(✏)F

r(k). (2.82)

Therefore Eq. (2.80) can be simplified for Faddeev component F r(k) as

F
r(k) = 4⇡

Z 1

0

dk0
k
02
Z 1

�1

dx g(⇡̃) N(k, k0
, x) Gr

0(⇡, k
0)g(⇡) ⌧k(✏) F

r(k0), (2.83)

which can be solved by direct diagonalization of the kernel, with no need for the iteration

method.

2.4.3 Numerical results for nonrelativistic and relativistic trimer bind-

ing energies

To calculate the binding energy of the nonrelativistic trimer, we employ the general

3D Faddeev integral equation, as given by Eq. (2.60). By obtaining the matrix elements

of the nonrelativistic potentials Vnr(p, p0), we solve the LS integral Eq. (2.62) to determine

the fully o↵-shell t-matrices t(p, p0; ✏) for the 2B subsystem energies ✏ = E � 3q2

4m .

The Faddeev integral equations, Eq. (2.60) can be schematically represented as an

eigenvalue problem

K(E) ·  = �(E) ·  (2.84)

The eigenvalue equation (2.84) is solved using the Lanczos iterative method, which

has been successfully employed in calculations of two-, three-, and four-body bound states

(BAYEGAN et al., 2008b; HADIZADEH et al., 2011; HADIZADEH et al., 2014; HADIZADEH et

al., 2020; AHMADI et al., 2020; MOHSENI et al., 2023). The Lanczos method allows for

the e�cient determination of eigenvalues and eigenvectors of a matrix. In our case, the

matrix is the kernel K(E) of the integral equation, with �(E) being its eigenvalue and

 its corresponding eigenvector. The binding energy of 3B bound state can be obtained
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when one of the eigenvalues obtained from the solution of Eq. (2.84) for an input energy

becomes one (�(E) = 1).

To initiate the iterative process, we start with an initial Gaussian guess for the Faddeev

components and perform 6-10 iterations. Since the kernel K(E) is energy-dependent, we

can start the solution of the eigenvalue equation with an initial guess for the 3B binding

energy E
nr
t . The search for the binding energy is terminated when |� � 1|  10�6,

indicating convergence. By solving the integral equation (2.60) using the Lanczos method,

we obtain the nonrelativistic 3B binding energies E
nr
t . The convergence of numerical

solution for 3B nonrelativistic binding energy and expectation value for Hamiltonian is

studied in Table A.6 for Yamaguchi-I.

To calculate the binding energy of the relativistic trimer, we utilize the general 3D

Faddeev integral equation given by Eq. (2.72). By obtaining the matrix elements of

the boosted potentials Vk(p, p0) from the nonrelativistic one, we solve the relativistic LS

integral equation (2.79) to compute fully o↵-shell boosted t�matrices tk(p, p0; ✏) for 2B

subsystem energies ✏ = Mt�⌦(k) determined by the boosted momentum k. Subsequently,

employing the Lanczos technique to solve the integral equation (2.72), we derive relativistic

3B binding energies E3B
r and Faddeev components  r(p, k) for ground and excited states.

We should mention that the matrix elements of boosted potentials are obtained from

separable nonrelativistic potentials by solving the integral equation (2.14). The solution

of Eq. (2.83) by direct diagonalization can serve as a benchmark to assess the accuracy

of our numerical calculations for 3B binding energies. Table 2.2 shows the results for the

relativistic binding energies Er
t of the 3B system for di↵erent Yamaguchi type potentials

by solving Eq. (2.72). Calculations are performed with Np = Nq = 60 and Nx = 40.

TABLE 2.2 – Relativistic 3B binding energy calculated for di↵erent models of Yamaguchi potential.

Potential E
3B
r (MeV)

Y-I �24.529

Y-II �11.993

Y-III �9.0138

Y-IV �8.3084

In Table 2.3, we present the contributions of di↵erent relativistic corrections to the

binding energy of the 3B ground state. The calculations are performed using the Yamaguchi-

IV potential and employing Nx = 40, Np = Nq = 60 as the number of mesh points. The

eigenvalue equation is solved with the Lanczos technique, iterated 6 times. To assess

the accuracy of the Lanczos technique, we have cross-validated the results by solving Eq.

(2.83) using the direct diagonalization method. This comparison demonstrates the high

accuracy of the Lanczos results. Table 2.3 shows two of the relativistic corrections, N
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and 2B t�matrices, decrease the 3B binding energies, and the other terms, i.e. C and

G
rel
0 , increase the 3B binding energy, but when we apply all the corrections together we

see reduction in the trimer binding energy.

TABLE 2.3 – The contributions of di↵erent relativistic corrections to the 3B binding energy.

Relativistic Correction E
3B (MeV)

(E3B
app � E

3B
nr )

E3B
nr

⇥ 100 %

E
3B
nr = �8.5121

N (the Jacobian function) E
3B
app = �8.4187 �1.0972

C (the permutation coe�cient) E
3B
app = �8.5990 +1.0210

G
rel
0 (the relativistic 3B free propagator) E

3B
app = �8.7496 +2.7901

tk(the boosted 2B t matrix) E
3B
app = �8.1094 �4.7309

Full relativistic (N + C +G
rel
0 + tk) E

3B
r = �8.3084 �2.3930

Now for studying the three-boson bound state mass and wave functions in the limit

of a zero-range interaction, we use a nonrelativistic short-range separable potential, with

Yamaguchi and Gaussian defined in Eqs. (2.6) and (2.18), and drive them towards the

zero-range limit by letting the form factors’ momentum scales go to large values while

keeping the 2B binding fixed. Table 2.4 presents numerical results for the 3B binding

energy, both for nonrelativistic and relativistic ground and excited states. The upper panel

corresponds to the Yamaguchi potential, while the lower panel corresponds to the Gaussian

form factor. These results are obtained by solving the integral equation (2.78) using

boosted t�matrices obtained from boosted potentials, which are calculated by solving the

integral equation (2.79). The boosted potentials are derived from separable nonrelativistic

potentials, which are obtained by solving the integral equation (2.14). The nonrelativistic

potential strength �nr is fitted to match the dimer binding energy of �2.225 MeV. The

calculations are performed using 300 mesh points for Jacobi momenta p and k, and 40

mesh points for angle variables.

All the results reported in Table 2.4 have been double-checked by solving Eq. (2.67)

for the nonrelativistic case and Eq. 2.83 for the relativistic case using the direct diago-

nalization method. This approach confirms the accuracy of the results obtained with the

Lanczos method.
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TABLE 2.4 – Nonrelativistic and relativistic 3B ground and first excited state binding energies for di↵erent
values of the Yamaguchi form factor parameter � (upper panel), and Gaussian form factor ⇤ (lower panel).

Yamaguchi form factor

�(fm�1) E
nr(0)
PW E

r(0)
PW E

nr(1)
PW E

r(1)
PW

20 �1, 218.54 �278.950 �8.62313 �4.49971

40 �4, 484.60 �381.098 �19.1179 �5.31494

100 �26, 607.6 �453.149 �73.7232 �5.95099

200 �104, 575 �453.962 �241.569 �6.07741

600 �929, 937 �408.406 �1.87345 · 103 �5.56317

1,000 �2.57612 · 106 �384.306 �5.04258 · 103 �5.16628

2,000 �1.02783 · 107 �356.855 �1.97162 · 104 �4.88977

3,000 �2.31177 · 107 �342.861 �4.39916 · 104 �4.80777

Gaussian form factor

⇤(fm�1) E
nr(0)
PW E

r(0)
PW E

nr(1)
PW E

r(1)
PW

20 �904.682 �267.227 �7.21647 �4.37757

40 �3304.11 �378.647 �15.2640 �5.28154

100 �19507.2 �461.251 �55.7591 �6.01010

200 �76528.3 �465.232 �177.968 �6.17579

400 �3.03129 · 105 �437.114 �627.718 �5.95152

600 �6.79811 · 105 �415.032 �1351.27 �5.70284

1000 �1.88341 · 106 �387.864 �3619.81 �5.25234

2000 �7.51885 · 106 �357.652 �14082.9 �4.91393

3000 �16.9062 · 106 �344.329 �31391.2 �4.79630

Fig. 2.8 (taken from (MOHSENI et al., 2021)) shows the binding energies of the three-

boson system’s ground and first excited states. These energies are plotted as a function

of the potential range parameters � and ⇤ for the Yamaguchi and Gaussian form factors,

respectively. In both cases, the calculations are performed with a nonrelativistic 2B

binding energy fixed at �2.225 MeV, which corresponds to the dimer binding energy. As

� and ⇤ increase, the three-boson system exhibits the phenomenon known as the Thomas

collapse (THOMAS, 1935). In this collapse, the binding energy is proportional to ��2 and

�⇤2. In our examples, this collapse occurs until reaching values around 200 fm�1 or an

equivalent momentum of 0.4 GeV/c, which is comparable to the nucleon mass. However,

the system experiences the influence of boosted e↵ects, which stabilize it by introducing

an induced repulsion. This repulsion acts to counterbalance the singular behavior of the

collapse. As a result, the binding energy reaches a plateau, independent of the specific

short-range potential model employed. This behavior suggests the existence of a well-

defined zero-range limit for the Glöckle-Kamada boosted potentials within the framework

of relativistic 3B framework (MOHSENI et al., 2021).
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FIGURE 2.8 – The ground and first excited state binding energies as a function of the form factor
parameters ⇤ (for Gaussian potential) and � (for Yamaguchi-type potential) obtained for a fixed 2B
binding energy of �2.225 MeV. The first excited state energies are multiplied by a factor of 50.

Next, we proceed to modify the dimer binding energy and examine its impact on the

trimer binding energy while keeping the potential parameters fixed. Table 2.5 presents

the relativistic ground and excited state binding energies of the trimer for Yamaguchi and

Gaussian form factors with � = ⇤ = 2000 fm�1.
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TABLE 2.5 – Relativistic trimer binding energy calculate with Eq. (2.78) for di↵erent dimer binding
energies. In this table we fixed the potential parameter for Yamaguchi and Gaussian form factor � =
⇤ = 2000 fm�1.

Yamaguchi Gaussian

Ed (MeV) E
r(0)
PW (MeV) E

r(1)
PW (MeV) E

r(0)
PW (MeV) E

r(1)
PW (MeV)

0 �295.655 �0.78180 �299.066 �0.79235

�2.225 �356.855 �4.88977 �357.684 �4.91434

�10 �424.703 �14.0795 �427.946 �14.1361

�20 �481.524 �24.4189 �486.443 �23.8862

�30 �528.124 �33.6088 �533.373 �33.6545

�40 �569.019 �43.3097 �574.329 �43.3554

�50 �606.141 �53.0641 �611.478 �53.1082

�100 �761.343 �100.568 �767.122 �103.661

�150 �891.408 �156.552 �897.716 �156.563

In Fig. 2.9, we present the ratio of the 3B mass to the particle mass (M3/m) as a

function of the ratio of the 2B mass to the particle mass (M2/m). These results are

obtained for the 3B ground and first excited states using large form factor parameters

(� = ⇤ = 2000 fm�1). The plot represents the mass values in units relative to the

particle mass, allowing for a direct comparison with previous calculations that utilized the

Bethe-Salpeter (BS) and Light-Front (LF) equations (YDREFORS et al., 2017a). Fig. 2.9

illustrates the universal behavior observed in our results when employing large form factor

parameters for both Yamaguchi-type and Gaussian potentials. First, we observe that, in

the 2B bound state region, both the LF and BS approaches have an unphysical 3B ground

state withM
2
3 < 0, which are possible as the homogeneous integral equations, only depend

on M
2
3 (YDREFORS et al., 2017a). The physical “ground” state with 0 < M

2
3 < (m+M2)2

from the solution of the LF and BS equations are indeed an excited state, and in this

way, they are denoted in the Fig. 2.9. Our numerical analysis of the first excited bound

state mass for a three-boson system, obtained using boosted potentials with large form

factor parameters (� = 2000 fm�1 and ⇤ = 2000fm�1), reveals a weaker attraction when

compared to the results obtained with the LF and BS frameworks (YDREFORS et al.,

2017a).
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FIGURE 2.9 – The value of M3/m as a function of M2/m calculated from the 3B ground and first excited
states obtained with form factor parameters � = ⇤ = 2000 fm�1 for Yamaguchi-type (solid lines) and
Gaussian potentials (full circles). For comparison, our results with the Bethe-Salpeter (dashed line) and
Light-Front (dash-dotted line) zero-range calculations of Ref. (YDREFORS et al., 2017a) are added to the
plot. This Figure is taken from (MOHSENI et al., 2021).

The di↵erence between the LF and BS approaches arises from the presence of attractive

3B e↵ective potentials in the BS approach, which results from the implicit inclusion of an

infinite set of LF Fock-components. This inclusion is absent in the LF equation, where

the truncation is limited to the valence level (YDREFORS et al., 2017a). From Fig. 2.9, it

is evident that in the ultraviolet (UV) region, the boosted potential displays significantly

weakened attractiveness due to the relativistic potential becoming softer, as a consequence

of solving Eq. (2.14). This e↵ect becomes apparent by observing the slower rate of decrease

in M3 by decreasing M2, in the calculation using the boosted potential, in comparison

to the results obtained from the BS and LF approaches. The observed phenomenon of

the 3B mass decreasing at a slower rate with an increase in the 2B binding, as depicted

in Fig. 2.9, indicates a softening e↵ect within the adopted relativistic framework. This

softening e↵ect suggests that as the 2B binding increases, the 3B bound state becomes

more compact, which forces the system to explore the UV region where the e↵ectiveness of

the boosted potential diminishes. In contrast, the 2B amplitude considered in the LF and

BS equations exhibits significantly less damping in the UV region, showing a behavior of
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approximately 1/ log(k) (as described in Eq. (2) of Ref. (YDREFORS et al., 2017a)). This

behavior is considerably softer compared to the decrease observed in the matrix elements

of the boosted potential, which follows a 1/k trend. This discussion highlights the weaker

kernel provided by the boosted potential in the Faddeev equation when compared to the

LF and BS counterparts.

In Fig. 2.10, we present the relativistic Faddeev components of the wave functions

for both the ground state,  (0)(p, k), and the first excited state,  (1)(p, k). These wave

functions are plotted as functions of the Jacobi momenta p and k, considering two sets of

potential form factor parameters: one with small values and the other with large values

of � and ⇤. The corresponding binding energies are listed in Table 2.5.

The initial remarkable observation is the universality, or model independence, of

 
(0)(p, k) and  (1)(p, k) within momenta approximately up to the scale of � or ⇤. How-

ever, for larger momenta, both potential models clearly show di↵erent decay behaviors.

The Gaussian model exhibits the expected faster damping of the Faddeev component,

while the Yamaguchi model continues to display a power-law behavior.
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FIGURE 2.10 – Relativistic Faddeev components for 3B ground  (0)(p, k) and first excited  (1)(p, k) states
calculated for Yamaguchi-type potential with form factor parameters � = 200, 2000 fm�1 and Gaussian
potential with form factor parameters ⇤ = 200, 2000 fm�1. This Figure is taken from (MOHSENI et al.,
2021).



CHAPTER 2. ZERO-RANGE LIMITS AND THREE-BOSON STABILITY IN
BOOSTED POTENTIALS 64

2.5 Efimov physics

One challenging test for our numerical calculation is the numerical calculation calcu-

lation of Efimov states (EFIMOV, 1970). In Table 2.6, we present six states that have

been obtained by solving the Eq. (2.61), utilizing a Gaussian form factor with a potential

parameter of ⇤ = 0.7 fm�1. The calculations are performed with 900 mesh points for

Jacobi momenta p and k, and 40 mesh points for angle variables. Potential strength � is

calculated by solving Eq. (2.7) with Ed = 0. Notably, the ratio of the two binding ener-

gies displayed in the table are perfectly match with the predicted results of the Efimov

e↵ect (DELTUVA, 2010). This agreement confirms the presence of the Efimov e↵ect in our

nonrelativistic calculations.

TABLE 2.6 – 3B ground and excited stated binding energies calculated with the Gaussian form factor
with ⇤ = 0.7 fm�1 and Ed = 0.

n E
3B
nr (MeV) E

(n)
/E

(n+1)
E

(n)
/E

(n+1) (DELTUVA, 2010)

0 �0.91924 548.114 548.114

1 �1.67709 · 10�3 515.213 515.214

2 �3.25515 · 10�6 515.035 515.036

3 �6.32024 · 10�9 515.035 515.035

4 �1.22715 · 10�11 515.035 515.035

5 �2.38265 · 10�14 515.035 —

6 �4.62619 · 10�17 — —

The Efimov e↵ect is mainly observed at low energies; therefore, relativity doesn’t

directly a↵ect this phenomenon. However, when particle interactions occur within a range

smaller than their Compton wavelength, relativistic corrections might influence the most

tightly bound Efimov states (NAIDON; ENDO, 2017; YAMASHITA et al., 2007).



3 Trion in Two-dimensional Momentum

Space

3.1 Overview

Although graphene has spearheaded the advancement of two-dimensional (2D) ma-

terials due to its exceptional electronic properties, its lack of a band gap limits its po-

tential and motivates the search for alternative semiconducting 2D materials, often re-

ferred to as ”graphene with a band gap.” Among the promising candidates are transition

metal dichalcogenides (TMDs), which have undergone extensive investigation (KIDD et

al., 2016b). These 2D semiconductors are gaining significant attention as a promising

advancement in semiconductor technology. Leveraging their unique properties, 2D semi-

conductors are finding applications in diverse fields. These include advanced flexible

devices, where their flexibility plays a critical role; nanophotonic devices, which exploit

their optical properties for enhanced functionality; and solar cells, which benefit from

their high e�ciency and lightweight nature (DAS et al., 2019; IQBAL et al., 2021; BELLANI

et al., 2021; BATI et al., 2020; YU; SIVULA, 2017).

Such semiconducting materials exhibit a remarkably strong Coulomb interaction be-

tween charge carriers due to the reduced dimensionality. This enhanced interaction leads

to the formation of tightly bound excitons and trions, which are of great interest in con-

densed matter physics.(CAVALCANTE et al., 2018)

As proposed by Lampert (LAMPERT, 1958), when a single exciton interacts with an ad-

ditional electron in a conduction band or a hole in a valence band, it forms charged exciton

complexes known as negative (T�) and positive (T+) trions, respectively. Excitonic sys-

tems can also involve more than three particles, forming more complex many-body states

(TUAN et al., 2022; TUAN; DERY, 2022a; TUAN; DERY, 2022c; TUAN; DERY, 2022b). For

instance, in monolayer WSe2, a photoexcited electron-hole pair can interact with multiple

reservoirs of distinguishable electrons due to the unique arrangement of spin-polarized

conduction band valleys. This can give rise to the emergence of six-particle hexcitons or

even eight-particle oxcitons. However, this thesis will focus primarily on three-particle
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excitonic systems (trions) and their properties in two-dimensional materials.

Trions are intrinsically three-body systems, and the behavior of three-body systems

undergoes significant changes when transitioning from two to three dimensions, as the

dynamics and properties of quantum systems are profoundly a↵ected by dimensional

constraints. Two notable examples exemplifying the impact of spatial dimensions in

the three-body sector are the Efimov e↵ect (EFIMOV, 1970) and the Thomas collapse

(THOMAS, 1935). Efimov states, observed and predicted for three identical bosons in

3D systems, are not present in 2D, even under the most favorable conditions of mass-

imbalanced systems (ADHIKARI et al., 1988). Similarly, in 1935, Thomas found that the

energy of a three-identical-boson system subjected to short-range pairwise interactions in

3D grows without bounds when the interaction range approaches zero (r0 ! 0). How-

ever, this e↵ect was not observed in 2D systems. The absence of these phenomena in

2D highlights the dramatic influence of spatial dimensions on the behavior of three-body

systems.

In this chapter, we establish the fundamental framework for investigating the negative

trion, a three body bound state consists of two electrons and one hole, in semiconduc-

tor layered (2D) materials. To study the behavior of three particles in a 2D setting, we

employ the Faddeev equations in momentum space. This approach is particularly in-

sightful because the Faddeev equations are the most general equations for describing a

non-relativistic three-body system within the potential approach, using only the masses

of the particles and potential as inputs (FILIKHIN et al., 2018). Specifically, we solve the

coupled integral equations governing trion formation, considering both the short-range

one-term separable Yamaguchi potential and the Rytova-Keldysh (RK) interaction, which

are applied to the MoS2 layer. By employing these approaches, we aim to gain insights

into the properties and characteristics of trions. To tackle the di�culty posed by the

repulsive electron-electron RK potential in numerically solving the Faddeev equations, we

introduce two distinct regularization methods. The first method focuses on regulating

the repulsive interaction in the infrared region, while the second method regulates it in

the ultraviolet region. These regularization techniques e↵ectively address the challenge

posed by the repulsive component of the RK potential, allowing for accurate and reliable

numerical solutions of the Faddeev equations.
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3.2 Two-dimensional exciton structure analysis through the

application of the Lippmann-Schwinger equation

3.2.1 Non-partial wave representation

One can write 3D nonrelativistic Schrödinger equation, Eq. (2.21), in 2D as

 (p) =
1

Ed �
p
2

m

Z 1

0

dp
0
p
0
Z 2⇡

0

d�
0
V (p,p0) (p0), (3.1)

where the completeness relation of 2B basis states is as

Z
d
2
p |pihp| ⌘

Z 1

0

dp p

Z 2⇡

0

d� |pihp| = 1. (3.2)

For the numerical solution of the 2D integral equation (3.1), in the general case of angle-

dependent, we adopt a coordinate system where all the vectors are free in the 2D, as

depicted in Fig. (3.1).

x

y

p
0

p

�
0

�

�p,p0

FIGURE 3.1 – The geometry of vector p&p0. both vectors are chosen to be free in the 2D space.

Using coordinate system defined in Fig. (3.1), Eq. (3.1) for angular-dependent dimer

wave functions can be written as

 (p,�) =
1

Ed �
p
2

m

Z 1

0

dp
0
p
0
Z 2⇡

0

d�
0
V (p, p0,�p,p0) (p

0
,�

0). (3.3)

We can simplify Eq. (3.3) by choosing a coordinate system where p is parallel to the

x�axis and just the integration vector p0 is free in the 2D space, therefore the dimer wave
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function without angular dependency can be written as

 (p) =
1

Ed �
p
2

m

Z 1

0

dp
0
p
0
Z 2⇡

0

d�
0
V (p, p0,�0) (p0). (3.4)

In Appendix C, we conduct a numerical examination where we calculate the dimer

energy and wave function using Eqs. (3.3) and (3.4), employing the Malfliet Tjon and

Coulomb potentials.

3.2.2 Partial wave representation

In the previous section, we focused on the non-PW representation of the LS Equation

(3.1). In this chapter, we shift our attention to the PW representation of this equation,

which is given as follows

 m(p) =
1

Ed �
p
2

2µ

Z 1

0

dp
0
p
0
Vm(p, p

0) m(p
0), (3.5)

with

Vm(p, p
0) =

Z 2⇡

0

d�V (p, p0,�) cos(m�), (3.6)

where m indicates the PW channel. derivation of Eq. (3.6) is given in Appendix F.1.

To thoroughly investigate PW Eq. (3.6), we utilize both the Malfliet Tjon and Coulomb

potentials. We proceed by computing the binding energy and wave function of the PW

dimer. The outcomes of this analysis are provided in Appendix F.2. In the following,

we utilize a realistic potential to calculate exciton binding energy, which is the energy of

bound states formed by an electron and a hole.

3.2.2.1 Electron-hole bound states

The Rytova–Keldysh potential describes the screened Coulomb interaction in momen-

tum space is given by (RYTOVA, 1967; KELDYSH, 1979; RYTOVA, 2018; CUDAZZO et al.,

2011)

Veh(q) = � 1

4⇡2

✓
1

4⇡✏0

2⇡e2

q (1 + r0q)

◆
. (3.7)

Here, the momentum transfer is defined as |q| = |p�p
0|, where r0 represents the screening

length in the absence of a substrate. In Ref. (KEZERASHVILI, 2019) it’s shown that the RK
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potential has lower strength compared to the Coulomb potential for small electron-hole

distance, and as the distance increases, both potentials gradually approach convergence.

Parameters for Eq. (3.7) are listed in Table 3.1 for MoS2 material.

TABLE 3.1 – The parameters of RK potentials defined in Eq. (3.7) for MoS2. The values for e↵ective
masses are taken from Ref. (KORMÁNYOS et al., 2015)

me(m0) mh(m0) r0 (Å)

0.47 0.54 27.05

Constant Parameters

✏0/e
2 =

1

4⇡↵
.
1

~c eV�1·A�1 ~c = 1973.269804 eV·A;

↵ = 137.035999084 ; m0 = 0.510998950 MeV

The value of the screening length r0 is fitted to give an exciton binding energy of

�753 meV in agreement with the value obtained from the measurement of the exciton

position in the absorption spectrum of a suspended MoS2 layer (KLOTS et al., 2014) and

the corresponding GW bandgap (ZHANG et al., 2016).

In Table E.1, we present the results for the exciton binding energy obtained through

the numerical solution of the partial wave LS equation Eq. (3.5), specifically in the s-

wave (m = 0). In this table, the binding energy is listed as a function of the number of

mesh points for the relative momentum (Np) and the angle variable (N�). From Table

E.1, it can be observed that even with a high number of mesh points, convergence is not

achieved, indicating the complexity of the long-range RK potential. However, we can

extrapolate the result to an infinite number of mesh points by fitting a quadratic function

to the calculated binding energy. This extrapolated value is presented in the last row of

Table E.1.

In Fig. 3.2, we show the exciton wave function in momentum space  (n)(p) as a

function of relative momentum p, for the ground state (n = 0), first excited state (n = 1),

and second excited state (n = 2) of the exciton. The calculations are performed with 61

mesh points for angle variables and 1000 mesh points for 2B relative momentum Np.
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FIGURE 3.2 – Exciton ground and excited states wave functions in momentum  
(n)(p) as a function of

p.

To further investigate our numerical method and compare the results, we study sub-

strate screening e↵ects using the modified potential in Eq. (3.7), as proposed by Chernikov

et al. (2014) (CHERNIKOV et al., 2014)

Veh(q) = � 1

4⇡2

0

BB@
1

4⇡✏0

2⇡e2

q

✓
1 + ✏s

2
+ r0q

◆

1

CCA . (3.8)

Here ✏s denotes the dielectric constant of the substrate. The specific values for these

parameters in the case of WS2 material can be found in Table 3.2.

TABLE 3.2 – The parameters of electron-hole potentials defined in Eq. (3.8) for WS2.

µ(m0) ✏s r0 (Å)

0.16 2.1&3.9 38

Constant Parameters

✏0/e
2 =

1

4⇡↵
.
1

~c eV�1·A�1 ~c = 1973.269804 eV·A;

↵ = 137.035999084 ; m0 = 0.510998950 MeV

In Table 3.3, we present the exciton binding energies for di↵erent dielectric constants

✏s with the parameters listed in Table 3.2. The calculations are performed using 700 mesh

points for relative momenta and 100 mesh points for angle variables.
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TABLE 3.3 – Exciton binding energies with RK potential defined in Eq. (3.8) for di↵erent dielectric
constants ✏s.

n E✏s=2.1 (eV) E✏s=3.9 (eV)

1 �0.402 �0.2831

2 �0.147 �0.0833

3 �0.080 �0.0405

4 �0.050 �0.0243

5 �0.035 �0.0165

6 �0.030 �0.0122

In our study, we were able to calculate five excited states for the given parameters

in Table 3.2. In the study by Chernikov et al. (2014) (CHERNIKOV et al., 2014), they

reported four excited states, and our calculated results agree with their findings for these

four states.

3.3 Faddeev equations for three di↵erent particles bound

states in two dimensions

As it is given in Eq. (2.40), in the general case of three di↵erent particles, the three

coupled Faddeev equations are given

| 1i = G0t1(| 2i+ | 3i),
| 2i = G0t2(| 3i+ | 1i),
| 3i = G0t3(| 1i+ | 2i), (3.9)

where 2B transition operators ti are defined by the Lippmann–Schwinger equation

ti = Vi + ViG0ti. (3.10)

with i = 1, 2, 3.

To solve the coupled Faddeev Eq. (3.9) in momentum space, we consider the 3B basis

states |piqii, composed of two Jacobi momenta (see Fig. 3.3), which are defined in terms

of the single particle momenta as

pi =
mkkj �mjkk

mj +mk
,

qi =
mj +mk

mi +mj +mk

✓
ki �

mi

mj +mk
(kj + kk)

◆
, (3.11)
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where pi is the relative momentum of the pair jk, and qi is the relative momentum of the

third particle i with respect to the pair jk. The completeness relation of 3B basis states

in 2D is defined as

FIGURE 3.3 – Jacobi momenta convention used through the paper. {i, j, k} correspond to the indices
associated with the three particles, and pi and qi are their Jacobi momenta given in Eqs. (2.47) and
(2.48).

Z
d
2
pi

Z
d
2
qi |piqiihpiqi| ⌘ 2⇡

Z 1

0

dpi pi

Z 1

0

dqi qi

Z 2⇡

0

d�pi,qi = 1. (3.12)

The Jacobi momenta in the di↵erent two-body subsystems related to each other via

i. Corresponding Jacobi momenta in (1, 23) cluster

p1(p2,q2) = � m2

m2 +m3
p2 +

m3 (m1 +m2 +m3)

(m1 +m3) (m2 +m3)
q2,

q1(p2,q2) = �p2 �
m1

m1 +m3
q2,

p1(p3,q3) = � m3

m2 +m3
p3 �

m2 (m1 +m2 +m3)

(m1 +m2) (m2 +m3)
q3,

q1(p3,q3) = p3 �
m1

m1 +m2
q3.,

(3.13)

ii. Corresponding Jacobi momenta in (2, 13) cluster

p2(p1,q1) = � m1

m1 +m3
p1 �

m3 (m1 +m2 +m3)

(m2 +m3) (m1 +m3)
q1,

q2(p1,q1) = p1 �
m2

m2 +m3
q1,

p2(p3,q3) = � m3

m1 +m3
p3 +

m1 (m1 +m2 +m3)

(m1 +m2) (m1 +m3)
q3,

q2(p3,q3) = �p3 �
m2

m1 +m2
q3.

(3.14)
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iii. Corresponding Jacobi momenta in (3, 12) cluster

p3(p1,q1) = � m1

m1 +m2
p1 +

m2 (m1 +m2 +m3)

(m2 +m3) (m1 +m2)
q1,

q3(p1,q1) = �p1 �
m3

m2 +m3
q1,

p3(p2,q2) = � m2

m1 +m2
p2 �

m1 (m1 +m2 +m3)

(m1 +m3) (m1 +m2)
q2,

q3(p2,q2) = p2 �
m3

m1 +m3
q2.

(3.15)

The relation between di↵erent Jacobi momenta can be summarized as

pi(pj,qj) ⌘ PPP ij(pj,qj) = ↵ijpj + �ijqj, (3.16)

qi(pj,qj) ⌘ QQQij(pj,qj) = �ijpj + ⌘ijqj, (3.17)

where

↵ij = � mj

mjk
, (3.18)

�ij = Eij
mk mijk

mikmjk
, (3.19)

�ij = �Eij, (3.20)

⌘ij = � mi

mik
, (3.21)

mij = mi +mj, (3.22)

mijk = mi +mj +mk, (3.23)

and

Eij =

8
<

:
1 if (i, j) = (1, 2), (2, 3), (3, 1)

�1 if (i, j) = (2, 1), (3, 2), (1, 3).
(3.24)

In order to solve the three coupled equations (3.9) in momentum space, we can project

the Faddeev components onto their own basis by using the momenta basis defined in Eq.

(3.17), therefore we have

hp1q1| 1i = G
(1,23)
0 (E, p1, q1)

h
hp1q1|t1| 2i+ hp1q1|t1| 3i

i
, (3.25)

hp2q2| 2i = G
(2,13)
0 (E, p2, q2)

h
hp2q2|t2| 1i+ hp2q2|t2| 3i

i
, (3.26)

hp3q3| 3i = G
(3,12)
0 (E, p3, q3)

h
hp3q3|t3| 1i+ hp3q3|t3| 2i

i
, (3.27)
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where free propagator is defined as

G
(i,jk)
0 (E, pi, qi) =

1

E � p
2
i

2µjk
� q

2
i

2µi,jk

. (3.28)

Using completeness relations, Eq. (3.12) we can write the three coupled equations in

the momentum space as

hp1q1| 1i = G
(1,23)
0 (E, p1, q1)

Z
d
2
p
0
1

Z
d
2
q
0
1

⇥
h
hp1q1|t1|p0

1q
0
1ihp0

1q
0
1| 2i+ hp1q1|t1|p0

1q
0
1ihp0

1q
0
1| 3i

i

= G
(1,23)
0 (E, p1, q1)

Z
d
2
p
0
1

Z
d
2
q
0
1hp1q1|t1|p0

1q
0
1i

⇥
h
hp0

1q
0
1| 2i+ hp0

1q
0
1| 3i

i
, (3.29)

hp2q2| 2i = G
(2,13)
0 (E, p2, q2)

Z
d
2
p
0
2

Z
d
2
q
0
2

⇥
h
hp2q2|t2|p0

2q
0
2ihp0

2q
0
2| 1i+ hp2q2|t2|p0

1q
0
2ihp0

2q
0
2| 3i

i

= G
(2,13)
0 (E, p2, q2)

Z
d
2
p
0
2

Z
d
2
q
0
2hp2q2|t2|p0

2q
0
2i

⇥
h
hp0

2q
0
2| 1i+ hp0

2q
0
2| 3i

i
, (3.30)

hp3q3| 3i = G
(3,12)
0 (E, p3, q3)

Z
d
2
p
0
3

Z
d
2
q
0
3

⇥
h
hp3q3|t3|p0

3q
0
3ihp0

3q
0
3| 1i+ hp3q3|t3|p0

3q
0
3ihp0

3q
0
3| 2i

i

= G
(3,12)
0 (E, p3, q3)

Z
d
2
p
0
3

Z
d
2
q
0
3hp3q3|t3|p0

3q
0
3i

⇥
h
hp0

3q
0
3| 1i+ hp0

3q
0
3| 2i

i
, (3.31)

where

hp1q1|t1|p0
1q

0
1i = �(q1 � q

0
1)hp1|t1|p0

1i, (3.32)

hp2q2|t2|p0
2q

0
2i = �(q2 � q

0
2)hp2|t2|p0

2i, (3.33)

hp3q3|t3|p0
3q

0
3i = �(q3 � q

0
3)hp3|t3|p0

3i. (3.34)

In order to evaluate Eqs. (3.29), (3.30), and (3.31) we need to calculate the following
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terms

hp0
1q

0
1| 2i, (3.35)

hp0
1q

0
1| 3i, (3.36)

hp0
2q

0
2| 1i, (3.37)

hp0
2q

0
2| 3i, (3.38)

hp0
3q

0
3| 1i, (3.39)

hp0
3q

0
3| 2i. (3.40)

For example, to evaluate Eq. (3.35), we can insert the completeness relation Eq. (3.12)

into Eq. (3.35), yielding

hp0
1q

0
1| 2i =

Z
d
2
p
00
2

Z
d
2
q
00
2hp0

1q
0
1|p00

2q
00
2ihp00

2q
00
2| 2i. (3.41)

Eq. (3.14) allows to evaluate hp0
1q

0
1|p00

2q
00
2i

hp0
1q

0
1|p00

2q
00
2i = � (p00

2 � p2(p
0
1,q

0
1)) � (q

00
2 � q2(p

0
1,q

0
1)) . (3.42)

By utilizing the delta function property, we can eliminate the integrals over p002 and q
00
2 ,

leading to the following expression

hp0
1q

0
1| 2i = hp2(p

0
1,q

0
1),q2(p

0
1,q

0
1)| 2i. (3.43)

Similarly we can write the other terms in Eqs. (3.36)-(3.40) as

hp0
1q

0
1| 3i = hp3(p

0
1,q

0
1),q3(p

0
1,q

0
1)| 3i, (3.44)

hp0
2q

0
2| 1i = hp1(p

0
2,q

0
2),q1(p

0
2,q

0
2)| 1i, (3.45)

hp0
2q

0
2| 3i = hp3(p

0
2,q

0
2),q3(p

0
2,q

0
2)| 3i, (3.46)

hp0
3q

0
3| 1i = hp1(p

0
3,q

0
3),q1(p

0
3,q

0
3)| 1i, (3.47)

hp0
3q

0
3| 2i = hp2(p

0
3,q

0
3),q2(p

0
3,q

0
3)| 2i. (3.48)

By substituting Eqs. (3.44), (3.45), and (3.32) into Eq. (3.29), we can rewrite it as

hp1q1| 1i = G
(1,23)
0 (E, p1, q1)

Z
d
2
p
0
1

Z
d
2
q
0
1

⇥ �(q1 � q
0
1)hp1|t1|p0

1i
⇥

h
hp2(p

0
1,q

0
1),q2(p

0
1,q

0
1)| 2i+ hp3(p

0
1,q

0
1),q3(p

0
1,q

0
1)| 3i

i
, (3.49)
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By utilizing the delta function �(q1 �q
0
1), we can eliminate the integral over q01 in Eq.

(3.49). The equation can be rewritten as

hp1q1| 1i = G
(1,23)
0 (E, p1, q1)

Z
d
2
p
0
1 hp1|t1|p0

1i

⇥
h
hp2(p

0
1,q1),q2(p

0
1,q1)| 2i+ hp3(p

0
1,q1),q3(p

0
1,q1)| 3i

i
. (3.50)

Similarly, for the other Faddeev components, Eqs. (3.30) and (3.31), we have

hp2q2| 2i = G
(2,13)
0 (E, p2, q2)

Z
d
2
p
0
2 hp2|t2|p0

2i

⇥
h
hp1(p

0
2,q2),q1(p

0
2,q2)| 1i+ hp3(p

0
2,q2),q3(p

0
2,q2)| 3i

i
, (3.51)

hp3q3| 3i = G
(3,12)
0 (E, p3, q3)

Z
d
2
p
0
3 hp3|t3|p0

3i

⇥
h
hp1(p

0
3,q3),q1(p

0
3,q3)| 1i+ hp2(p

0
3,q3),q2(p

0
3,q3)| 2i

i
. (3.52)

To solve the 2D integral equations (3.50), (3.51), and (3.52), as illustrated in the figure

below, we adopt a coordinate system where pi is parallel to the x-axis, while q and p
0 are

free in the 2D space.

x
pi

y

p
0
i

qi

�
0
i�i

�qi,p0i

FIGURE 3.4 – The geometry of vector , p ,p0 &q. The vector p is chosen to be parallel to the x�axis
and vector p0, and p00 are free in the 2D space. The angle variables defined in Eqs. (3.53) are indicated.

The angle variables will be defined as

(q̂i, p̂
0
i) = �qi,p0i

= �i � �
0
i,

(q̂i, p̂i) = �i,

(p̂0
i, p̂i) = �

0
i. (3.53)
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Using the coordinate system in Fig. 3.4, Eqs. (3.50)-(3.52) can be written explicitly

as

 1(p1, q1,�1) =
1

E � p
2
1

2µ23
� q

2
1

2µ1,23

Z 1

0

dp
0
1 p

0
1

Z 2⇡

0

d�
0
1 t1(p1, p

0
1,�

0
1; ✏1)

⇥
h
 2(P21,Q21,�21) +  3(P31,Q31,�31)

i
, (3.54)

 2(p2, q2,�2) =
1

E � p
2
2

2µ13
� q

2
2

2µ2,13

Z 1

0

dp
0
2 p

0
2

Z 2⇡

0

d�
0
2 t2(p2, p

0
2,�

0
2; ✏2)

⇥
h
 1(P12,Q12,�12) +  3(P32,Q32,�32)

i
, (3.55)

 3(p3, q3,�3) =
1

E � p
2
3

2µ12
� q

2
3

2µ3,12

Z 1

0

dp
0
3 p

0
3

Z 2⇡

0

d�
0
3 t3(p3, p

0
3,�

0
3; ✏3)

⇥
h
 1(P13,Q13,�13) +  2(P23,Q23,�23)

i
. (3.56)

Three Faddeev coupled equations (3.54)-(3.56) can be written in a compact form as

 i(pi, qi,�i) =
1

E � p
2
i

2µjk
� q

2
i

2µi,jk

Z 1

0

dp
0
i p

0
i

Z 2⇡

0

d�
0
i

⇥ ti(pi, p
0
i,�

0
i; ✏i)

h
 j(Pji,Qji,�ji) +  k(Pki,Qki,�ki)

i
, . (3.57)

where shifted momentum and angle variables are defined as

Pij ⌘ Pij(p
0
j,qj) = |↵ijp

0
j + �ijqj| =

q
(PX

ij )
2 + (PY

ij )
2, (3.58)

Qij ⌘ Qij(p
0
j,qj) = |�ijp0

j + ⌘ijqj| =
q

(QX
ij )

2 + (QY
ij)

2, (3.59)

�ij = (P̂ij, Q̂ij) = atan2(det, dot), 0 < �ij < 2⇡ (3.60)

with

PX
ij = ↵ijp

0
jcos(�

0
j) + �ijqjcos(�j), PY

ij = ↵ijp
0
jsin(�

0
j) + �ijqjsin(�j), (3.61)

QX
ij = �ijp

0
jcos(�

0
j) + ⌘ijqjcos(�j), QY

ij = �ijp
0
jsin(�

0
j) + ⌘ijqjsin(�j), (3.62)

and
8
<

:
det = PX

ij · QY
ij � PY

ij · QX
ij ,

dot = PX
ij · QX

ij + PY
ij · QY

ij .

(3.63)

By choosing the coordinate system where p
0 is parallel to the x�axis, p and p

00 are
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free in the 2D space, and �pi,p00i
= �i � �

00
i , 2B t�matrices ti(pi, p0i,�

0
i; ✏i) can be obtained

from the solution of 2D Lippmann-Schwinger integral equation as

ti(pi, p
0
i,�i; ✏i) = vi(pi, p

0
i,�i)+

Z 1

0

dp
00
i p

00
i

Z 2⇡

0

d�
00
i vi(pi, p

00
i ,�pi,p00i

)
1

✏i �
p
002
i

2µjk

ti(p
00
i , p

0
i,�

00
i ; ✏i),

(3.64)

where 2B subsystem energy is defined by ✏i = E � q
2
i

2µi,jk
.

We should mention, since RK potential, Eq. (3.7) is not well behaved when two

momentum vectors p and p
0 have the same magnitude, and they are aligned, q = 0. To

address this issue, instead of solving the non-PW equation (3.64), we first compute the

PW potential from the non-PW potential using Eq. (3.6), then, we determine the PW

t-matrices using the following relation, which establishes the connection between the PW

and non-PW 2B t-matrices

tm(p, p
0;E) = Vm(p, p

0) +

Z 1

0

dp
00
p
00
Vm(p, p

00)
1

E � p
002

2µ

tm(p
00
, p

0;E), (3.65)

then we sum over the PW components to obtain the non-PW t-matrix using the following

equation (ADHIKARI, 1986)

t(p,p0;E) =
1

2⇡

1X

m=0

✏m cos(m�) tm(p, p
0;E), ✏m =

8
<

:
1 m = 0

2 m 6= 0.
(3.66)

The three-body wave function can be obtained by adding Faddeev components in di↵erent

subsystems as given in Eq. (3.57)

 =
3X

i=1

 i, (3.67)

where

hp1q1| i = hp1q1| 1i+ hp1q1| 2i+ hp1q1| 3i. (3.68)

Using the completeness relation Eq. (3.12), one has that

hp1q1| 2i =
Z

d
2
p
0
2

Z
d
2
q
0
2hp1q1|p0

2q
0
2ihp0

2q
0
2| 2i, (3.69)

hp1q1| 3i =
Z

d
2
p
0
3

Z
d
2
q
0
3hp1q1|p0

3q
0
3ihp0

3q
0
3| 3i, (3.70)
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where

hp1q1|p0
2q

0
2i = �(p0

2 � p2(p1,q1))�(q
0
2 � q2(p1,q1)), (3.71)

hp1q1|p0
3q

0
3i = �(p0

3 � p3(p1,q1))�(q
0
3 � q3(p1,q1)). (3.72)

Hence Eq. (3.68) can be written as

 (p1, q1,�1) =  1(p1, q1,�1)

+  2(P21(p1,q1),Q21(p1,q1),�21)

+  3(P31(p1,q1),Q31(p1,q1),�31). (3.73)

In the general case of three not identical particle, 3B wave function in momentum

space is given By

 (pi, qi,�i) =  i(pi, qi,�i) +  j(Pji(pi, qi,�i),Qji(pi, qi,�i),�ji(pi, qi,�i))

+  k(Pki(pi, qi,�i),Qki(pi, qi,�i),�ki(pi, qi,�i)). (3.74)

This indicates that we need three-dimensional interpolation to evaluate the 3B wave func-

tion in two dimensions, which, in our study, carries on with cubic hermitian splines as

given in ref. (HÜBER, 1997).

The wave function is normalized as

h | i =
3X

i=1

h | ii =

= 2⇡

Z 1

0

dpi pi

Z 1

0

dqi qi

Z 2⇡

0

d�i  2(pi, qi,�i)

= 2⇡

Z 1

0

dpi pi

Z 1

0

dqi qi

Z 2⇡

0

d�i  (pi, qi,�i)

⇥

 i(pi, qi,�i)

+ j(Pji(pi,qi),Qji(pi,qi),�ji)

+ k(Pki(pi,qi),Qki(pi,qi),�ki)

�
= 1. (3.75)

3.3.1 Expectation values and momentum distributions

By having the 3B wave function and Faddeev components, the expectation value of

3B Hamiltonian h |H| i can be obtained as

h |H| i = h |H0| i+ h |V | i =
3X

m,n=1

h m|H0| ni+
3X

m,n,i=1

h m|Vi| ni. (3.76)
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where

h |H0| i ⌘
3X

m,n=1

h m|H0| ni

= 2⇡

Z 1

0

dpm pm

Z 1

0

dqm qm

✓
p
2
m

2µ2B
+

q
2
m

2µ3B

◆Z 2⇡

0

d�m  2(pm, qm,�m)

= 2⇡
3X

m,n=1

Z 1

0

dpm pm

Z 1

0

dqm qm

✓
p
2
m

2µ2B
+

q
2
m

2µ3B

◆

⇥
Z 2⇡

0

d�m  m(pm, qm,�m)

⇥  n(Pnm(pm, qm,�m),Qnm(pm, qm,�m),�nm), (3.77)

and

h |V | i =
3X

i=1

h |Vi| i ⌘
3X

m,n,i=1

h m|Vi| ni

=
3X

i=1

Z
d
2
pi

Z
d
2
qi

Z
d
2
p
0
i

Z
d
2
q
0
ih |piqiihpiqi|Vi|p0

iq
0
iihp0

iq
0
i| i

=
3X

m,n,i=1

Z
d
2
pi

Z
d
2
qi

Z
d
2
p
0
i

Z
d
2
q
0
ih m|piqiihpiqi|Vi|p0

iq
0
iihp0

iq
0
i| ni

=
3X

i=1

Z
d
2
pi

Z
d
2
qi

Z
d
2
p
0
i  (pi,qi)Vi(pi,p

0
i) (p0

i,qi)

=
3X

m,n,i=1

Z
d
2
pi

Z
d
2
qi

Z
d
2
p
0
i  m(Pmi(pi,qi),Qmi(pi,qi))Vi(pi,p

0
i)

⇥  n(Pni(p
0
i,qi),Qni(p

0
i,qi)). (3.78)

Using the coordinate system defined in Fig. 3.4 and the angle variables defined in Eq.

(3.53), we can express Eq. (3.78) as follows

h |V | i ⌘
3X

m,n,i=1

h m|Vi| ni

= 2⇡
3X

i=1

Z 1

0

dpipi

Z 1

0

dqiqi

Z 2⇡

0

d�i

Z 1

0

dp
0
i p

0
i

Z 2⇡

0

d�
0
i

⇥  (pi, qi,�i)Vi(pi, p
0
i,�

0
i) (p0i, qi,�i � �

0
i)

= 2⇡
3X

m,n,i=1

Z 1

0

dpipi

Z 1

0

dqiqi

Z 2⇡

0

d�i

Z 1

0

dp
0
i p

0
i

Z 2⇡

0

d�
0
i

⇥  m(Pmi(pi, qi,�i),Qmi(pi, qi,�i),�mi(pi, qi,�i))

⇥ Vi(pi, p
0
i,�

0
i)

⇥  n(Pni(p
0
i, qi,�

0
i,�i),Qni(p

0
i, qi,�

0
i,�i),�ni(p

0
i, qi,�

0
i,�i)). (3.79)
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To validate our numerical methods and formalism, we will later compare the expectation

value of the Hamiltonian, calculated using Eq. (3.76), with the eigenvalue obtained from

the Faddeev equation.

In practical applications, direct access to the wave function is often unavailable, and

only specific matrix elements are accessible (ELSTER et al., 1999). One such example,

which can be approximated through electron scattering, is the momentum distribution.

In our study, this momentum distribution is expressed as

N(pi) = 2⇡ pi

Z 1

0

dqi qi

Z 2⇡

0

d�i  2(pi, qi,�i), (3.80)

N(qi) = 2⇡ qi

Z 1

0

dpi pi

Z 2⇡

0

d�i  2(pi, qi,�i). (3.81)

3.3.2 Verification of the 3B Schrödinger equation in 2D

A rigorous test of the accuracy of our numerical methods and the quality of the wave

function is to check whether the Schrödinger equation is satisfied at each mesh point, as

highlighted in Ref. (ELSTER et al., 1999). The Schrödinger equation for the bound state

of three particles is given by

Et| i = H| i = (H0 + Vi + Vj + Vk)| i. (3.82)

Using the three di↵erent sets of Jacobi momenta in momentum space, we obtain

Et (pi,qi) =


p
2
i

2µjk
+

q
2
i

2µi,jk

�
 (pi,qi)

+

Z
d
2
p
0
i Vi(pi,p

0
i) (p0

i,qi)

+

Z
d
2
p
0
j Vj(PPPji(pi,qi),p

0
j) (p0

j,QQQji(pi,qi))

+

Z
d
2
p
0
k Vk(PPPki(pi,qi),p

0
k) (p0

k,QQQki(pi,qi)). (3.83)

By considering the coordinate system illustrated in Fig. 3.4, where p1 is parallel to the

x�axis, Eq. (3.83) can be written as

Et (pi, qi,�i) =


p
2
i

2µjk
+

q
2
i

2µi,jk

�
 (pi, qi,�i)

+

Z 1

0

dp
0
i p

0
i

Z 2⇡

0

d�
0
i Vi(pi, p

0
i,�

0
i) (p0i, qi,�i � �

0
i)

+

Z 1

0

dp
0
j p

0
j

Z 2⇡

0

d�
0
j Vj(Pji(pi, qi,�i), p

0
j,�Pji,p0j

) (p0j,Qji(pi, qi,�i),�Qji,p0j
)

+

Z 1

0

dp
0
k p

0
k

Z 2⇡

0

d�
0
k Vk(Pki(pi, qi,�i), p

0
k,�Pki,p0k

)
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⇥  (p0k,Qki(pi, qi,�i),�Qki,p0k
). (3.84)

3.4 Short Range Yamaguchi potential

To test the formulation of the coupled Faddeev integral equations (3.57) and to validate

our numerical solution, we first utilize the one-term separable potential with Yamaguchi-

type form factors given as

hp|V |p0i = ��g(p)g(p0); g(p) =
1

(�2 + p2)m
. (3.85)

We are providing the numerical results for the binding energies and wave functions

of 3B systems using two di↵erent combinations of interactions. The first combination in-

volves three attractive potentials, while the second combination consists of two attractive

and one repulsive Yamaguchi-type potentials. These calculations are conducted consid-

ering three particles with identical masses. To avoid any confusion, let us clarify the

notation used. The 3B binding energy is represented as E3B, which refers to the eigen-

value of the 3B Hamiltonian. On the other hand, the trion binding energy is denoted as

Et, representing the di↵erence between the binding energies of the 2B and 3B systems. In

Table 3.4, we present the binding energies of a 3B system obtained by solving the three

coupled Faddeev integral equations (3.57). The system consists of three identical parti-

cles with a mass of 1, interacting through attractive Yamaguchi potentials. The input 2B

t�matrices are derived from the s�wave interactions. We have calculated the ratios of

the 3B and 2B binding energies for various potential strengths, �, and form factor powers

(m), and our results exhibit excellent agreement with the corresponding findings from

Ref. (ADHIKARI et al., 1988), where they solved a single equation.
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TABLE 3.4 – Dimer and trimer binding energies E2B and E3B calculated for three attractive Yamaguchi-
type potentials with form factor parameter � = 1 and di↵erent powers m. The potential strength � is
fitted to reproduce the desired 2B binding energy E2B . The ratio of 3B and 2B binding energies E3B/E2B

are compared with corresponding results from Ref. (ADHIKARI et al., 1988). The calculations are done
with ~c = mass = 1.

� E2 E3/E2 E3/E2 (ADHIKARI et al., 1988)

m = 1

0.0602 �0.0019 9.21 9.21

0.0863 �0.0100 6.83 6.83

0.1838 �0.1000 4.58 4.58

m = 2

0.0801 �0.0032 7.30 7.30

0.1400 �0.0211 5.14 5.14

m = 4

0.0481 �0.0001 11.54 11.53

0.0731 �0.0010 7.91 7.91

0.1861 �0.0200 4.55 4.55

m = 10

0.0561 0.0001 10.05 10.05

0.0923 0.0010 6.61 6.61

0.1562 0.0050 4.89 4.99

Table 3.4 confirms the validity and accuracy of the numerical method used to solve

the three coupled Faddeev equations.

Now, we can proceed to make one attractive interaction repulsive, bringing us one step

closer to a realistic system. In Table 3.5, we present the expectation values, denoted as EV,

and energy (E3B) obtained from three attractive Yamaguchi potentials (3A) in the first

column. In the second column, we present the results obtained when two interactions are

attractive and one is repulsive (2A+R), obtained by solving the coupled Faddeev integral

equations.
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TABLE 3.5 – Expectation values (EV) of 3B free Hamiltonian hH0i, pair interactions hVii, total 2B
interactions hV i, 3B Hamiltonian hHi, and eigenvalue E3B calculated for Yamaguchi-type potentials
(three attractive (3A) in the second column, two attractive plus one repulsive interaction (2A+R) in the
third column), given in Eq. (3.85) with form factor parameters � = m = 1, and the potential strength �
that reproduces dimer binding energy E2B = �0.1. The calculations are done with ~c = mass = 1.

EV 3A 2A + R

hH0i +0.46887 +0.15756

hV1i �0.30904 +0.03260

hV2i �0.30904 �0.15526

hV3i �0.30904 �0.15523

hV i �0.92712 �0.27789

hHi �0.45825 �0.12033

E3B �0.45824 �0.12034����
(hHi � E3B)

E3B

����⇥ 100% +0.00218 +0.00831

Table 3.5 reveals some interesting qualitative observations. Notably, when the sign of

the potential V1 is reversed and becomes repulsive, the state expands due to a significant

reduction in the energy splitting between the 2B and 3B states. This can be observed

through the decrease in the quantity |E3B �E2B| = 0.3582 to 0.0203, indicating a dimin-

ished energy di↵erence between the 3B and 2B systems. As a result, the kinetic energy

is significantly decreased to approximately one-third of its value when only attractive po-

tentials are present. The repulsive interaction depletes the wave function when particles 2

and 3 are within the range of the potential, leading to a negative expectation value hV1i.
In comparison to the attractive case, this value is reduced to one-tenth of its magnitude.

Additionally, the expectation values hV2i and hV3i are reduced by half. As a result of our

mesh point selection, the equality hV2i = hV3i holds with a precision of 0.02%, leading

to an error of approximately 0.008% in the computation of hHi. This error is four times

larger than the error observed in the attractive case.

3.4.1 Yamaguchi trion clusterization

Figs. 3.5 and 3.6, take from (MOHSENI et al., 2023), depict the magnitude of the 3B

wave function in two scenarios involving Yamaguchi interactions. The left panel displays

the wave function’s dependence on the magnitudes of Jacobi momenta p1 and q1, with the

angle between them fixed at �1 = 0. To assess the numerical accuracy of our calculations,

we utilize the ratio |(E �H )/(E )| calculated with Eq. (3.84), which is depicted in

the right panels of Figs. 3.5 and 3.6 for the 3A and 2A+R cases, respectively.

In the first case, illustrated in Fig. 3.5, we observe the eigenstate of the 3B system

characterized by three attractive potentials (3A). The plot reveals a somewhat symmetric
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momentum distribution, which can be attributed to the identical masses and bosonic

symmetry of the system.

0 0.5
0

0.5

-4

-3.5

-3

-2.5

FIGURE 3.5 – The left panel displays a 3D plot of the 3B wave function, specifically for three attractive
Yamaguchi-type potentials (3A). The right panel shows the relative percentage error. Both plots are
generated for the angle �1 = 0. The results are obtained using form factor parameters � = m = 1 and
a potential strength � chosen to reproduce a 2B binding energy of E2B = �0.1. The calculations are
performed with ~c = mass = 1.

On the other hand, the second case displayed in Fig. 3.6 presents the wave function for

a weakly bound state, which emerges from one repulsive potential V1 and two attractive

potentials (2A+R). It is clear the introduction of the repulsive potential leads to the

formation of a node line in the wave function. Additionally, the wave function becomes

more sharply peaked around the origin, primarily due to the small binding energy (see

Table 3.5).
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FIGURE 3.6 – The left panel displays a 3D plot of the 3B wave function, specifically for one repulsive
potential (V1) and two attractive Yamaguchi-type potentials (2A + R). The right panel shows the relative
error. Both plots are generated for the angle �1 = 0. The results are obtained using form factor parameters
� = m = 1 and a potential strength � chosen to reproduce a 2B binding energy of E2B = �0.1. The
calculations are performed with ~c = mass = 1.

As anticipated, the 3A case exhibits satisfactory numerical accuracy, while the 2A+R

case demonstrates accurate results, particularly outside the node region. As expected,

the largest errors for the 2A+R case in the right panel of Fig. 3.6 coincide with the node

of the 3B wave function. Furthermore, in Fig. 3.7 which is taken from (MOHSENI et al.,

2023), we present contour plots of the 2A+R model in the (p1 ⇥ q1)-plane for �1 = 0 (left

panel) and in the (p2 ⇥ q2)-plane for �2 = 0 (right panel).

FIGURE 3.7 – The contour plot illustrates the 3B wave function calculated for three Yamaguchi-type
potentials, where V1 is repulsive while V2 and V3 are attractive. The plot represents the wave function’s
behavior as the magnitude of Jacobi momenta varies. The angles �1 and �2 are fixed at 0. The results
are obtained using form factor parameters � = m = 1 and a potential strength � chosen to reproduce a
2B binding energy of E2B = �0.1. The calculations are conducted assuming ~c = mass = 1.

The node line, which is visible in the left panel of Fig. 3.7, is similar to the left panel
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in Fig. 3.6. This node line arises from the cancellation between  1 and  2+ 3 as a result

of the reversed sign of  1 compared to  2 and  3 originating from the repulsive potential

V1. Consequently,

 1(p1, q1, 0) = � 2(p2, q2,�2)�  3(p3, q3,�3) , (3.86)

where �2,3 = 0, and these relations implicitly define the node line. The node line can be

understood by rewriting the momenta labeled by 2 and 3 according to

p2 = �1

2
p1 �

3

4
q1, q2 = p1 �

1

2
q1, (3.87a)

p3 = �1

2
p1 +

3

4
q1, q3 = �p1 �

1

2
q1. (3.87b)

The node line is barely seen in the right panel of Fig. 3.7, with the momenta expressed in

terms of p2 and q2 with �2 = 0.

Another property of the wave function is the well- defined maximum seen in both

Figs. 3.6 and 3.7, which can be qualitatively understood by a semiclassical picture. In

this dominant configuration, the electron, and hole (referred to as particle 1) are very

close and they are “moving together”. This relationship between the momenta p1 and q1

provides an interpretation for the observed pattern of the maximum in the left panel of

Fig. 3.6 and the whitish-yellow color region in Fig. 3.7, specifically along the line p1 / q1

for the 2A+R model. In other words, the relative velocity between the two electrons

is the same as the velocity between the widely separated electron and the hole, which

forms the strongly bound exciton. This correspondence becomes particularly evident

when �1 = 0. Moreover, this interpretation also explains the pattern of the maximum

in the wave function, featuring two branches observed in the right panel of Fig. 3.6

in the (p2 ⇥ q2)–plane. It is important to highlight the practical significance of such

plots, as they provide valuable insights into the regions where the wave function exhibits

significant amplitude. This information is crucial for accurately distributing mesh points

and obtaining precise solutions to the Faddeev equations.

It is important to highlight that each Faddeev component of the wave function in

our system carries the asymptotic behavior of the wave function in each pairwise inter-

action channel (FADDEEV, 1960). The clustering of the wave function can be illustrated

by the following scheme:  2 ⇠ [3(e)1(h)]—2(e) and  3 ⇠ [1(h)2(e)]—3(e). These two

configurations are expected to be the dominant ones, with the electrons in a spin singlet

state or an antisymmetric combination of di↵erent valley states. This is supported by the

observations in Table 3.6, where the Faddeev component  1 is significantly suppressed

compared to  2 and  3, as indicated by the one order of magnitude di↵erence in their

inner products.
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TABLE 3.6 – The inner product of the Faddeev components h i| ji and their contribution to the nor-
malization of the 3B wave function | i.

j = 1 j = 2 j = 3

i = 1 0.0560 �0.1047 �0.1047

i = 2 �0.1047 0.4400 0.2413

i = 3 �0.1047 0.2413 0.4403

Let us now turn our attention to Fig. 3.7 (right panel) and examine the modulus of

the wave function, | |, in the (p2 ⇥ q2)–plane. We can identify two branches where | |
is larger: one for small q2 and a diagonal one. The lower branch corresponds to the

contribution of  2 for q2 ⇡ 0, which represents the relative momentum of the weakly

bound spectator particle 2(e) with respect to the strongly correlated pair of particles 1

and 3.

The range of values observed for p2 can be attributed to the small size of the strongly

bound exciton in the [3(e)1(h)]—2(e) configuration. On the other hand, the diagonal

branch characterized by p2 / q2, where the probability density of momentum is enhanced,

corresponds to the dominance of  3 associated with the [1(h)2(e)]—3(e) configuration. In

this configuration, electron 2 moves together with hole 1, reflecting the strong binding of

the exciton, while electron 3 acts as a spectator.

3.5 Rytova-Keldysh potential

Expanding on the insights gained from the 2D calculations with 2A+R Yamaguchi

potential model, we explore the binding energy and structure of trions in the MoS2 layer

using the RK potential described by Eq. (3.7) with parameters listed in Table 3.1.

The previous example discussed in Section 3.4 has already provided insights into the

accuracy of our numerical solutions for the Faddeev equations. We observed that the ac-

curacy decreases in the case of the 2A+R Yamaguchi potential compared to the attractive

3A case (see Table 3.5). This behavior was expected due to the small binding energy of tri-

ons and the presence of a node in the wave function. Furthermore, the numerical solution

becomes more challenging when considering the RK potential, which has a longer range

compared to the Yamaguchi model. This is due to the competition between attraction

and repulsion of equal strength. To address this numerical challenge, we introduce two

di↵erent regulators (DELTUVA et al., 2005) to screen the repulsive RK potential between

the two electrons, namely

V (q) ! (1� e
�l0q)Vee(q) or e

�l0 qVee(q) . (3.88)
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In the first case, V (q) ! (1� e
�l0q), the RK potential is damped at small momentum or

large distance, while in the second case, V (q) ! e
�l0 qVee(q), it is damped at large mo-

mentum or small distance. Fig. 3.8 illustrates quantitatively both screenings , Eq. (3.88),

with l0 = 10 Å.
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q(Å-1)
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0.8
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V
(q

)/V
ee

(q
) 

V(q)=e(-l0q)
×Vee(q)

V(q)=(1 - e(-l0q))×Vee(q)

FIGURE 3.8 – The screening function V (q)/Vee(q) as a function of the momentum transfer q for (blue
curve) V (q) ! e

�l0 q
Vee(q) and (red curve) V (q) ! (1 � e

�l0q)Vee(q) with screening parameter l0 = 10
Å. Figure is take from (MOHSENI et al., 2023).

In our calculations, the results for the trion binding energy will be obtained by extrap-

olating to l
�1
0 = 0 and l0 = 0 for the first and second screening scheme, respectively. Prior

to that, we present the expectation values of the RK potential screened at low momenta

for l0 = 100 Å in Table 3.7 in the scheme V1(q) ! (1� e
�l0q)Vee(q).
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TABLE 3.7 – Expectation values (EV) in meV of the 3B free Hamiltonian hH0i, pair interactions hVii,
total 2B interactions hV i, 3B Hamiltonian hHi, and binding energy E3B in meV calculated for RK poten-
tials (two attractive plus one repulsive interaction (2A+R)) given in Eq. (3.7) with screening parameter
l0 = 100 Å in the scheme V1(q) ! (1� e

�l0q)Vee(q).

EV 2A + R

hH0i +247.66

hV1i +443.39

hV2i �825.90

hV3i �825.76

hV i �1208.27

hHi �960.61

E3B �960.58����
(hHi � E3B)

E3B

����⇥ 100% +0.00312

The contribution of the spectator electron external to the exciton, leads to a slightly

larger expectation value of the kinetic energy compared to the exciton case. In Table E.2,

the kinetic energy for the exciton is found to be 214.64 meV, whereas for the trion, it

is 247.66 meV. Furthermore, the expectation values of the attractive potentials V2 and

V3 for the trion are slightly smaller in magnitude compared to the exciton, which has an

expectation value of -967.96 meV. In the trion, the magnitude of the potential energy

for the repulsive potential is approximately half that of the attractive potentials. This

can be understood as the electrons should be more separated than the relative distance

within the strongly bound electron-hole pair. It is worth noting that the trion and exciton

have a splitting of 207.29 meV, indicating that the trion is weakly bound compared to

the exciton. Table 3.7 demonstrates the high accuracy of our solution by comparing the

expectation value of the Hamiltonian hHi and the energy E3B obtained from solving the

coupled Faddeev integral equations. The deviation between these two values is remarkably

small, with only a 0.003% di↵erence.

Table 3.8 presents the numerical results for the 3B energy eigenvalues obtained by

solving the coupled Faddeev integral Eqs. (3.57). The calculations are performed for the

RK potential given in Eq. (3.7), considering two di↵erent screening schemes for electron-

electron interactions, as illustrated in Fig. 3.8 and described in Eq. (3.88). The results

are shown for various values of the screening parameter l0, as a function of the number of

mesh points for Jacobi momenta Np = Nq. As one can see, even with a high number of

mesh points, convergence is not achieved. However, the results exhibit an accurate linear

behavior, allowing us to fit a linear function with high accuracy. last row of the Table 3.8,

shows the linear extrapolated result to Np, Nq ! 1.
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TABLE 3.8 – The convergence of trion ground state binding energies (in meV) as a function of the number
of mesh points for Jacobi momenta Np = Nq obtained for di↵erent values of screening parameter l0 for
screening electron-electron interactions V (q) ! e

�l0 q
Vee(q) (upper panel) and V (q) ! (1� e

�l0q)Vee(q)
(lower panel). The last row of each panel shows the linear extrapolation of trion energy eigenvalues to
an infinite number of mesh points.

l0(Å)

Np = Nq 25 20 17 15 13 11 10 9 8 7

200 �1275.6 �1231.1 �1197.7 �1171.8 �1142.5 �1109.0 �1090.5 �1070.8 �1049.8 �1027.6

250 �1258.7 �1214.2 �1180.8 �1155.0 �1125.6 �1092.2 �1073.7 �1054.1 �1033.0 �1011.5

300 �1248.3 �1203.8 �1170.4 �1144.6 �1115.3 �1081.8 �1063.4 �1043.7 �1022.8 �1000.7

350 �1241.3 �1196.8 �1163.5 �1137.7 �1108.3 �1074.9 �1056.5 �1036.8 �1016.0 �993.7

Np, Nq ! 1 �1195.1 �1150.6 �1117.3 �1091.5 �1062.2 �1028.9 �1010.6 �991.0 �970.3 �948.0

l0 (Å)

Np = Nq 1 5 10 15 20 30 50 70 90 100

200 �1588.7 �1447.8 �1346.2 �1279.4 �1231.0 �1165.0 �1090.8 �1049.3 �1023.3 �1014.8

250 �1558.6 �1418.8 �1318.1 �1251.8 �1203.8 �1138.2 �1064.7 �1023.6 �998.3 �988.8

300 �1540.0 �1400.9 �1300.7 �1234.8 �1187.0 �1121.7 �1048.4 �1007.1 �981.1 �972.3

350 �1527.5 �1388.9 �1289.1 �1223.3 �1175.7 �1110.6 �1037.5 �996.3 �970.0 �960.6

Np, Nq ! 1 �1444.8 �1309.6 �1212.0 �1147.7 �1101.2 �1037.3 �965.6 �924.8 �898.2 �888.0

The extrapolated results obtained from Table 3.8 are summarized in Table 3.9 for the

two implemented forms of screening in the RK electron-electron repulsive potential.

TABLE 3.9 – Trion ground state binding energies (E3B) for di↵erent screening parameter l0 obtained
from two screening schemes shown in Fig. 3.8 and given in Eq. (3.88).

V (q) ! e
�l0 qVee(q) V (q) ! (1� e

�l0q)Vee(q)

l0 (Å) E3B (meV) l0 (Å) E3B (meV)

25 �1195.1 1 �1444.8

20 �1150.6 5 �1309.6

17 �1117.3 10 �1212.0

15 �1091.5 15 �1147.7

13 �1062.2 20 �1101.2

11 �1028.9 30 �1037.3

10 �1010.6 50 �965.6

9 �991.0 70 �924.8

8 �970.3 90 �898.2

7 �948.0 100 �888.0

The extrapolation of trion energies, as shown in Fig. 3.9, is presented in two forms:

(1) as a function of l�1
0 in the left panel, representing short-distance screening, and (2)

as a function of l0 in the right panel, representing long-distance screening. The results

demonstrate a clear linear trend, enabling an accurate extrapolation of the trion binding

energy. Extrapolating the binding energies using the linear fits obtained from the first
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screening (left panel) in the range of 70 to 100 Å�1 yields a trion binding energy of �49.6

meV. Similarly, extrapolating the second screening (right panel) in the range of 7 to 10

Å results in a trion binding energy of�49.4 meV. These extrapolated values are consistent

with previous experimental findings reported in Refs. (LIN et al., 2014; LIN et al., 2019).
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Et(l0
-1=0)→ −49.6 meV Et(l0=0) → −49.4 meV

FIGURE 3.9 – Extraction of trion binding energy Et with a linear extrapolation on energies obtained
from two screenings (see Table 3.9) at the physical points l

�1
0 = 0 Å�1 (left panel) and l0 = 0 Å(right

panel). Figure is take from (MOHSENI et al., 2023).

It is important to note that in excitonic physics, the interaction between electrons

and holes consists of both an attractive screened interaction and a repulsive exchange

interaction. However, for strongly bound excitons, the exchange interaction typically

makes a small contribution, as demonstrated in Ref. (WANG et al., 2018). In the case of

the trion, in addition to the electron-hole interaction, there is also an exchange term for

the electron-electron interaction. However, due to the weak binding of the electron in the

trion to the exciton and the small momenta involved compared to the reciprocal vector,

the exchange terms are expected to have a lesser impact on determining the trion binding

energy compared to their contribution to the exciton energy, which is already small in

this scenario. Nevertheless, the Faddeev approach employed for solving the Hamiltonian

eigenvalue problem in momentum space can handle non-local exchange terms in a similar
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manner as done for the exciton Hamiltonian (SCHMIDT et al., 2003), although this aspect

remains for future investigation.

3.5.1 Rytova-Keldysh trion clusterization

The trion structure is examined using the screened electron-electron potential V1(q) !
(1 � e

�l0q)Vee(q) with l0 = 100 Å. We specifically chose this model because the electron-

electron potential is screened at large distances, which combines with the natural screening

of the exciton interaction with the spectator electron. These two e↵ects act in a coher-

ent manner, resulting in the trion being strongly bound with an energy of �207.3 meV

compared to the extrapolated value of �49.6 meV. It is important to note that the small

trion binding energy, relative to the exciton, will be further emphasized as we approach the

converged trion calculation with the RK potential. Our analysis is based on the screened

electron-electron potential, which is currently a limitation of our numerical method when

applied to the repulsive RK potential. However, despite this limitation, we examine the

structure of the trion within the screened model to gain insights and compare it with the

2A+R Yamaguchi model. It is important to highlight that we are specifically studying

a negatively charged trion consisting of one hole and two electrons, where the two elec-

trons have the same e↵ective mass. In TMDs, electrons typically have the same mass if

they belong to the same band or minimum point. This holds true for two scenarios: 1)

intravalley electrons with the same spin or 2) intervalley electrons with opposite spins.

However, in our work, we neglect the spin-orbit coupling in the conduction band, which

allows us to consider the electrons to have the same mass. The overlaps between the

Faddeev components of the wave function are given in Table 3.10.

TABLE 3.10 – The inner product of the Faddeev components h i| ji and their contributions in the

normalization of the 3B wave function | i obtained for the screening parameter l0 = 100 Å in the
screening scheme V1(q) ! (1� e

�l0q)Vee(q).

j = 1 j = 2 j = 3

i = 1 0.1772 �0.2808 �0.2806

i = 2 �0.2808 0.5197 0.4534

i = 3 �0.2806 0.4534 0.5190

Consistently, the relative normalization of the component h 1| 1i, where the hole

serves as the spectator particle in the interacting electron-electron pair, is nearly three

times smaller than h 2| 2i = h 3| 3i. This observation aligns with our findings in the

2A+R Yamaguchi model (see Table 3.6), where we also observe a significantly reduced

overlap h 1| 1i compared to the overall normalization of the wave function. The con-

figuration in which the hole acts as a spectator in the interacting electron-electron pair
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is suppressed, indicating a preference for clusterization of the wave function where the

electron and hole are in close proximity, primarily forming the exciton, with an additional

distant spectator electron. Furthermore, we observe that h 1| 2,3i has an opposite sign

compared to h 2| 3i, which reflects the repulsive interaction between the electrons. When

comparing these findings with the overlaps of the 2A+R Yamaguchi potentials presented

in Table 3.6, we can see that the suppression of  1 is much more dramatic for the former

model. The reason for this di↵erence can be attributed to two factors: (i) the relatively

smaller gap between the binding energies of the 3B and 2B states in the Yamaguchi model,

which is (E3B �E2B)/E3B = 0.169, compared to 0.216 in the RK screened model, and (ii)

the short-range nature of the Yamaguchi potential, whereas the RK potential exhibits a

long-range tail. However, it should be noted that the RK trion possesses a significantly

smaller 3B binding energy compared to the corresponding binding energy obtained for

the screened RK electron-electron potential. Namely, the extrapolated value of �802.9

meV in Fig. 3.9 yields (E3B�E2B)/E3B = 0.061. Consequently, we expect a more evident

clusterization of the exciton within the trion. Fig. 3.10 displays the results for the Faddeev

components  1(p1, q1,�1 = 0) (top panel) and  2(p2, q2,�2 = 0) =  3(p3, q3,�3 = 0) (bot-

tom panel), where the momenta are defined in terms of p1 and q1. The calculations were

performed for di↵erent values of l0, specifically l0 = 1, 30, 50, 70, 100Å (from left to right

panels), with the electron-electron screened potential given by V1(q) ! (1� e
�l0q)Vee(q).

FIGURE 3.10 – The evolution of the Faddeev components (top panels)  1(p1, q1,�1 = 0) and (bottom
panels)  2(p1, q1,�1 = 0) obtained for the screening parameter l0 = 1, 30, 50, 70, 100 Å in the screening
scheme V1(q) ! (1� e

�l0q)Vee(q). Figure is take from (MOHSENI et al., 2023).

From Fig. 3.10, it is evident that as the screening parameter l0 increases, the trion

binding weakens, and the electrons experience a repulsive force, causing them to move

away from each other. Simultaneously, one of the electrons remains in close proximity to
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the hole, resulting in the dominant configurations  2 ⇠[3(e)1(h)]—2(e) and  3 ⇠[1(h)2(e)]—

3(e) (the square brackets represent the exciton).

On the other hand,  1(p1, q1, 0) primarily reflects the short-range repulsion, causing

the spreading of q1 and p1 towards larger values, as depicted in the top panels of Fig. 3.10.

For small values of l0, where the long-range tail of the repulsive potential is e↵ectively

suppressed, we observe that the momentum distribution of  1(p1, q1, 0) exhibits larger

trion bindings with a tendency towards symmetry in p1 and q1. This implies a geometric

configuration where the hole is equally separated from the two electrons, disfavoring the

cluster structure against a more symmetrical configuration, schematically like e–h–e. As

the value of l0 increases, signifying increased repulsion and a more pronounced short-range

interaction, the node in  1 appears at larger values of p1. The bottom panel of Fig.3.10

illustrates the evolution of  2(p2(p1,q1), q2(p1,q1),�2 = 0) for �1 = 0 as a function of l0

in the (p1⇥q1)–plane. Similar to the observations made in the top panel of Fig.3.10 for  1,

we see that as l0 increases, the configuration transitions from a symmetrical arrangement

(e–h–e) to a cluster structure ([3(e)1(h)]—2(e)).

The presence of a node line along with the cluster structure becomes more pronounced

when the long-range screening is reduced, causing the electron to be weakly bound com-

pared to the exciton. In regions where the cluster structure dominates, characterized by

p1 / q1, higher amplitude values of the wave function are observed, consistent with the

findings discussed earlier for the 2A+R Yamaguchi 3B model. The top panel of Fig.3.11

displays the wave function in the p1 ⇥ q1 plane, while the bottom panel shows it in the

p2 ⇥ q2 plane for various l0 values ranging from 1 to 100Å, with �1 = �2 = 0. When the

screening is reduced at large distances, the pattern observed for  2 in the (p1 ⇥ q1) plane

(as seen in the bottom panels of Fig. 3.10) becomes more evident due to its dominance

over  1. It is important to note that  2 is equivalent to  3 in the symmetric configura-

tion of the two electrons, where they must be in a singlet spin state or an antisymmetric

combination of di↵erent valley states.
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FIGURE 3.11 – The evolution of the wave function  (p1, q1,�1 = 0) (top panels) and  (p2, q2,�2 = 0)
(bottom panels) obtained for the screening parameter l0 = 1, 30, 50, 70, 100 Å in the screening scheme
V1(q) ! (1� e

�l0q)Vee(q). Figure is take from (MOHSENI et al., 2023).

In the bottom panels of Fig. 3.11, the results for the wave function are presented in

the (p2 ⇥ q2) plane, where again, the more symmetric e–h–e configuration dominates at

the strong trion binding and weaker repulsion between the electrons. By reducing the

screening of the repulsive potential, the electron turns to be weakly bound to the exciton,

and the system presents an evident cluster structure with the coherent superposition

of the two configurations [3(e)1(h)]—2(e) and [1(h)2(e)]—3(e). The top panels of Fig.

3.11 demonstrate the behavior of the wave function in terms of p2 and q2, revealing two

branches of higher probability density: one for p2 / q2 and another for small q2 with

p2 spreading within the displayed region. This behavior, which was also observed in the

2A+R Yamaguchi model, is associated with the cluster structure discussed in detail in

Section 3.4.1.

In Fig. 3.12, the angular dependence in �1 is explored for l0 = 100 Å.
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FIGURE 3.12 – The evolution of the wave function  (p1, q1,�1) with respect to the angle �1 for a fixed
screening parameter l0 = 100 Å in the screening scheme V1(q) ! (1 � e

�l0q)Vee(q). Figure is take from
(MOHSENI et al., 2023).

It is worth noting that the results remain the same at �1 = ✓ or �1 = 180� � ✓

due to the wave function’s symmetry when exchanging the momentum of the electrons.

The configuration space wave function exhibits symmetry upon electron exchange, as the

antisymmetry is guaranteed by the spin state. The slope of the node line is distorted as

�1 transitions between p1 and q1, appearing more elongated at 90�. The general format

of the node line is preserved regardless of the �1 parameters, indicating that the e-h-e

system features a hole with a small momentum with respect to the center of mass of the

electron pair. It is evident that the wave function’s zero in the (p1 ⇥ q1) plane originates

at q1 = 0.

0 0.15 0.3
0

0.15

0.3
-4 -2 0

FIGURE 3.13 – Comparison between trion wave function calculated with RK potential (left panel) and
re-scaled Yamaguchi potential model (right panel) for �1 = 0. Figure is take from (MOHSENI et al., 2023).

Finally, in Fig. 3.13, we directly compare the wave functions of the trion computed

using the RK model (left panel) and the 2A+R Yamaguchi model (right panel). To achieve

this comparison, we rescaled the Yamaguchi separable potential model to physical units

corresponding to the exciton and trion. In the Yamaguchi model, the exciton and trion
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results were obtained in units of ~ = m = 1. To convert to physical units, we have that

E2B = � ~2
me

�
2 0.1 and E3B = � ~2

me
�
2 0.12034 .

To obtain the dimensional constant �, we use the exciton binding energy E2B = �753 meV

and the average mass m = (me + mh)/2 = 0.505,m0, yielding � = 0.706576 Å�1. In

the 2A+R Yamaguchi model, the trion binding energy is given in meV units as Et =

153.225meV, which is comparable to the value of 207.26meV obtained from the regulated

repulsive RK potential with l0 = 100Å, as shown in Table 3.7. After rescaling the wave

functions to physical units, the comparison reveals that the trion wave functions obtained

from calculations using the RK and 2A+R Yamaguchi potentials exhibit a remarkably

similar structure. Particularly, the node line, representing the region of zero amplitude,

has the same shape in both cases. Additionally, the region where the wave function reaches

its highest values is located to the left of the node line, where p1 / q1. However, it should

be noted that the node line is shifted to larger values of p1 in the 2A+R Yamaguchi

model compared to the RK potential. This shift can be attributed to the contrasting

characteristics of the short-range nature of the Yamaguchi potential and the long-range

behavior of the RK potential.



4 Trion in Two-dimensional

Configuration Space

4.1 Overview

The previous chapter focused on understanding the trion’s wave function in momentum

space. Now, we will shift our focus to configuration space, which allows us to visualize the

trion’s structure in real space. This shift will help us understand how the trion’s particles

are arranged and give us better insight into how they interact.

Previous studies have employed various methods to investigate trions in configuration

space. Density functional theory, leveraging approximations to the exchange-correlation

functional, (SZYNISZEWSKI et al., 2017a; COURTADE et al., 2017), Variational approaches,

leveraging trial wave functions and optimization techniques, (BERKELBACH et al., 2013b;

KIDD et al., 2016b; SERGEEV; SURIS, 2001), and Path integral Monte Carlo simulations,

o↵ering a powerful stochastic approach, (SZYNISZEWSKI et al., 2017a; KYLÄNPÄÄ; KOMSA,

2015). These diverse methodologies have collectively contributed to our understanding

of trions in configuration space, albeit with varying degrees of computational complexity

and accuracy. However, we will use the Faddeev formalism, a powerful tool for studying

three-body systems. By solving the Faddeev equations and transforming the solutions into

configuration space, we can get a very accurate picture of the trion’s structure. In this

chapter, we will use the Faddeev formalism to study the trion’s configuration-space wave

function with two di↵erent potentials: the Yamaguchi potential and the Rytova-Keldysh

(RK) potential. The Yamaguchi potential is more straightforward and will help us test

our methods. The RK potential is more realistic and describes the long-range interactions

in 2D materials.

This chapter aims to provide a complete picture of the trion’s structure, connecting

the abstract momentum space, discussed in chapter 3, with the real-world configuration

space. This understanding will be valuable for theoretical and experimental research on

trions in 2D materials.
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4.2 Exciton structure in two-dimensions configuration space

The Fourier transformation of the exciton wave function from momentum space, as

calculated in Sec. 3.2.2, to configuration space is given by

 (r) =

Z
d
2
p (p)eip·r. (4.1)

This Fourier transformation allows us to obtain the exciton wave function in configuration

space  (r) from the corresponding wave function in momentum space  (p). The function

 (r) represents the probability amplitude of finding the electron and hole separated by a

distance r in the 2D plane. By choosing the coordinate system showing in Fig. 4.1, the

angle variable � is defined as p̂ · r̂ = cos(�).

x

y

r

p

�

FIGURE 4.1 – The geometry of vector p& r. The vector r is chosen to be parallel to the x�axis, and
vector p is free in the 2D space. The angle variable is defined as p̂ · r̂ = cos(�).

Therefore Eq. (4.1) can be written as

 (r) =

Z 1

0

dp p

Z 2⇡

0

d� (p)eipr cos(�). (4.2)

Using the Jacobi-Anger expansion, we can write the Eq. (4.2) as

 (r) =

Z 1

0

dp p  (p)

Z 2⇡

0

d�

1X

m=0

✏m i
m
Jm(pr) cos(m�)

=

Z 1

0

dp p  (p)
1X

m=0

✏m i
m
Jm(pr)

Z 2⇡

0

d� cos(m�), (4.3)

where Jm(pr) is m�th order Bessel function of the first kind, and considering the orthog-

onality over the interval 0 to 2⇡, we have

Z 2⇡

0

d� cos(m�) =

8
<

:
2⇡ m = 0,

0 m 6= 0.
(4.4)
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For the s�wave (m = 0), Eq. (4.3) simplifies to

 (r) = 2⇡

Z 1

0

dp p  (p) J0(pr). (4.5)

Similar to Table E.2, we present the convergence of the exciton mean radius hri and

the exciton binding energies for the ground, first excited, and second excited states as a

function of the number of mesh points for the 2B relative momentum Np. The calculations

are performed with 61 mesh points for the angle variables and 2000 mesh points for the 2B

relative distance Nr. The last row corresponds to quadratic extrapolation on 1/Np ! 0.

TABLE 4.1 – Convergence of exciton mean radius hri, and exciton binding energies for ground, first
excited, and second excited state, presented as a function of mesh points for 2B relative momentum Np.
The calculations are performed with 61 mesh points for angle variables and 2000 mesh points for e-h
relative distance Nr.

ground state 1st excited state 2nd excited state

Np hri(0) E
(0)
2B hri(1) E

(1)
2B hri(2) E

(2)
2B

300 7.434 �785.7 25.45 �352.6 48.46 �215.2

400 7.484 �775.2 25.71 �343.8 49.14 �207.0

500 7.511 �769.5 25.85 �339.0 49.50 �202.5

600 7.527 �766.1 25.93 �336.1 49.73 �199.8

700 7.537 �763.8 25.98 �334.2 49.87 �198.0

800 7.543 �762.3 26.02 �332.9 49.97 �196.7

900 7.548 �761.1 26.05 �331.9 50.04 �195.8

1000 7.551 �760.3 26.06 �331.2 50.09 �195.1

Quad. extrap.@ 1/Np ! 0 7.577 �753.3 26.21 �325.1 50.52 �189.4

Figure 4.2 illustrates the exciton wave functions in configuration space,  (n)(r), as a

function of r. The ground state, first excited state, and second excited state wave functions

are shown, highlighting the di↵erences in their spatial extents and nodal structures.
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FIGURE 4.2 – Ground state, first excited state, and second excited state 2B wave functions in config-
uration space  (n)(r) as a function of r. The calculations are performed with 61 mesh points for angle
variables and 2000 mesh points for e-h relative distance Nr.

4.3 Trion structure in two-dimensions configuration space

The Fourier transform of trion wave function from momentum space  (p,q), calculate

in Eq. (3.74), to the configuration space  (r,R), is given by

 (r,R) =

Z
d
2
p

Z
d
2
q  (p,q)eip·reiq·R. (4.6)

Here the variables r and R are conjugate to the Jacobi momenta p, q of a 3B system and

given as (GREENE et al., 2017)

ri = rj � rk,

Ri = ri �
mjrj +mkrk

mj +mk
. (4.7)

Where r1, r2, and r3 are the coordinates of three particles in configuration space. By

choosing the coordinate system of Fig. 4.3
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FIGURE 4.3 – Coordinate system for the solution of integral Eq. (4.6).

the angle variables will be defined as

(p̂, r̂) = �p, (4.8)

(q̂, r̂) = �q, (4.9)

(R̂, r̂) = �R, (4.10)

(R̂, q̂) = �R,q = �R � �q, (4.11)

(q̂, p̂) = �q,p = �q � �p. (4.12)

For the explicit calculation of the double Fourier transformation Eq. (4.6) we first consider

the q-integration

Z
d
2
q e

iq·R  (p,q) =

Z 1

0

dq q

Z 2⇡

0

d�q  (p, q,�q,p) e
iqR cos(�R,q) ⌘  p(p,R,�p,�R),

(4.13)

then, we consider the integration over p

Z
d
2
p  p(p,R,�p,�R) e

ip·r =

Z 1

0

dp p

Z 2⇡

0

d�p  p(p,R,�p,�R)e
ipr cos(�p). (4.14)

Finally, the Fourier transform of  (p, q, p̂ · q̂) can be calculated as

 (r, R,�R) =

Z 1

0

dp p

Z 2⇡

0

d�p p(p,R,�p,�R)e
ipr cos(�p), (4.15)

where

 p(p,R,�p,�R) ⌘
Z 1

0

dq q

Z 2⇡

0

d�q  (p, q,�q,p) e
iqR cos(�R,q). (4.16)
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4.3.1 Correlation functions and expectation values

To investigate the structure of the 3B system in configuration space, we studied the

pair correlation function. The correlation functions are given by

c(r) = 2⇡ r

Z 1

0

dRR

Z 2⇡

0

d�R 2(r, R,�R), (4.17)

c(R) = 2⇡R

Z 1

0

dr r

Z 2⇡

0

d�R 2(r, R,�R). (4.18)

The correlation function c(r) describes the probability to find two particles within a

relative distance r and c(R) describes the probability to find a particle at a distance R

with the respect to the center of mass of 2B system.

The expectation values of the Jacobi coordinates r and R can be calculated as

hrii = 2⇡

Z 1

0

dri ri

Z 1

0

dRi Ri

Z 2⇡

0

d�Ri ri 
2(ri, Ri,�Ri), (4.19)

hRii = 2⇡

Z 1

0

dri ri

Z 1

0

dRi Ri

Z 2⇡

0

d�Ri Ri 
2(ri, Ri,�Ri), (4.20)

the subscripts i indicated the spectator particle in the 3B system. The wave function in

configuration space is normalized as

2⇡

Z 1

0

driri

Z 1

0

dRiRi

Z 2⇡

0

d�Ri 
2(ri, Ri,�Ri) = 1. (4.21)

4.4 Trion calculation in configuration space: Yamaguchi po-

tential

The Yamaguchi potential, as discussed in section 3.3.2, characterized by its short-

range nature, simplifies calculations and provides a foundational understanding of the

trion system’s fundamental properties in two-dimensional materials. This interaction

model allows us to validate our numerical methods and formalism.

We start our study by considering a system of three identical particles with three

attractive interactions. Next, we focus on a more realistic scenario by considering a

system with two attractive and one repulsive Yamaguchi potential. This setup simulates

the behavior of a trion where two particles experience attraction while the third particle

experiences repulsion. The correlation functions for this 2A+R configuration provide

insights into the spatial distribution and clustering behavior of the trion’s constituent

particles.
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4.4.1 Three identical particles interacting with three attractive Yam-

aguchi potentials

Separable potential with Yamaguchi form factor, as defined in Eq. (3.85), is given as

hp|V |p0i = ��g(p)g(p0); g(p) =
1

(�2 + p2)m
. (4.22)

In Fig. 4.4, the correlation functions c(r) and c(R), calculated by Eqs. (4.17) and (4.18),

are displayed for this case.
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FIGURE 4.4 – The correlation functions c(r) and c(R) calculated with three attractive Yamaguchi po-
tentials. Our calculations are performed with 41 mesh points for angles (�R,�q) and 300 mesh points for
Jacobi coordinates r, R, and p, q. The calculations are done with ~c = mass = 1.

Since, in this section, we are studying a system consisting of three identical particles

and three attractive interactions, the ground state configuration that maximizes the prob-

ability of finding the particles is an equilateral triangle. In this context, the expectation

values hri and hRi represent the length of the triangle’s sides and its height, respectively.

The relationship between these two quantities in an equilateral triangle is given by

hRi/hri =
p
3/2 = 0.866. (4.23)

In Table 4.2, we present the results for the two- and three-body binding energies, along

with the expectation values of the Jacobi coordinates r, and R, calculated for Yamaguchi-

type potentials with a form factor parameter (� = 1) and power (m = 1). The potential

strength � is chosen to reproduce two-body binding energy E2 of �0.1. To assess the

accuracy of our numerical calculations, we introduce a quantity �, which quantifies the

deviation of the calculated ratio hRi/hri from the expected value for an equilateral triangle
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configuration, which is defined as

� =

 
hRi/hri �

p
3/2p

3/2

!
⇥ 100%. (4.24)

TABLE 4.2 – Two- and three-body binding energies and the Jacobi coordinates r and R expectation
values calculated for Yamaguchi-type potentials with form factor parameter � = 1 and power m = 1.
The potential strength � is obtained from the pole property of 2B t�matrix at two-body binding energy
E2. The potential strength � is chosen to reproduce two-body binding energy E2 of �0.1.

� E2 hr2Bi E3/E2 hri hRi hRi/hri �%

0.1838 �0.1000 2.596 4.58 1.902 1.649 0.867 0.028

The accuracy of 0.028% in our calculations, as presented in Table 4.2, demonstrates

the high reliability of our numerical results.

4.4.2 Three identical particles interact with two attractive and one re-

pulsive Yamaguchi potentials

To simulate a more realistic scenario than Sec. 4.4.1, we modify the system of three

identical particles by making one of the attractive interactions repulsive. In Fig. 4.5, we

present the correlation functions c(r) and c(R) for this 2A+R configuration.
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FIGURE 4.5 – The correlation functions c(r) and c(R) calculated with two attractive and one repulsive
Yamaguchi potentials. Our calculations are performed with N�q = 41, N�R = 61 , and 400 mesh points
for Jacobi coordinates r and R, and 300 mesh points for Jacobi coordinates p and q. The calculations
are done with ~c = mass = 1.

Since the studied 3B systems consist of two electrons and one hole, the most probable

configuration for the ground state is an isosceles triangle, where the two electrons occupy
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the base vertices and the hole occupies the apex vertex. In this case, we expect our

calculations to satisfy the Pythagorean theorem, as given by

� =
⌦
R

2
1

↵
+

1

4

⌦
r
2
1

↵
�
⌦
r
2
2

↵

=
⌦
R

2
1

↵
+

1

4

⌦
r
2
1

↵
�
⌦
r
2
3

↵
= 0. (4.25)

Table 4.3 presents the two- and three-body binding energies, along with the expectation

values of the Jacobi coordinates r and R, for a system with two attractive and one

repulsive Yamaguchi-type potential. The potential strength � is chosen to reproduce two-

body binding energy E2 of �0.1. The results are categorized based on the di↵erent 3B

chains: (ee, h) represents the configuration where the two electrons (e) are considered as

a pair, and the hole (h) is the third particle. Conversely, (eh, e) denotes the configuration

where an electron and hole form a pair, with the remaining electron as the third particle.

The expectation values hri and hRi provide insights into the spatial arrangement of

the particles within each 3B chain. In the (ee, h) chain, the larger value of hri compared

to hRi suggests that the two electrons are likely to be further apart than from the center of

mass of the electron pair. This can be attributed to the repulsive interaction between the

electrons. In contrast, for the (eh, e) chains, the values of hri and hRi are comparable,

indicating a more isosceles triangular configuration. This suggests that the attractive

interaction between the electron and hole in the (eh) pair dominates, leading to a closer

proximity.

To assess the accuracy of our calculations, we examine the quantity �, defined in Eq.

(4.25), which measures the satisfaction of the Pythagorean theorem. The results in Table

4.3 demonstrate that our calculations satisfy the Pythagorean theorem with an accuracy

of 0.104% for the (eh, e) chain and 0.190% for the (eh, e) chain. This high level of

accuracy indicates the reliability of our numerical results even when repulsive interactions

are present in the system.

TABLE 4.3 – Two- and three-body binding energies and the Jacobi coordinates r and R expectation
values calculated for Yamaguchi-type potentials (one repulsive and two attractive interaction) with form
factor parameter � = 1 and power m = 1. The potential strength � is obtained from the pole property
of 2B t�matrix at two-body binding energy E2. The calculations are done with ~c = mass = 1.

� E2 hr2Bi E3/E2

0.184 �0.100 2.596 1.203

3B chain hri hRi hRi/hri �%

(ee, h) 6.338 3.445 0.543 �
(eh, e) 4.676 4.805 1.028 0.104

(eh, e) 4.672 4.805 1.028 0.190
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4.4.3 Trion calculation in configuration space: RK potential

This section extends our analysis to investigate the trion within the MoS2 single layer

using the RK potential, as defined in Eq. (3.7), and given by

Veh(q) = � 1

4⇡2

✓
1

4⇡✏0

2⇡e2

q(1 + r0q)

◆
. (4.26)

We employ the same methodology, utilizing the Fourier transform, Eq. (4.15), to transi-

tion the wave function from momentum to configuration space.

Following Sec. 3.5, where we encountered challenges in numerical calculations due to

the long-range nature of the RK potential, we anticipate similar di�culties in configura-

tion space. This is because we are utilizing the Fourier transform of the momentum space

representation, which inherits the complexities associated with the long-range behavior of

the RK potential. To address this numerical challenge, we will employ the same regular-

ization techniques introduced in Sec. 3.5. These techniques involve screening the repulsive

electron-electron RK potential to facilitate accurate and reliable numerical solutions in

configuration space.

To systematically investigate the impact of screening on the trion binding energy and

wave function, we employ the screening model V (q) ! (1 � e
�l0q)Vee(q) with varying

screening lengths l0. This approach allows us to gradually increase the screening e↵ect

and observe its influence on the trion properties.

Tables 4.4 - 4.7 present the root-mean-square (RMS) values of the Jacobi coordinates

r and R for the RK potential with screened electron-electron interaction, calculated for

di↵erent screening parameters l0 = 70, 80, 90 and 100 Å. The last row of these tables

shows the linear extrapolation to infinite mesh points. The calculations are performed

as a function of the number of mesh points used for the Jacobi coordinates in configu-

ration space (Nr and NR) and momentum space (Np and Nq). The quantity �% in the

tables represents the percentage accuracy with which the calculated values satisfy the

Pythagorean theorem defined in Eq. (4.25).
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TABLE 4.4 – RMS values of the Jacobi coordinate r and R calculated for RK potentials with screened
ee interaction (l0 = 70) as a function of the number of mesh points for Jacobi coordinates r, R, p, and
q. The quantity �% indicates the percentage accuracy for the satisfaction of the Pythagorean theorem.

Nr = NR = Np = Nq = N 3B chain
p
hr2i

p
hR2i

p
hR2i/hr2i �%

(ee, h) 19.764 10.108 0.5115 �
200 (eh, e) 14.113 15.462 1.0956 0.3298

(eh, e) 14.113 15.461 1.0955 0.3275

(ee, h) 20.158 10.346 0.5132 �
250 (eh, e) 14.422 15.778 1.0940 0.3123

(eh, e) 14.422 15.777 1.0939 0.3061

(ee, h) 20.439 10.514 0.5144 �
300 (eh, e) 14.640 16.002 1.0931 0.3089

(eh, e) 14.640 16.001 1.0929 0.2980

(ee, h) 20.619 10.621 0.5151 �
350 (eh, e) 14.779 16.146 1.0925 0.3094

(eh, e) 14.780 16.1442 1.0923 0.2928

Linear extrapolation @ 1/N ! 0 (ee, h) 21.769 11.310 0.5195 �
Linear extrapolation @ 1/N ! 0 (eh, e) 15.675 17.066 1.0887 0.2779

TABLE 4.5 – Same as Tabel 4.4, but with l0 = 80.

Nr = NR = Np = Nq = N 3B chain
p
hr2i

p
hR2i

p
hR2i/hr2i �%

(ee, h) 20.039 10.276 0.5128 �
200 (eh, e) 14.330 15.684 1.0945 0.3298

(eh, e) 14.329 15.684 1.0945 0.3275

(ee, h) 20.389 10.512 0.5156 �
250 (eh, e) 14.621 15.966 1.0920 0.3123

(eh, e) 14.621 15.965 1.0919 0.3061

(ee, h) 20.696 10.702 0.5171 �
300 (eh, e) 14.863 16.213 1.0908 0.3089

(eh, e) 14.864 16.212 1.0906 0.2980

(ee, h) 20.892 10.820 0.5179 �
350 (eh, e) 15.016 16.370 1.0902 0.3094

(eh, e) 15.017 16.368 1.090 0.2928

Linear extrapolation @ 1/N ! 0 (ee, h) 22.025 11.548 0.5239 �
Linear extrapolation @ 1/N ! 0 (eh, e) 15.931 17.283 1.0849 0.3289
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TABLE 4.6 – Same as Tabel 4.4, but with l0 = 90.

Nr = NR = Np = Nq = N 3B chain
p
hr2i

p
hR2i

p
hR2i/hr2i �%

(ee, h) 20.353 10.463 0.5141 �
200 (eh, e) 14.573 15.935 1.0935 0.3146

(eh, e) 14.572 15.934 1.0935 0.3252

(ee, h) 20.773 10.734 0.5167 �
250 (eh, e) 14.914 16.273 1.0911 0.2961

(eh, e) 14.621 15.965 1.0919 0.3108

(ee, h) 20.888 10.867 0.5202 �
300 (eh, e) 15.047 16.375 1.0883 0.3248

(eh, e) 15.049 16.373 1.0880 0.3085

(ee, h) 21.094 10.989 0.5210 �
350 (eh, e) 15.206 16.540 1.0877 0.3301

(eh, e) 15.208 16.538 1.0874 0.3075

Linear extrapolation @ 1/N ! 0 (ee, h) 22.040 11.685 0.5302 �
Linear extrapolation @ 1/N ! 0 (eh, e) 16.032 17.317 1.0801 0.3714

TABLE 4.7 – Same as Tabel 4.4, but with l0 = 100.

Nr = NR = Np = Nq = N 3B chain
p

hr2i
p
hR2i

p
hR2i/hr2i �%

(ee, h) 20.492 10.575 0.5160 �
200 (eh, e) 14.701 16.052 1.0918 0.3136

(eh, e) 14.700 16.051 1.0919 0.3295

(ee, h) 21.017 10.895 0.5184 �
250 (eh, e) 15.114 16.471 1.0898 0.2960

(eh, e) 15.113 16.471 1.0898 0.3113

(ee, h) 20.976 10.966 0.5228 �
300 (eh, e) 15.149 16.454 1.0861 0.3312

(eh, e) 15.15 16.452 1.0859 0.3134

(ee, h) 21.214 11.115 0.5239 �
350 (eh, e) 15.338 16.646 1.0853 0.3426

(eh, e) 15.339 16.643 1.0850 0.3170

Linear extrapolation @ 1/N ! 0 (ee, h) 22.105 11.808 0.5342 �
Linear extrapolation @ 1/N ! 0 (eh, e) 16.142 17.383 1.0769 0.3924

The extrapolated results obtained from Tables 4.4 - 4.7 are summarized in Table 4.8.
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TABLE 4.8 – The summary of the RMS values of the Jacobi coordinates r and R calculated for RK
potentials with di↵erent values of the screening parameter l0 for ee interaction. The quantity�% indicates
the percentage accuracy for the satisfaction of the Pythagorean theorem.

p
hr2i

p
hR2i

l0 (ee,h) (eh,e) (ee,h) (eh,e) � %

70 21.769 15.675 11.310 17.066 0.27790

80 22.025 15.931 11.548 17.283 0.32890

90 22.040 16.032 11.685 17.317 0.37140

100 22.105 16.142 11.808 17.376 0.39240

The next step is to extrapolate the data reported in Table 4.8 to the system with no

screening parameter. The linear extrapolation of the trion RMS values, at the physical

point l�1
0 ! 0 Å, for the Jacobi coordinates r and R is shown in Fig. 4.6.
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FIGURE 4.6 – Linear extrapolation on
p

hr2i and
p

hR2i as a function of the inverse of the screening
parameter l�1

0 for the screening potential Vee(q) ! (1� e
�l0q)Vee(q).

Upon linear extrapolation to the physical limit of l�1
0 = 0 Å

�1
, the RMS values for

the Jacobi coordinates are found to be
p

hr2i = 22.876 Å and
p

hR2i = 12.966 Å for the

(ee, h) chain, and
p

hr2i = 17.226 Å and
p

hR2i = 18.096 Å for the (eh, e) chain. These

results are shown in Table 4.9.

TABLE 4.9 – Extrapolated RMS values of the Jacobi coordinates r and R for the RK potential in the
limit of 1/l0 ! 0.

p
hr2i

p
hR2i

(ee,h) (eh,e) (ee,h) (eh,e) � %

22.876 17.226 12.966 18.096 0.74470

The calculated inter-particle separations of ground-state trions are consistent with
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the result calculated by variational methods (CHANG; CHANG, 2021; BERKELBACH et al.,

2013b) and path-integral Monte Carlo method (KYLÄNPÄÄ; KOMSA, 2015).

Furthermore, by using the results presented in Table 4.9 the electron and hole RMS

distances to the center of mass of trion can be evaluated from hr2eei, hr2ehi and hR2
ee,hi,

respectively by (HIYAMA et al., 2022)

⌦
r
2
e

↵ 1
2 =

s
2 hr2ehi+ hr2eei

6
�

2
⌦
R

2
ee,h

↵

9
, (4.27)

⌦
r
2
h

↵ 1
2 = 2

⌦
R

2
ee,h

↵ 1
2

3
. (4.28)

Also, the average relative angles are given by

✓eh = cos�1

 
hr2hi+ hr2ei � hr2ehi

2
p
hr2hi hr2ei

!
, (4.29)

✓ee = cos�1

✓
1� 1

2

hr2eei
hr2ei

◆
, (4.30)

quantify the geometry of trion and satisfy the following relation

� = ✓ee + 2✓eh = 360�. (4.31)

Using Eqs. (4.28) - (4.31), the electron and hole RMS distances to the center of mass

of the trion, the associated angles, and the deviation from the Pythagorean theorem are

calculated and presented in Table 4.10.

TABLE 4.10 – The RMS distance of the electrons and hole to the trion’s center of mass and the associated
angles calculated with the extrapolated data at l�1

0 = 0, listed in Table (4.9).

hr2ei
1
2 hr2hi

1
2 ✓eh ✓ee

�
��360�

360�

�
⇥ 100 %

12.197 8.6440 110.33� 139.36� 0.0024

Figure 4.7 illustrates the geometrical structure of the trion calculated in configuration

space. It is worth mentioning that Fig 4.7 shows trion in the real scale in our calculation.
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FIGURE 4.7 – The geometrical structure of the calculated trion in configuration space.



5 Four-body System in Two-dimensional

Space

5.1 Overview

In this chapter, we explore the application of the Faddeev-Yakubovsky (FY) scheme

to the study of four-body (4B) systems in two-dimensional (2D) momentum space. The

FY is a robust mathematical framework used to solve the Schrödinger equation for few-

body systems, providing a detailed understanding of the interactions and bound states

within 4B systems (GIBSON; LEHMAN, 1979; FONSECA, 1984; KAMADA; GLÖCKLE, 1992;

GLÖCKLE; KAMADA, 1993; NOGGA et al., 2002; CIESIELSKI; CARBONELL, 1998).

Four-body systems in 2D are particularly relevant in condensed matter physics, where

they can be realized as biexcitons in semiconductors. A biexciton is a bound state of

two excitons, which are bound states of an electron and a hole. Biexcitons have been

observed in various 2D materials, such as transition metal dichalcogenides (TMDs) and

layered semiconductors. The formation of biexcitons is influenced by factors such as the

strength of the Coulomb interaction, the e↵ective masses of the charge carriers, and the

dielectric screening of the environment (KIDD et al., 2016b; SZYNISZEWSKI et al., 2017a;

ZHANG et al., 2014; ZHANG et al., 2015b; ZHANG et al., 2015a; KYLÄNPÄÄ; KOMSA, 2015;

VELIZHANIN; SAXENA, 2015). The calculations presented in this work have implications

for understanding biexcitons’ behavior in 2D materials and predicting the properties of

novel quantum phases in cold atom systems. The developed theoretical framework can be

extended to investigate more complex few-body configurations and to explore the e↵ects

of external fields and interactions with other quasiparticles.

The chapter begins with an introduction to the theoretical foundations of the FY

approach. We discuss how the FY equations extend the Faddeev equations, initially

formulated for three-body systems, to accommodate the complexities of four interacting

particles.

We then examine the specific formulation of the FY equations for a 4B system in

2D space. The chapter outlines the derivation of these equations, emphasizing the role
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of permutation symmetries and the decomposition of the wave function into components

corresponding to di↵erent partitions of the 4B system. This decomposition allows for

a systematic treatment of the inter-particle interactions and the identification of bound

states.

To illustrate the practical application of these techniques, we present numerical results

for a specific case involving identical particles interacting through a separable potential.

This example serves as a proof of concept, demonstrating the e↵ectiveness of the iterative

method in solving the FY equations and providing insights into the binding energies and

4B wave function.

While this chapter focuses on the theoretical and numerical aspects of the FY scheme

with separable potential, it is essential to note that these e↵orts are preparatory steps for

more detailed future studies. Specifically, the methodologies and results discussed here

are intended to facilitate comprehensive investigations into the physical problem of real

4B systems in 2D like biexcitons. Future research will build upon the foundational work

presented in this chapter to explore the interactions, stability, and potential applications

of biexcitons in condensed matter physics.

5.2 Faddeev-Yakubovsky equations for four identical parti-

cles bound states in two dimensions

The Schrödinger equation for the bound state of four identical particles interacting

with pairwise forces is given as

(H� + Vij) | i = E| i, (5.1)

where Vij is the two-body potential, which is given as

Vij = v12 + v13 + v14 + v23 + v24 + v34 =
X

i<j

vij. (5.2)

Equation (5.1) can be written in the integral form

| i = 1

E �H�
Vij| i ⌘ G�Vij| i, (5.3)
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where G0 =
1

E �H0
is the free propagator, and E is 4B binding energy. Then, we

introduce the so-called Faddeev component, | iji, and write the wave function as

| i =
X

i<j

| iji

= G0tij(| iki+ | ili+ | jki+ | jli+ | kli), (5.4)

where

| iji = G0Vij| i,
= G0Vij

X

k<l

| kli,

= G0Vij| iji+G0Vij

X

kl 6=ij

| kli. (5.5)

It is a straightforward way to use the Lippmann-Schwinger equation for the two-body

t�matrix

tij = Vij + VijG0tij, (5.6)

and write

| iji = G0 tij

X

kl 6=ij

| kli. (5.7)

Among various possibilities to decompose | iji into FY components, we choose the fol-

lowing one

| ijk,l;iji ⌘ G0tij(| iki+ | jki),
| ijl,k;iji ⌘ G0tij(| ili+ | jli),
| ij,kl;iji ⌘ G0tij| kli. (5.8)

The FY component | ijk,l;iji belongs to a 3+1 partition, where a single particle is bound

to a three-body subsystem. This notation indicates that the 2B subsystem ij interacts

with the third particle k and forms a three-body subsystem. This three-body subsystem,

ijk, then interacts with the fourth particle l and constructs the 4B system. On the other

hand, the FY component | ij,kl;iji is associated with a 2 + 2 partition, where two dimers

are bound. This notation illustrates a scenario where particles i and j form a two-body

subsystem while particles k and l form another. These two subsystems, ij and kl, then

interact.
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Following the notation defined in Eq. (5.8) we can write Eq. (5.7) as

| iji = | ijk,l;iji+ | ijl,k;iji+ | ij,kl;iji, (5.9)

this shows the FY components are indeed a decomposition of the Faddeev equation, and

every | iji component contains two 3+1 type chains and one 2+2 type chain. Therefore,

wave function | i contains twelve di↵erent 3 + 1 type chains and six 2 + 2 type chains.

As shown in Fig. 5.1, the 4B system, in the general case of not identical particles, has

eighteen FY components (HADIZADEH; BAYEGAN, 2007; NOGGA, 2003).

1234 )

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

3 + 1 !

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

123, 4 !

8
><

>:

12, 3, 4 ⌘  123,4;12

13, 2, 4 ⌘  123,4;13

23, 1, 4 ⌘  123,4;23

124, 3 !

8
><

>:

12, 4, 3 ⌘  124,3;12

14, 2, 3 ⌘  124,3;14

24, 1, 3 ⌘  124,3;24

134, 2 !

8
><

>:

13, 4, 2 ⌘  134,2;13

14, 3, 2 ⌘  134,2;14

34, 1, 2 ⌘  134,2;34

234, 1 !

8
><

>:

23, 4, 1 ⌘  234,1;23

24, 3, 1 ⌘  234,1;24

34, 2, 1 ⌘  234,1;34

2 + 2 !

8
>>>>>>>>><

>>>>>>>>>:

12, 34 !
(

12, 3, 4 ⌘  12,34;12

34, 1, 2 ⌘  12,34;34

13, 24 !
(

13, 2, 4 ⌘  13,24;13

24, 1, 3 ⌘  13,24;24

14, 23 !
(

14, 2, 3 ⌘  14,23;14

23, 1, 4 ⌘  14,23;23

FIGURE 5.1 – Eighteen di↵erent configurations of the 4B system.

If we consider identical particles (here bosons since we are omitting spin), the four-

body wave function | i has to be fully symmetric. Consequently, all twelve components

of the 3+1 type are identical in their functional form, and only the particles are permuted.

The same is true for the six components of 2 + 2 type. Therefore, we consider a system

where particle 1 and 2 are constructing the two-body subsystem and rewriting Eq. (5.9)
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for this system as

| 12i = G0t12(| 13i+ | 23i+ | 14i+ | 24i+ | 34i)
= G0t12(| 13i+ | 23i)
+ G0t12(| 14i+ | 24i)
+ G0t12| 34i
= | 123,4;12i+ | 124,3;12i+ | 12,34;12i, (5.10)

in the last line, we use Eq. (5.9). To simplify the notation, let’s use | 1i = | 123,4;12i
and | 2i = | 12,34;12i. We can write the second term of the Eq. (5.10) with permuting

between the particles 3 and 4, therefore

| 12i = | 1i+ P34| 1i+ | 2i, (5.11)

where P34 is the permutation operator between particles 3 and 4. In Ref. (HADIZADEH;

BAYEGAN, 2007), it is shown that from Eq. (5.8), we can obtain the following equations

| 1i = G0t12P [(1 + P34)| 1i+ | 2i],
| 2i = G0t12P̃ [(1 + P34)| 1i+ | 2i], (5.12)

where P and P̃ are the permutation operators and define as

P = P12P23 + P13P23,

P̃ = P13P24. (5.13)

The four-body wave function is the sum of all 18 Yakubovsky components

| i = | 12i+ | 13i+ | 14i+ | 23i+ | 24i+ | 34i
= | 12i+ P12P23| 12i+ P13P23| 12i+ P34| 13i+ P34| 23i+ P13P24| 12i
= | 12i+ (P12P23 + P13P23 + P14)| 1i+ P34(P12P23 + P13P23)| 1i+ P13P24| 1i
= | 12i+ P | 12i+ P34P | 12i+ P̃ | 12i
= (1 + P + P34P + P̃ )| 12i
= (1 + P + P34P + P̃ )[(1 + P34)| 1i+ | 2i], (5.14)

in the last line, we used Eq. (5.11). The 3 + 1 and 2 + 2 components can be written

separately in Eq. (5.14) and

| i = | 1i+ | 2i, (5.15)
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where

| 1i = (1 + P + P34P + P̃ )(1 + P34)| 1i
| 2i = (1 + P + P34P + P̃ )| 2i. (5.16)

The symmetry property of | 1i under exchange of particles 1 and 2, and | 2i under

separate exchanges of particles 1, 2 and 3, 4 guarantee that | i is totally symmetric.

5.2.1 Momentum space representation of Faddeev-Yakubovsky equa-

tions

To solve the coupled Eqs. (5.12), in 2D momentum space, we introduce standard

Jacobi momenta sets corresponding to both 3+1 (123, 4; 12) and 2+2 (12, 34; 12) chains.

We denote the Jacobi momenta for the 3 + 1 partition with ui and the 2 + 2 partition

with vi. These Jacobi momenta are defined as

u1 =
k1 � k2

2
,

u2 =
2

3
(k3 �

k1 + k2

2
),

u3 =
3

4
(k4 �

k1 + k2 + k3

3
),

v1 =
k1 � k2

2
,

v2 =
k1 + k2

2
� k3 + k4

2
,

v3 =
k3 � k4

2
.

(5.17)

As shown in Fig. 5.2, the momentum vector u1 represents the momentum of particles 1

and 2 in the center of the mass frame of the binary system (12). The momentum vector

u2 represents the momentum of particle 3 in the center of mass frame of the three-body

system (123), and the momentum vector u3 represents the momentum of particle 4 in

the center of mass frame of the four-body system (1234). The momentum vectors v1

and v3 represent the momentum of particles 1, 2, and 3, 4, respectively, in the center of

mass frame of the binary systems (12) and (34). The momentum vector v2 represents the

momentum of these two binary subsystems in their center of mass frame.
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1

2

3

4

~u1

~u2

~u3

3+1: (123,4)

1

2 3

4

~v1

~v3

~v2

2+2: (12,34)

FIGURE 5.2 – Definition of the four-body Jacobi momenta corresponding to the  1and  2 type frag-
mentations.

The 4B basis states corresponding to each Jacobi momenta set are defined by

|u1 u2 u3i,

|v1 v2 v3i, (5.18)

These two basis states are complete in the 4B Hilbert space

Z
D

2
A |A1 A2 A3ihA1 A2 A3| = 1, (5.19)

where Ai indicates each one of ui and vi vectors and D
2
A ⌘ d

2
A1 d

2
A2 d

2
A3. Also, they

are normalized according to

hA1 A2 A3|A0
1 A

0
2 A

0
3i = �

2(A1 �A
0
1) �

2(A2 �A
0
2) �

2(A2 �A
0
2). (5.20)

Now, we project Eqs. (5.12), into basis states introduced in Eq. (5.18)

hu1 u2 u3| 1i =

Z
D

2
u
00 hu1 u2 u3|G0tP (1 + P34)|u00

1 u
00
2 u

00
3ihu00

1 u
00
2 u

00
3| 1i

+

Z
D

2
v
0 hu1 u2 u3|G0tP |v0

1 v
0
2 v

0
3ihv0

1 v
0
2 v

0
3| 2i,

hv1 v2 v3| 2i =

Z
D

2
u
0 hv1 v2 v3|G0tP̃ (1 + P34)|u0

1 u
0
2 u

0
3ihu0

1 u
0
2 u

0
3| 1i

+

Z
D

2
v
0 hv1 v2 v3|G0tP̃ |v0

1 v
0
2 v

0
3ihv0

1 v
0
2 v

0
3| 2i.

It is convenient to insert again the completeness relations between permutation operators,

it results

hu1 u2 u3| 1i =

Z
D

2
u
0
Z

D
2
u
00 hu1 u2 u3|G0tP |u0

1 u
0
2 u

0
3i

⇥hu0
1 u

0
2 u

0
3|(1 + P34)|u00

1 u
00
2 u

00
3i hu00

1 u
00
2 u

00
3| 1i
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+

Z
D

2
u
0
Z

D
2
v
0 hu1 u2 u3|G0tP |u0

1 u
0
2 u

0
3i

⇥hu0
1 u

0
2 u

0
3|v0

1 v
0
2 v

0
3i hv0

1 v
0
2 v

0
3| 2i,

hv1 v2 v3| 2i =

Z
D

2
v
0
Z

D
2
u
0 hv1 v2 v3|G0tP̃ |v0

1 v
0
2 v

0
3i

⇥hv0
1 v

0
2 v

0
3|(1 + P34)|u0

1 u
0
2 u

0
3ihu0

1 u
0
2 u

0
3| 1i

+

Z
D

2
v
0 hv1 v2 v3|G0tP̃ |v0

1 v
0
2 v

0
3ihv0

1 v
0
2 v

0
3| 2i. (5.21)

For evaluating the coupled equations, Eq. (5.21), we need to evaluate the following matrix

elements

hu1 u2 u3|G0tP |u0
1 u

0
2 u

0
3i,

hv1 v2 v3|G0tP̃ |v0
1 v

0
2 v

0
3i,

hu0
1 u

0
2 u

0
3|(1 + P34)|u00

1 u
00
2 u

00
3i,

hv0
1 v

0
2 v

0
3|(1 + P34)|u0

1 u
0
2 u

0
3i. (5.22)

Details of evaluating the matrix elements of Eqs. (5.22) are presented in appendix H, and

the results are

hu1 u2 u3|G0tP |u0
1 u

0
2 u

0
3i =

�
2(u3 � u

0
3)

E � u2
1

m � 3u2
2

4m � 2u2
3

3m⇢
�
2(u2 + u

0
1 +

1

2
u
0
2) hu1|t(✏)|

1

2
u2 + u

0
2i

+�2(u2 � u
0
1 +

1

2
u
0
2) hu1|t(✏)|

�1

2
u2 � u

0
2i
�
, (5.23)

hv1 v2 v3|G0tP̃ |v0
1 v

0
2 v

0
3i =

�
2(v2 + v

0
2) �

2(v3 � v
0
1)

E � v21
m � v22

2m � v23
m

hv1|t(✏⇤)|v0
3i, (5.24)

hu0
1 u

0
2 u

0
3|(1 + P34)|u00

1 u
00
2 u

00
3i = �

2(u0
1 � u

00
1)

⇥
⇢

�
2(u0

2 � u
00
2) �

2(u0
3 � u

00
3)

+�2(u0
2 �

1

3
u
00
2 �

8

9
u
00
3) �

2(u0
3 � u

00
2 +

1

3
u
00
3)

�
, (5.25)

hv0
1 v

0
2 v

0
3|(1 + P34)|u0

1 u
0
2 u

0
3i = hv0

1 v
0
2 v

0
3|u0

1 u
0
2 u

0
3i+ 123,4;12hv0

1 v
0
2 v

0
3|u0

1 u
0
2 u

0
3i124,3;12

= �
2(u0

1 � v
0
1)

⇥
⇢

�
2(u0

2 +
2

3
v
0
2 �

2

3
v
0
3) �

2(u0
3 +

1

2
v
0
2 + v

0
3)

+�2(u0
2 +

2

3
v
0
2 +

2

3
v
0
3) �

2(u0
3 +

1

2
v
0
2 � v

0
3)

�
. (5.26)
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Inserting Eqs. (5.23), (5.24), (5.25) and (5.26) in Eq. (5.21), and eliminating the two-

dimensional integrals by the delta functions yields the following coupled integral equations

for the FY components

hu1 u2 u3| 1i =
1

E � u2
1

m � 3u2
2

4m � 2u2
3

3m

Z
d
2
u
0
2 hu1|ts(✏)|

1

2
u2 + u

0
2i

⇥
⇢

hu2 +
1

2
u
0
2, u

0
2, u3| 1i

+hu2 +
1

2
u
0
2,

1

3
u
0
2 +

8

9
u3, u

0
2 �

1

3
u3| 1i

+hu2 +
1

2
u
0
2, �u

0
2 �

2

3
u3,

1

2
u
0
2 �

2

3
u3| 2i

�
, (5.27)

hv1 v2 v3| 2i =
1
2

E � v21
m � v22

2m � v23
m

Z
d
2
v
0
3 hv1|ts(✏⇤)|v0

3i

⇥
⇢

2 hv3,
2

3
v2 +

2

3
v
0
3,

1

2
v2 � v

0
3| 1i+ hv3, �v2, v

0
3| 2i

�
(5.28)

Here ha|ts(")|bi generally represents the symmetrized two-body t�matrix, which is de-

fined as

ha|ts(")|bi = ha|t(")|bi+ ha|t(")|� bi. (5.29)

5.2.2 Momentum space representation of Faddeev-Yakubovsky equa-

tions with separable potential

As mentioned in chapter 2, the two body t�matrix for the separable potential has a

separable form and it is given by

t(p,p0
, ✏) =

1

2⇡
t(p, p0, ✏) =

1

2⇡
⌧(✏)g(p)g(p0), (5.30)

where the reduced scattering amplitude ⌧(✏), given by

⌧(✏) =


�
�1 �

Z
d
2
p

g
2(p)

✏� p2/m

��1

, (5.31)

and the potential strength � can be obtained by the pole property of the 2B t�matrix at

✏ = B2

�
�1 =

Z
d
2
p

g
2(p)

B2 � p2/m
. (5.32)

By using Eq. (5.30), we can simplify Eqs. (5.27) and (5.28) as

hu1 u2 u3| 1i = G0(u1, u2, u3)

Z
d
2
u
0
2

2

2⇡
⌧(✏)g(u1) g(

1

2
u2 + u

0
2)
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⇥
⇢

hu2 +
1

2
u
0
2, u

0
2, u3| 1i

+hu2 +
1

2
u
0
2,

1

3
u
0
2 +

8

9
u3, u

0
2 �

1

3
u3| 1i

+hu2 +
1

2
u
0
2, �u

0
2 �

2

3
u3,

1

2
u
0
2 �

2

3
u3| 2i

�
, (5.33)

hv1 v2 v3| 2i =
1

2
G0(v1, v2, v3)⇥

Z
d
2
v
0
3

2

2⇡
⌧(✏⇤) g(v1) g(v

0
3)

⇥
⇢
2 hv3,

2

3
v2 +

2

3
v
0
3,

1

2
v2 � v

0
3| 1i+ hv3, �v2, v

0
3| 2i

�
(5.34)

By taking the independent argument outside of the integrals, we can rewrite Eqs. (5.33)

and (5.34) as

hu1 u2 u3| 1i =
1

⇡
G0(u1, u2, u3)⌧(✏)g(u1)

Z
d
2
u
0
2 g(

1

2
u2 + u

0
2)

⇥
⇢

hu2 +
1

2
u
0
2, u

0
2, u3| 1i

+hu2 +
1

2
u
0
2,

1

3
u
0
2 +

8

9
u3, u

0
2 �

1

3
u3| 1i

+hu2 +
1

2
u
0
2, �u

0
2 �

2

3
u3,

1

2
u
0
2 �

2

3
u3| 2i

�
, (5.35)

hv1 v2 v3| 2i =
1

⇡
G0(v1, v2, v3)⌧(✏

⇤) g(v1)

Z
d
2
v
0
3 g(v0

3)

⇥
⇢
hv3,

2

3
v2 +

2

3
v
0
3,

1

2
v2 � v

0
3| 1i+

1

2
hv3, �v2, v

0
3| 2i

�
(5.36)

where there free propagator for 3 + 1 and 2 + 2 clusters is given as

G0(u1, u2, u3) =
1

E � u2
1

m � 3u2
2

4m � 2u2
3

3m

; G0(v1, v2, v3) =
1

E � v21
m � v22

2m � v23
m

. (5.37)

As is shown in Ref. (HADIZADEH et al., 2012), Eqs. (5.35) and (5.36) for a separable

potential can be written as within new definition of FY components as

 1(u1,u2,u3) = G0(u1, u2, u3)g(u1)K(u2,u3),

 2(v1,v2,v3) = G0(v1, v2, v3)g(v1)H(v2,v3). (5.38)

By using the new definition given in Eq. (5.38), we can rewrite Eqs. (5.35) and (5.36) as

K(u2,u3) =
1

⇡
⌧(✏)

Z
d
2
u
0
2 g(

1

2
u2 + u

0
2)g(u2 +

1

2
u
0
2)

⇥
⇢
G0(|u2 +

1

2
u
0
2|, u0

2, u3)K(u0
2,u3)

+G0(|u2 +
1

2
u
0
2|, |

1

3
u
0
2 +

8

9
u3|,u0

2 �
1

3
u3|) K(

1

3
u
0
2 +

8

9
u3,u

0
2 �

1

3
u3)

+G0(|u2 +
1

2
u
0
2|, |� u

0
2 �

2

3
u3|, |

1

2
u
0
2 �

2

3
u3|)
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⇥H(�u
0
2 �

2

3
u3,

1

2
u
0
2 �

2

3
u3)

�
, (5.39)

H(v2,v3) =
1

⇡
⌧(✏⇤)

Z
d
2
v
0
3 g(v0

3)g(v3)

⇥
⇢
G0(v3, |

2

3
v2 +

2

3
v
0
3|, |

1

2
v2 � v

0
3|)K(

2

3
v2 +

2

3
v
0
3,
1

2
v2 � v

0
3|)

+
1

2
G0(v3,�v2, v

0
3)H(�v2, v

0
3)

�
. (5.40)

To solve the two-dimensional integral Eqs. (5.39) and (5.40), as shown in Fig. 5.3, we

choose a coordinate system where u3 and v2 are parallel to the x�axis, and other vectors

are free in 2D space.

x
u3

y

u
0
2

u2

�
0
2�2

�220

x
v2

y

v
0
3

v3

�0
3�3

�330

FIGURE 5.3 – Coordinate system for the solution of integral equations (5.39) and (5.40).

And the angle variables are defined as

(û3, û2) = �2,

(û3, û
0
2) = �

0
2,

(û2, û
0
2) ⌘ �220 = �2 � �

0
2,

(v̂2, v̂3) = �3,

(v̂2, v̂
0
3) = �0

3,

(v̂3, v̂
0
3) ⌘ �330 = �0

3 � �0
3. (5.41)

By considering the coordinate system defined in Fig. 5.3 and the angle variable in Eq.

(5.41), we can write Eqs. (5.39) and (5.40) as

K(u2, u3,�2) =
1

⇡
⌧(✏)

Z 1

0

du
0
2 u

0
2

Z 2⇡

0

d�
0
2 g(⇡̃)g(⇡1)

⇥
⇢
G0(⇡1, u

0
2, u3)K(u0

2, u3,�
0
2)

+G0(⇡1, ⇡2, ⇡3)K(⇡2, ⇡3,�⇡2⇡3)
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+G0(⇡1, ⇡4, ⇡5)H(⇡4, ⇡5,�⇡4⇡5)

�
, (5.42)

H(v2, v3,�3) =
1

⇡
⌧(✏⇤)

Z 1

0

dv
0
3v

0
3

Z 2⇡

0

d�0
3 g(v03)g(v3)

⇥
⇢
G0(v3,⌃1,⌃2)K(⌃1,⌃2,�⌃1⌃2)

+
1

2
G0(v3, |� v2|, v03)H(|� v2|, v03, ⇡ � �0

3)

�
, (5.43)

where the shifted momentum arguments are defined as
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0
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0
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����
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���� =
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���� =
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�����u
0
2 �

2

3
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���� =
q
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4 )2 + (⇡Y
4 )

2,

⇡5 ⌘ ⇡5(u
0
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����
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���� =
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(⇡X
5 )2 + (⇡Y

5 )
2. (5.44)
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0
3,�

0
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����
2

3
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2
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0
3

���� =
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1 )
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0
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0
3) =

����
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0
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���� =
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2 )
2 + (⌃Y

2 )
2, (5.45)

where
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⇡
X
5 =

1

2
u
0
2 cos(�

0
2)�

2

3
u3,

⇡
Y
5 =

1

2
u
0
2 sin(�

0
2),

⌃X
1 = v2 + v

0
3 cos(�

0
3),

⌃Y
1 = v

0
3 sin(�

0
3),

⌃X
2 =

1

2
v2 � v

0
3 cos(�

0
3),

⌃Y
2 = �v

0
3 sin(�

0
3), (5.46)

�AB = (Â, B̂) = atan2(det, dot) 0 < �AB < 2⇡

�AB = (Â, B̂) = atan2(det, dot) 0 < �AB < 2⇡ (5.47)

with
8
<

:
det = A

X · BY � A
Y · BX

dot = A
X · BX + A

Y · BY
.

(5.48)

It is worth mentioning that the first term in the right-hand side of the equation Eq. (5.42)

is the three-boson bound-state equation.

Faddeev-Yakubovsky equations, Eqs. (5.42) and (5.43), in s�wave projection can be

written as

Z 2⇡

0

d�2 K(u2, u3,�2) =
1

⇡
⌧(✏)

Z
du

0
2 u

0
2

Z 2⇡

0

d�2

Z 2⇡

0

d�
0
2 g(⇡̃)g(⇡1)

⇥
⇢
G0(⇡1, u

0
2, u3)K(u0

2, u3,�
0
2)

+G0(⇡1, ⇡2, ⇡3)K(⇡2, ⇡3,�⇡2⇡3)

+G0(⇡1, ⇡4, ⇡5)H(⇡4, ⇡5,�⇡4⇡5)

�
(5.49)

Z 2⇡

0

d�3 H(v2, v3,�3) =
1

⇡
⌧(✏⇤)
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Z 2⇡

0
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Z 2⇡

0

d�0
3 g(v03)g(v3)

⇥
⇢
G0(v3,⌃1,⌃2)K(⌃1,⌃2,�⌃1⌃2)

+
1

2
G0(v3, |� v2|, v03)H(|� v2|, v03, ⇡ � �0

3)

�
. (5.50)

Since in s�wave, FY components have no angular dependency, we can simplify Eqs. (5.53)

and (5.54) as

K(u2, u3) = 2⌧(✏)

Z
du

0
2 u

0
2

1

2⇡

Z 2⇡

0

d�2
1

2⇡

Z 2⇡

0

d�
0
2 g(⇡̃)g(⇡1)

⇥
⇢
G0(⇡1, u

0
2, u3)K(u0

2, u3) +G0(⇡1, ⇡2, ⇡3)K(⇡2, ⇡3)
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+G0(⇡1, ⇡4, ⇡5)H(⇡4, ⇡5)

�
, (5.51)

H(v2, v3) = 2⌧(✏⇤)g(v3)

Z
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0
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0
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Z 2⇡

0
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1

2
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0
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0
3)

�
. (5.52)

Equations (5.51) and (5.52) can be more simplified for zero-range interactions, i.e., g(p) =

1, as

K(u2, u3) = 2⌧(✏)

Z 1

0

du
0
2 u

0
2

1

2⇡

Z 2⇡

0

d�2
1
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0
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0
2
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⇢
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0
2, u3)K(u0

2, u3) +G0(⇡1, ⇡2, ⇡3)K(⇡2, ⇡3)
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�
,� (5.53)

H(v2, v3) = 2⌧(✏⇤)

Z 1

0

dv
0
3v

0
3

⇥
⇢

1

2⇡

Z 2⇡

0

d�0
3 G0(v3,⌃1,⌃2)K(⌃1,⌃2) +

1

2
G0(v3, v2, v

0
3)H(v2, v

0
3)

�
. (5.54)

5.2.3 Numerical results

In this section, we show the numerical results of the 4B bound state in 2D by solving

Eqs. (5.51) and (5.52) for the separable potential with Yamaguchi form factor, g(p) =

(p2 + �
2)�m, and Gaussian form factor, g(p) = exp(� p

2

⇤2
)m.

In Table 5.1, we present 3B and 4B binding energy ratios for both ground (N = 0)

and excited (N = 1) states for di↵erent dimer binding energies. The results are with form

factor parameter � = ⇤ = 1, and di↵erent form factor powers m = 1, 2, 4. It should be

mentioned that in all calculations, ~c = 1.
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Yamaguchi Gaussian Yamaguchi Gaussian

E2 E
(0)
3 /E2 E

(1)
3 /E2 E

(0)
3 /E2 E

(1)
3 /E2 E

(0)
4 /E2 E

(1)
4 /E2 E

(0)
4 /E2 E

(1)
4 /E2

m = 1

10�7 16.47 1.269 16.47 1.269 193.2 24.98 193.1 24.96

10�6 16.27 1.265 16.27 1.265 179.7 24.15 179.1 24.10

10�5 15.53 1.250 15.50 1.250 144.1 21.42 142.7 21.30

10�4 13.55 1.208 13.45 1.205 91.51 16.49 89.31 16.27

10�3 10.22 1.130 10.03 1.126 47.16 11.07 44.98 10.77

10�2 6.830 1.050 6.582 1.044 22.42 6.958 20.76 6.633

m = 2

10�7 16.45 1.269 16.44 1.269 190.6 24.54 190.6 24.80

10�6 16.13 1.262 16.12 1.262 171.3 23.35 170.9 23.50

10�5 15.07 1.241 16.12 1.240 128.2 19.99 127.3 19.97

10�4 12.59 1.186 12.53 1.185 75.16 14.68 74.00 14.55

10�3 9.020 1.101 8.917 1.099 36.72 9.492 35.69 9.332

10�2 5.890 1.031 5.757 1.027 17.35 5.924 16.61 5.759

m = 4

10�7 16.38 1.265 16.38 1.265 186.8 24.30 186.8 24.56

10�6 15.92 1.258 15.91 1.258 160.5 22.55 160.3 22.69

10�5 14.47 1.228 14.46 1.228 111.4 18.46 110.9 18.46

10�4 11.53 1.162 11.49 1.161 60.84 12.93 60.26 12.86

10�3 7.910 1.075 7.852 1.073 28.69 8.136 28.22 8.055

10�2 5.124 1.018 5.059 1.016 13.80 5.137 13.48 5.074

TABLE 5.1 – three-body, E(N)
3 and four-body E

(N)
4 ground (N = 0) and excited (N = 1) state binding

energies, calculated for the Yamaguchi and Gaussian potentials with form factor parameter � = ⇤ = 1
and di↵erent form factor powers m = 1, 2, 4. The units are such that ~ = m = 1 and the form factor
parameter is taken as a unit.
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In Fig. 5.4, we show the calculated 4B binding energy as a function of 3B binding

energies ratios for both ground and first excited states for di↵erent form factor power

m = 1, 2, 4.
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FIGURE 5.4 – E4B/E2B as a function of E3B/E2B for ground (left panel) and first excited state (right
panel) for separable potential with Yamaguchi and Gaussian form factor with � = ⇤ = 1 and di↵erent
form factor power m.

It is worth mentioning that our numerical results for three and four-body ground and

excited state binding by solving Eq. (5.53) and Eq. (5.54), by considering a small dimer

binding energy of E2 = 10�15 are

E
(0)
3 /E2 = 16.52, E

(1)
3 /E2 = 1.270,

E
(0)
4 /E2 = 197.3, E

(1)
4 /E2 = 25.30, (5.55)

which are in excellent agreement with results of Ref. (PLATTER et al., 2004b) and the

ground state energy ratios of Ref. (BAZAK; PETROV, 2018).

In the left panel of Fig. 5.4, we observe that for strongly bound dimer, in our case

E2B = �103, and therefore very compact concerning the interaction range ⇤�1 = 1, the

ground state of the trimer and tetramer tends to be a collection of bosonic pair, namely

three and six, respectively, which explains the results found numerically. For the tetramer

excited state, right panel of Fig. 5.4, which is below the ground state trimer, one could

interpret that this excited state is the trimer added to a boson, which interacts with one

of the bosons of the trimer, which will add one unit of the pair energy, giving the value

of four for the ratio of the excited tetramer energy to the dimer one.

The plots in Fig. 5.4 show an independence on the separable form factor and smoothly

interpolates between the strongly bound dimer and the weakly bound one. It is worth

mentioning that for these separable potential models, the trimer energy encapsulates all

the relevant physical information. It suggests that the knowledge of the zero angular

momentum trimer and dimer energies is su�cient to fix the ground and excited tetramer
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energies, independent of the specific pairwise short-range interaction model. In the case of

the strongly bound dimer, the dimers are frozen in the trimer and tetramer bound states.

This is evident in the ratios of the energies of the tetramer and trimer to the dimer energy.

Furthermore, the dimer is in the classically allowed region. This observation supports a

simple interpretation of the values of the tetramer and trimer energies. On the other

hand, in the case of weakly bound dimers, the states extend mainly into the classically

forbidden region.



6 Summary and outlook

In this thesis, we have advanced the application of the Faddeev technique to investigate

three-body nuclear systems and two-dimensional (2D) semiconductor materials. We have

established a comprehensive understanding of the mass and wave functions of three-boson

bound states within a relativistic three-body framework in three-dimensional momentum

space. Our study has successfully demonstrated that the relativistic masses and wave

functions of three bosons become model-independent and avoid the Thomas collapse as

the range of interaction approaches zero.

Furthermore, we developed a fundamental approach to study trions in layered 2D

semiconductor materials. We solved the Faddeev equations in momentum space for trions

using both a short-range separable Yamaguchi potential and the Rytova-Keldysh (RK)

potential applied to the MoS2 layer. We employed two distinct regularization methods

to address the challenge posed by the repulsive electron-electron RK potential. This ap-

proach led to consistent results between the two methods for the MoS2 layer and revealed

a trion binding energy of �49.5(1) meV for an exciton energy of �753.3 meV. To inves-

tigate the trion in real space, we transformed the trion wave functions from momentum

to configuration space using Fourier transforms, which provided insights into the spatial

arrangement and correlations among the trion’s constituent particles. The accuracy of

the numerical methods was confirmed through geometrical properties, o↵ering a compre-

hensive understanding of trions’ binding properties and structures in 2D semiconductor

materials.

Additionally, the current study examined four-body (4B) systems in 2D momentum

space using the Faddeev-Yakubovsky (FY) scheme. We began with a theoretical founda-

tion of the FY approach and then derived the FY equations for a 4B system in 2D space.

Numerical results for a system of identical particles interacting through a separable po-

tential were presented, demonstrating the e↵ectiveness of the iterative method in solving

the FY equations.

In the following, we outline the ongoing research and future directions that extend

from the findings and methodologies presented in this thesis. These areas of exploration

build upon the foundation laid here and open doors to delve deeper into the intricate
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nature of few-body systems.

6.1 Calculating Efimov States in the Relativistic Regime

Continuing our investigation into the fascinating realm of few-body physics, our imme-

diate focus is directed towards the calculation of Efimov states in the relativistic regime.

While the Efimov e↵ect is primarily observed in low-energy scenarios, where relativistic

e↵ects are often negligible, probing its behavior under relativistic conditions holds the

promise of uncovering new facets. By integrating the principles of relativistic quantum

mechanics into our calculations, we aim to unravel how these deeply bound states respond

to relativistic corrections. This endeavor not only contributes to the theoretical under-

standing of Efimov states but also o↵ers a unique perspective on the interplay between

relativity and few-body systems.

6.2 Calculating Trion Binding Energy Using Separable Po-

tential

Another avenue of ongoing research involves the computation of trion binding energies

using a separable potential approach. By employing this technique, we anticipate gaining

deeper insights into the trion’s binding behavior within semiconducting layered materials.

This study not only enriches our understanding of trion properties but also o↵ers the

potential to refine the existing methodologies in the field of semiconductor physics. The

application of separable potentials provides a powerful tool to dissect the intricacies of

trion binding and to explore how di↵erent potential components contribute to the overall

trion stability.

In conclusion, the chapters of this thesis represent significant steps in our journey

through the intricate landscape of few-body systems. The ongoing and forthcoming work

described here not only extends the boundaries of our understanding but also underscores

the continuous nature of scientific exploration. As we delve further into these promising

areas of research, we remain committed to unraveling the mysteries of few-body systems

and their diverse manifestations in the realms of both theoretical and applied physics.
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GLÖCKLE, W. The quantum mechanical few-body problem. [S.l.]: Springer Science &
Business Media, 2012.
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POLYZOU, W.; ELSTER, C. Calculations of the triton binding energy with a lorentz
boosted nucleon-nucleon potential. In: EDP SCIENCES. EPJ Web of Conferences.
Proceedings [...]. [S.l.: s.n.], 2010. v. 3, p. 05025.

KAMADA, H.; NOGGA, A.; GLOECKLE, W.; HIYAMA, E.; KAMIMURA, M.;
VARGA, K.; SUZUKI, Y.; VIVIANI, M.; KIEVSKY, A.; ROSATI, S. et al. Benchmark
test calculation of a four-nucleon bound state. Physical Review C, APS, v. 64, n. 4, p.
044001, 2001.

KARMANOV, V.; CARBONELL, J. Critical stability of three-body relativistic bound
states with zero-range interaction. Few-Body Systems, Springer, v. 34, p. 85–90, 2004.

KARMANOV, V.; MARIS, P. Manifestation of three-body forces in three-body
bethe–salpeter and light-front equations. Few-Body Systems, Springer, v. 46, n. 2, p.
95–113, 2009.

KEISTER, B.; POLYZOU, W. Quantitative relativistic e↵ects in the three-nucleon
problem. Physical Review C, APS, v. 73, n. 1, p. 014005, 2006.



BIBLIOGRAPHY 139

KELDYSH, L. Pis’ ma zh. eksp. teor. fix. 29 (1979) 716[59] j. cibert, pm petro↵, gj
dolan, dj. werder, si. JETP Lett, v. 29, p. 658, 1979.

KEZERASHVILI, R. Y. Few-body systems in condensed matter physics. Few-Body
Systems, Springer, v. 60, n. 3, p. 52, 2019.

KEZERASHVILI, R. Y.; TSIKLAURI, S. M. Trion and biexciton in monolayer
transition metal dichalcogenides. Few-Body Systems, Springer, v. 58, p. 1–5, 2017.
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three-body scattering. Physical Review C, APS, v. 76, n. 1, p. 014010, 2007.
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H. The elastic pd scattering analyzing powers and spin correlation coe�cients at e lab
p= 135 and 200 mev: Three-nucleon force and relativistic e↵ects. The European
Physical Journal A-Hadrons and Nuclei, Springer, v. 29, n. 2, p. 141–146, 2006.

YAMAGUCHI, Y. Two-nucleon problem when the potential is nonlocal but separable. i.
Phys. Rev., American Physical Society, v. 95, p. 1628–1634, Sep 1954. Available at:
https://link.aps.org/doi/10.1103/PhysRev.95.1628.

YAMAGUCHI, Y. Two-nucleon problem when the potential is nonlocal but separable. i.
Phys. Rev., American Physical Society, v. 95, p. 1628–1634, Sep 1954. Available at:
https://link.aps.org/doi/10.1103/PhysRev.95.1628.

YAMASHITA, M. Dimensional e↵ects in efimov physics. Few-Body Systems, Springer,
v. 60, p. 1–10, 2019.

YAMASHITA, M.; BELLOTTI, F. F.; FREDERICO, T.; FEDOROV, D. V.; JENSEN,
A. S.; ZINNER, N. T. Weakly bound states of two-and three-boson systems in the
crossover from two to three dimensions. Journal of Physics B: Atomic, Molecular and
Optical Physics, IOP Publishing, v. 48, n. 2, p. 025302, 2014.

YAMASHITA, M. T.; FREDERICO, T.; TOMIO, L. Comment on “efimov states and
their fano<? format?> resonances in a neutron-rich nucleus”. Physical review letters,
APS, v. 99, n. 26, p. 269201, 2007.



BIBLIOGRAPHY 144

YAMASHITA, M. T.; FREDERICO, T.; TOMIO, L.; DELFINO, A. Weakly bound
atomic trimers in ultracold traps. Physical Review A, APS, v. 68, n. 3, p. 033406, 2003.

YAMASHITA, M. T.; ROSA, D.; SANDOVAL, J. Few-body techniques using
momentum space for bound and continuum states. Few-Body Systems, Springer, v. 59,
p. 1–11, 2018.

YANG, X.; GUO, S.; CHAN, F.; WONG, K.; CHING, W. Analytic solution of a
two-dimensional hydrogen atom. i. nonrelativistic theory. Physical Review A, APS,
v. 43, n. 3, p. 1186, 1991.

YDREFORS, E.; Alvarenga Nogueira, J.; GIGANTE, V.; FREDERICO, T.;
KARMANOV, V. Three-body bound states with zero-range interaction in the
bethe–salpeter approach. Physics Letters B, v. 770, p. 131–137, 2017. ISSN 0370-2693.
Available at: https://www.sciencedirect.com/science/article/pii/S037026931730309X.

YDREFORS, E.; NOGUEIRA, J.; GIGANTE, V.; FREDERICO, T.; KARMANOV, V.
Three-body bound states with zero-range interaction in the bethe-salpeter approach.
Physics Letters B, v. 770, 03 2017.

YDREFORS, E.; NOGUEIRA, J. A.; KARMANOV, V.; FREDERICO, T. Three-boson
bound states in minkowski space with contact interactions. Physical Review D, APS,
v. 101, n. 9, p. 096018, 2020.

YU, X.; SIVULA, K. Layered 2d semiconducting transition metal dichalcogenides for
solar energy conversion. Current Opinion in Electrochemistry, Elsevier, v. 2, n. 1, p.
97–103, 2017.

ZHANG, C.; GONG, C.; NIE, Y.; MIN, K.-A.; LIANG, C.; OH, Y. J.; ZHANG, H.;
WANG, W.; HONG, S.; COLOMBO, L. et al. Systematic study of electronic structure
and band alignment of monolayer transition metal dichalcogenides in van der waals
heterostructures. 2D Materials, IOP Publishing, v. 4, n. 1, p. 015026, 2016.

ZHANG, C.; WANG, H.; CHAN, W.; MANOLATOU, C.; RANA, F. Absorption of light
by excitons and trions in monolayers of metal dichalcogenide mo s 2: Experiments and
theory. Physical Review B, APS, v. 89, n. 20, p. 205436, 2014.

ZHANG, D. K.; KIDD, D. W.; VARGA, K. Excited biexcitons in transition metal
dichalcogenides. Nano letters, ACS Publications, v. 15, n. 10, p. 7002–7005, 2015.

ZHANG, Y.; LI, H.; WANG, H.; LIU, R.; ZHANG, S.-L.; QIU, Z.-J. On valence-band
splitting in layered mos2. ACS nano, ACS Publications, v. 9, n. 8, p. 8514–8519, 2015.



Appendix A - Convergencies of numerical

solutions introduced in chapter 2

Constructing the relativistic potential from the nonrelativistic one

Table A.1 shows the convergence of the numerical solution of Eq. (2.10) concerning

the iteration number. The calculations are performed using the separable Yamaguchi

potential with fixed points p = 0.05 fm�1 and p
0 = 0.10 fm�1. The potential strength �nr

is calculated using Eq. (2.7) with Ed = �2.225 MeV.

TABLE A.1 – The convergence of the matrix elements of the relativistic potential Vr(p, p0) (in units of
MeV fm3) as a function of iteration number calculated by Yamaguchi separable potential potential in
the fixed points (p = 0.05 fm�1, p0 = 0.10 fm�1). The value of the nonrelativistic Yamaguchi separable
potential Vnr(p, p0) is also given. Result are obtained with �nr calculated with Eq. (2.7) with Ed = �2.225
MeV.

Vnr(p, p0)

�6.29691170

Iteration # Vr(p, p0)

0 �6.29606511

1 �6.37714234

2 �6.37909915

3 �6.37914526

4 �6.37914634

5 �6.37914636

6 �6.37914636

Constructing the boosted potential from the nonrelativistic one

Table A.2 shows the convergence of the numerical solution of Eq. (2.16) concerning

the iteration number. The calculations are performed using the Yamaguchi separable

potential in fixed points (p = 0.05 fm�1, p
0 = 0.10 fm�1) for four di↵erent values of
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the Jacobi momentum k = 1, 5, and 10 fm�1. The nonrelativistic Yamaguchi separable

potential Vnr(p, p0) is also given. The potential strength �nr is calculated using Eq. (2.7)

with Ed = �2.225 MeV.

TABLE A.2 – The convergence of the matrix elements of the boosted potential Vk(p, p0) (in units of MeV
fm3) as a function of iteration number calculated by Yamaguchi separable potential in the fixed points
(p = 0.05 fm�1, p0 = 0.10 fm�1) and for four di↵erent values of the Jacobi momentum k = 1, 5 , 10 fm�1.
The value of the nonrelativistic Yamaguchi separable potential Vnr(p, p0) is also given. Result are obtained
with �nr calculated with Eq. (2.7) with Ed = �2.225 MeV.

Vnr(p, p0)

�6.29691170

Vk(p, p0)

Iteration # k = 1 fm�1
k = 5 fm�1

k = 10 fm�1

0 �6.26160053 �5.57378393 �4.34071747

1 �6.34145948 �5.63163590 �4.36941472

2 �6.34336891 �5.63276815 �4.36977645

3 �6.34341349 �5.63278983 �4.36978093

4 �6.34341452 �5.63279024 �4.36978098

5 �6.34341454 �5.63279024 �4.36978098

6 �6.34341454 �5.63279024 �4.36978098

Relativistic and nonrelativistic dimer binding energy

TABLE A.3 – Convergence of the nonrelativistic (Enr
d ) and relativistic (Erel

d ) dimer binding energies as
a function of the number of relative momentum mesh points Np for the Yamaguchi-I potential.

Np E
nr
d (MeV) E

r
d (MeV)

����
E

nr
d � E

r
d

E
nr
d

����⇥ 100%

30 �2.206342 �2.207639 0.058785

40 �2.207020 �2.208319 0.058858

50 �2.207089 �2.208388 0.058856

60 �2.207088 �2.208386 0.058810

70 �2.207088 �2.208386 0.058810

80 �2.207087 �2.208386 0.058856

90 �2.207087 �2.208386 0.058856

100 �2.207087 �2.208386 0.058856
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Table A.3 shows that the constructed relativistic potential accurately reproduces the

binding energy obtained from the Yamaguchi–I potential, with a relative percentage dif-

ference of approximately 0.06%. In Table A.4, we show the dimer relativistic and non-

relativistic binding energies for all Yamaguchi models using potential strengths listed in

Table 2.1.

TABLE A.4 – Nonrelativistic and relativistic dimer binding energies for all Yamaguchi models

Yamaguchi potential type E
nr
d (MeV) E

r
d (MeV)

����
E

nr
d � E

r
d

E
nr
d

����⇥ 100%

Y-I �2.207087 �2.208386 0.058856

Y-II �0.415328 �0.415373 0.010835

Y-III �0.412947 �0.412992 0.010896

Y-IV �0.331778 �0.331807 0.008741

TABLE A.5 – The boosted and nonrelativistic dimer binding energies in the unit of MeV. The nonrel-
ativistic potentials obtained from a separable boosted potential by solving Eq. (2.16), and the boosted
result are calculated directly from Eq. (2.29). The boosted potential strength �k is calculated by Eq.
(2.30) when the dimer rest energy is Md = �2.225 MeV.

Potential � (fm�1) k = 0 fm�1
k = 1 fm�1

k = 10 fm�1
k = 100 fm�1

k = 1000 fm�1

boosted 1 �2.225000 �2.225000 �2.225000 �2.225000 �2.225000

NR 1 �2.223682 �2.223682 �2.223682 �2.223682 �2.223682

boosted 10 �2.225000 �2.225000 �2.225000 �2.225000 �2.225000

NR 10 �2.223682 �2.223682 �2.223682 �2.223682 �2.223682

boosted 100 �2.225000 �2.225000 �2.225000 �2.225000 �2.225000

NR 100 �2.223682 �2.223682 �2.223682 �2.223682 �2.223682

boosted 1000 �2.224998 �2.224998 �2.224996 �2.225000 �2.225000

NR 1000 �2.223868 �2.223870 �2.223981 �2.223662 �2.223682

Three-body binding energy and expectation values

Table A.6 shows the convergency of results for the Yamaguchi-I potential, including

the expectation value of the total Hamiltonian hHi calculated with the wave function,

the nonrelativistic binding energies E3B
nr of the 3B system, and the corresponding relative

percentage di↵erences between them, as presented in the last column. The calculations

are performed by varying the number of mesh points for the Jacobi momenta p and q

(with Np = Nq) while keeping the number of mesh points for the angle between them

fixed at 40 by solving Eq. (2.60). The 3D Faddeev integral equation solution requires a

maximum of 6 iterations.
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TABLE A.6 – The expectation value of Hamiltonian hHi = hH0i + hV i and nonrelativistic 3B binding
Energy E

3B
nr , calculated for Yamaguchi-I potential, as a function of the number of mesh points for Jacobi

momenta p and q (Np = Nq).

Np = Nq hHi (MeV) E
3B
nr (MeV)

����
hHi � E

3B
nr

E3B
nr

����%100

30 �25.267 �25.483 0.8476

40 �25.406 �25.423 0.0669

50 �25.426 �25.413 0.0511

60 �25.403 �25.414 0.0433

70 �25.414 �25.414 0.0000

80 �25.407 �25.411 0.0157

90 �25.409 �25.410 0.0039

Similar to Table A.6, in Table A.7, we present the results using 60 mesh points for

Jacobi momenta p and q, and 40 mesh points for angle variables for di↵erent Yamaguchi

type potentials.

TABLE A.7 – The expectation value of Hamiltonian hHi = hH0i+hV i, nonrelativistic 3B binding Energy
E

3B
nr , and relative percentage di↵erence between them, calculated for four models of Yamaguchi potential.

Potential hHi(MeV) E
3B
nr (MeV)

����
hHi � E

3B
nr

E3B
nr

����%100

Y-I �25.403 �25.414 0.0433

Y-II �12.444 �12.455 0.0883

Y-III �9.2199 �9.2329 0.1408

Y-IV �8.499 �8.5121 0.1539



Appendix B - Analytic calculation of

potential strength

Starting from the Schrödinger equation for a bound state

H| i = E| i, (B.1)

where H is the Hamiltonian, define as H = H0 + V , the potential’s separable form, i.e.,

V = �|�ih�|, permits the expression

(H0 + �|�ih�|) | i = E| i. (B.2)

After applying the completeness relation and left-multiplying by hp|, we arrive at:

p
2

2m
 (p) + 4⇡�

Z 1

0

dp
0
g(p)g(p0) (p0) = E (p), (B.3)

simplifying further, we reach

 (p) = �
g(p)

E � p2

2m

Z 1

0

dp
0
g(p0) (p0), (B.4)

multiplying by g(p) and integrating over p, we find

Z 1

0

g(p) (p)dp = �

Z 1

0

dp
g
2(p)

E � p2

2m

Z 1

0

dp
0
g(p0) (p0) (B.5)

which can be simplified as
1

�
= 4⇡

Z 1

0

dp p
2 g

2(p)

Ed � p2

m

. (B.6)



Appendix C - Calculating the non-PW

dimer binding energy and wave function

Malfliet-Tjon potential

To examine the di↵erence between the angular-dependent equation (3.3) and the equa-

tion without angular dependence (3.4), we initially use the spin-averaged Yukawa-type

Malfliet-Tjon (MT) potential (MALFLIET; TJON, 1969). To discretize the continuous

momentum and angle variables, we use the Gauss-Legendre quadratures with a linear

mapping � = ⇡(1 + x) for angle variables and a hyperbolic mapping p =
1 + x

1� x
for the

magnitude of Jacobi momenta. The MT potential in the momentum space is given by

V (p,p0) =
1

2⇡

 
VRp

q2 + µ
2
R

+
VAp

q2 + µ
2
A

!
, q = p� p

0
. (C.1)

The derivation of the Eq. (C.1) can be found in Appendix D.

In the context of the MT potential, we introduce two distinct models in our 2D calcula-

tions, as indicated in Table C.1. Model-1 is constructed by considering both the repulsive

and attractive components of the potential, where VR and VA represent the strengths of

the repulsive and attractive parts, respectively, and µR and µA denote their corresponding

ranges. On the other hand, Model-2 is solely based on the attractive part of the potential.

TABLE C.1 – Parameters of two models of MT potential we use in 2D calculations.

MT-model VA (MeV fm) µA (fm�1) VR (MeV fm) µR (fm�1)

Model-1 �600.00 1.550 1438.7228 3.21

Model-2 �600.00 1.550 0 0

In Table C.2, we present the dimer binding energy calculated using Model-1 and Model-

2 of the MT potential as a function of number of mesh points for angle variable, with the

parameters listed in Table C.1. The results are shown for the angular-dependent dimer

obtained by solving Eq. (3.3) (top panel), and for the dimer without angular dependence

using Eq. (3.4) (bottom panel). The calculations are performed with 200 mesh points for
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2B relative momenta.

TABLE C.2 – Convergence of 2B binding energy as a function of mesh points for angle variables N�.
Upper panel is the result for angular-dependent dimer obtained by solving Eq. (3.3), bottom panel is the
results for dimer without angular dependence using Eq. (3.4).

N� Ed (MeV) E
(0)
d (MeV) E

(1)
d (MeV)

With angular dependency Eq. (3.3)

Model-1 Model-2

41 �6.245 �7874 �314.2

61 �6.245 �7834 �312.3

81 �6.245 �7821 �311.8

101 �6.245 �7815 �311.6

Without angular dependency Eq. (3.4)

101 �6.246 �7806 �312.4

Figure C.1 illustrates the angular dependence of the dimer wave function calculated

using Eq. (3.3) for both Model-1 and Model-2. In addition, 2D plots present the dimer

wave function calculated using Eq. (3.4). The calculations were performed using 200

mesh points for the 2B relative momenta and 101 mesh points for the angle variables.
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FIGURE C.1 – The dimer wave function was calculated using Model-1 and Model-2 of the MT potential,
both as a function of relative momentum for a fixed angle (left panel), and as a function of relative
momentum and the angle between them (right panel).

Coulomb potential

To further test the numerical accuracy of the solution of the angle-independent Eq.

(3.4), we adopt Coulomb-type potentials, which have an analytical solution given by

V (p,p0) =
�1

⇡|p� p0| . (C.2)

For particles with mass m = 1, it is well known that the exact bound state energy levels

are of the form (YANG et al., 1991; PARFITT; PORTNOI, 2002; OLSEN et al., 2016)

En = � 1

(n+ 1/2)2
, n = 0, 1, 2, . . . (C.3)
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where n is the principal quantum number. We use the potential given in Eq. (C.2) and

the results for 2B binding energies are presented in Table C.3.

TABLE C.3 – The analytical and numerical dimer binding energies calculated for Coulomb potential Eq.
(C.3). The calculations are performed with 500 mesh points for relative momenta and 40 mesh points for
angle variables. Results are obtained with ~c = mass = 1.

n Eexact Enum (Eexact�Enum
Eexact

)⇥ 100

0 �4.00000 �3.99928 0.01800

1 �0.44444 �0.44441 0.00700

2 �0.16000 �0.16017 0.10625

3 �0.08163 �0.08193 0.36751

From Table C.3, it is evident that the calculated results obtained using Eq. (3.4) are in

good agreement with the exact values provided in Eq. (C.3), which confirm the accuracy

of the numerical method for solving Eq. (3.4). In Fig. C.2 we show the dimer wave

functions  (n)(p) as a function of relative momentum p, corresponding to the numerical

binding energies listed in Table C.3.

10-6 10-4 10-2 100 102 104 106
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10-10

10-8
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) (p
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FIGURE C.2 – Dimer wave functions  (n)(p) as a function of relative momentum p for ground and excited
states.



Appendix D - Fourier transformation of

Malfliet-Tjon potential

To obtain the Malfliet-Tjon interaction in momentum space, we perform the following

Fourier transformation.

V (q) =
1

4⇡2

Z
d
2
re

�iq·r
V (r); q · r = q · rcos(�)

=
V0

4⇡2

Z 1

0

dr r

Z 2⇡

0

d�
e
�µr

r
e
�iqrcos(�)

=
V0

4⇡2

Z 1

0

dr e
�µr

Z 2⇡

0

d� e
�iqrcos(�);

Z 2⇡

0

d� e
�iqrcos(�) = 2⇡J0(qr)

=
V0

2⇡

Z 1

0

dre
�µr

J0(qr); qr = t ! dr =
dt

q

=
V0

2⇡

Z 1

0

dt

q
e

�µt
q J0(t);

Z 1

0

dte
�st

J0(t) =
1p

1 + s2

=
1

2⇡

V0p
q2 + µ2

. (D.1)



Appendix E - Exciton convergence with

RK potential

TABLE E.1 – The convergence of ground state exciton binding energies (meV) as a function of the number
of mesh points Np and N�. The calculations are performed for MoS2 substrate in s�wave. The last row
shows the quadratic extrapolation of exciton energy eigenvalues to an infinite number of mesh points.

N�

Np 11 41 61 81 121 161 201 301

300 �730.3 �772.8 �785.7 �795.0 �808.2 �817.7 �825.1 �838.7

400 �730.2 �765.5 �775.2 �782.1 �792.0 �799.1 �804.6 �814.7

500 �730.2 �761.8 �769.5 �775.1 �782.9 �788.6 �793.0 �801.0

600 �730.2 �759.7 �766.1 �770.7 �777.2 �781.9 �785.6 �792.2

700 �730.2 �758.4 �763.8 �767.8 �773.4 �777.4 �780.5 �786.2

800 �730.2 �757.6 �762.3 �765.7 �770.6 �774.1 �776.9 �781.8

900 �730.2 �757.0 �761.1 �764.2 �768.6 �771.7 �774.1 �778.5

1000 �730.2 �756.6 �760.3 �763.1 �767.0 �769.8 �771.9 �775.9

Quad. extrap.@ 1/Np ! 0 �730.29 �753.85 �753.36 �753.42 �753.52 �753.40 �753.27 �753.34

As one can see from Table E.1, the extrapolated value for the exciton binding energy

with N� = 61 is in good agreement with the expected value for the exciton binding

energy. This confirms that the convergence of the exciton binding energy is achieved with

N� = 61. To check the accuracy of our results, we have also calculated the expectation

values of the free Hamiltonian hH0i, the 2B potential hV i, and the total Hamiltonian hHi.

In Table E.2, we present the results for the expectation values and exciton binding

energy. The values are shown as a function of the number of mesh points for relative

momentum (Np), while keeping the number of mesh points for the angle variable fixed at

N� = 61. The last column of Table E.2 shows the relative percentage di↵erence between

the total Hamiltonian hHi and the binding energy E2B. The results exhibit a perfect

agreement, confirming the accuracy of our calculations.
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TABLE E.2 – Expectation values in meV of the 2B free Hamiltonian hH0i, pair potentials hV i, 2B
Hamiltonian hHi, and binding energy E2B in meV calculated for RK potentials. The calculations are
performed for MoS2 in s�wave channel (m = 0) with N� = 61.

Np E2B hH0i hV i hHi
����
(hHi � E2B)

E2B

����⇥ 100%

300 �785.68 221.85 �1007.53 �785.68 2.082 · 10�6

400 �775.19 219.24 �994.42 �775.18 1.457 · 10�7

500 �769.53 217.89 �987.42 �769.53 3.548 · 10�6

600 �766.09 217.10 �983.19 �766.09 1.330 · 10�4

700 �763.84 216.60 �980.43 �763.83 6.691 · 10�5

800 �762.27 216.267 �978.53 �762.27 2.478 · 10�4

900 �761.13 216.038 �977.17 �761.13 7.098 · 10�5

1000 �760.29 215.88 �976.17 �760.29 1.330 · 10�7

Quad. extrap.@ 1/Np ! 0 �753.36 214.64 �967.96 �753.32 5.300 · 10�3



Appendix F - PW and non PW relations

and calculations

F.1 Derivation of the relation between the PW and non

PW potential

In this appendix, we want to define a partial wave projection of the local potential

V (r). for this, we have

V (p,p0) =
1

(2⇡)2

Z
d
2
re

�ip·r
V (r)eip

0·r
. (F.1)

To numerically solve Eq. (F.1) in the most general case, we define a coordinate system

where the vectors p, p0, and r are freely oriented in the 2D plane, as depicted in Fig. F.1.

x

y

p
0

p

r

� �

↵

FIGURE F.1 – The coordinate system using fo fourier transformation

By expanding the exponential terms in the partial wave, using the equation (AD-

HIKARI, 1986)

e
ip·r = e

ipr cos(�) =
1X

m=0

✏mi
�m

cos(m�)Jm(pr) (F.2)
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we have

V (p,p0) =
1

(2⇡)2

Z
d
2
rV (r)

1X

m=0

✏mi
�m

cos(m�)Jm(pr)
1X

n=0

✏ni
n
cos(n�)Jn(p

0
r) (F.3)

where

✏m =

8
<

:
1 m = 0,

2 m 6= 0.
(F.4)

Eq. (F.3) can be written as

V (p,p0) =
1

(2⇡)2

Z 1

0

drr

Z 2⇡

0

d�

1X

m=0

1X

n=0

✏m✏ni
n�m

⇥ cos(m�) cos(n(↵� �))Jm(pr)V (r)Jn(p
0
r)

=
1

(2⇡)2

1X

m=0

1X

n=0

✏m✏ni
n�m

Z 1

0

drrJm(pr)V (r)Jn(p
0
r)

⇥
Z 2⇡

0

d� cos(m�) cos(n(↵� �)). (F.5)

Orthogonality of the cosine is given by

Z 2⇡

0

d� cos(m�) cos (n(↵� �)) = cos(n↵)�m�mn with �m =

8
<

:
2⇡ m = 0,

⇡ m 6= 0,
(F.6)

using this equation, Eq. (F.5) can be simplified as

V (p,p0) =
1

(2⇡)2

1X

m=0

1X

n=0

✏m✏ni
n�m�m�mn

Z 1

0

drrJm(pr)V (r)Jn(p
0
r)

=
1

(2⇡)2

1X

m=0

✏
2
m cos(m↵)�m

Z 1

0

drrJm(pr)V (r)Jn(p
0
r). (F.7)

From Eqs. (F.4) and (F.6) we have

�m ✏m = 2⇡, (F.8)

therefore Eq. (F.7) can be written as

V (p,p0) =
1

2⇡

1X

m=0

✏m cos(m↵)Vm(p, p
0) (F.9)

where

Vm(p,p
0) =

Z 1

0

drrJm(pr)V (r)Jn(p
0
r). (F.10)
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By multiplying both sides of Eq. (F.9) to cos(n�) and integral over the angle � we have

Z 2⇡

0

d�V (p,p0) cos(n�) =
1

2⇡

1X

m=0

✏mVm(p, p
0)

Z 2⇡

0

d� cos(m�) cos(n�), (F.11)

using orthogonality relation, Eq. (F.6), and Eq.(F.8) we can simplify Eq. (F.11) as

Z 2⇡

0

d�V (p,p0) cos(m�) = Vm(p, p
0), (F.12)

which is the relation between non-partial wave potential V (p,p0) and partial wave one

Vm(p, p0).

F.2 PW wave and non PW dimer binding energy and wave

function

To explore the PW relations in more detail, we consider the MT potential using both

Model-1 and Model-2 with parameters defined in Table C.1, as well as the Coulomb

potential defined in Appendix C.

Malfliet-Tjon potential

In Table. F.1 we present the dimer binding energies calculated with MT potential

with parameters listed in Table C.1, for di↵erent PW channels using Eq. (3.5).

TABLE F.1 – Dimer binding energies calculated with two models MT potential with parameters listed
in Table C.1, with m = 0 and m = 1 PW channels.

m Ed (MeV) E
(0)
d (MeV) E

(1)
d (MeV)

model-1 model-2

0 �6.246 �7806 �312.4

1 � �281.5 �

To study the structure of the non-PW and PW Malfliet-Tjon potentials calculated

using Eq. (3.6), we select the defined model-1 Malfliet-Tjon potential. The 2B potential

for both the non-PW and PW MT potentials is plotted in Fig. F.2 for summation over

di↵erent partial wave number Npw using Eq. (F.9). Furthermore, the relative di↵erence

between non-partial and constructed partial wave potential is illustrated in Fig. F.3. The

calculations are performed with 200 mesh points for 2B relative momenta and 101 mesh

points for angle variables.
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FIGURE F.2 – Angular and momentum dependencies of the diagonal matrix element of the non-PW (top
panel) and PW 2B potential obtained with MT model-1, with p = p

0 for di↵erent PW number Npw.

FIGURE F.3 – Angular and momentum dependencies of the relative di↵erence of 2B potentials obtained
from non-PW and the summation of PWs up to Npw calculated for MT model-1 potential.

To examine the momentum dependency of the PW potential, we plot the non-PW
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and PW potentials as functions of p and p
0 in Fig. F.4 where the angle � is fixed to 0.57

radian. Additionally, in Fig. F.5, we present the di↵erence between the non-PW and PW

potentials for fixed values of �. These figures provide a similar analysis to Figs. F.2 and

F.3 but focus on the momentum dependency of PW potential.

FIGURE F.4 – Similar to Fig. F.2, but for fixed angle variable as a function of p and p
0.

FIGURE F.5 – Similar to Fig. F.3, but for fixed angle variable as a function of p and p
0.
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From Figs. F.3 and F.5, it is evident that when Npw > N�/2, the structure of the PW

potential undergoes a significant change.

Coulomb potential

We also consider the Coulomb potential as defined in Eq. (C.2) to investigate the

partial wave LS equation, Eq. (3.5), in more detail. The corresponding PW binding

energies for various partial waves are presented in Table F.2 for ground and excited states.

These calculations are performed using 500 mesh points for relative momenta and 40 mesh

points for angle variables.

TABLE F.2 – Dimer binding energy calculated for di↵erent partial waves channel with coulomb potential
defined in Eq. (C.2).

m E
(0)
d E

(1)
d E

(2)
d E

(3)
d

0 �3.999 �0.444 �0.160 �0.082

1 �0.444 �0.160 �0.082 �
2 �0.160 �0.082 � �
3 �0.082 � � �

In Fig. F.6, we show the dimer wave function for di↵erent partial waves corresponding

to the results listed in Table. F.2.
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FIGURE F.6 – Dimer wave functions  (n)(p) as a function of relative momentum p, for di↵erent PW
channels corresponding to the numerical binding energies listed in Table F.2.



Appendix G - t�matrix in separable form

The free propagator G0(E) is given by

G0(E) ⌘ 1

E �H0
. (G.1)

Analogously, the resolvent (or Green’s function) is defined as

G(E) ⌘ 1

E �H
. (G.2)

Using the relation for Hamiltonian, i.e., H = V +H0 and Eqs. (G.1) and (G.2), we can

write

V = H �H0 = G
�1
0 (E)�G

�1(E). (G.3)

By multiplying Eq. (G.3) for G0 from the left and G from the right, we obtain

G = G0 +G0V G, (G.4)

Similarly, by multiplying Eq. (G.3) for G from the left and G0 from the right, we have

G = G0 +GV G0. (G.5)

Next, we can find the two-body transition matrix t(E) by inserting Eq. (G.5) into Eq.

(G.4), resulting in

G = G0 +G0[V + V GV ]G0 = G0 +G0tG0, (G.6)

where the t-matrix, t(E), is defined as

t = V + V GV. (G.7)

Inserting Eq. (G.6) into Eq. (G.4) we have

G = G0 +G0V (G0 +G0tG0) = G0 +G0[V + V G0t]G0. (G.8)
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By comparing Eq. (G.8) and Eq. (G.6) we have

t = V + V G0t, (G.9)

Alternatively one can obtain

t = V + tG0V. (G.10)

For one term separable potential

V = �|�ih�|, (G.11)

we can write Eq. (G.9) as

t = �|�ih�|+ �|�ih�|G0t. (G.12)

multiplying Eq. (G.12) by h�|G0 from the left

h�|G0(E)t(E) =
�h�|G0|�ih�|

1� �h�|G0(E)|�i (G.13)

Inserting Eq. (G.13) back in Eq. (G.12), we can write t-matrix in seperable form as

t(E) = |�i⌧(E)h�|, (G.14)

where

⌧(E) =

✓
1

��1 � h�|G0(E)|�i

◆
. (G.15)



Appendix H - Relations between di↵erent

fragmentation in the four-body system

In this appendix, we study the terms in the FY equation, Eq. (5.21).

Evaluating hu1 u2 u3|G0tP |u0
1 u

0
2 u

0
3i

For evaluating the first term, Eq. (5.22), we should insert again, a completeness

relation between the two-body t�matrix operator and permutation operator P as:

hu1 u2 u3|G0tP |u0
1 u

0
2 u

0
3i =

1

E � u2
1

m � 3u2
2

4m � 2u2
3

3m

⇥
Z

D
2
u
00hu1 u2 u3|t|u00

1 u
00
2 u

00
3ihu00

1 u
00
2 u

00
3|P |u0

1 u
0
2 u

0
3i (H.1)

Where the matrix elements of two-body t�matrix and permutation operator P are eval-

uated separately as:

hu1 u2 u3|t|u00
1 u

00
2 u

00
3i = �

2(u2 � u
00
2) �

2(u3 � u
00
3) hu1|t(✏)|u00

1i

✏ = E � 3u2
2

4m
� 2u2

3

3m
(H.2)

hu00
1 u

00
2 u

00
3|P |u0

1 u
0
2 u

0
3i = 123,4;12hu00

1 u
00
2 u

00
3|u0

1 u
0
2 u

0
3i312,4;31 +123,4;12 hu00

1 u
00
2 u

00
3|u0

1 u
0
2 u

0
3i231,4;23

= �
2(u00

3 � u
0
3)

⇢
�
2(u00

1 +
1

2
u
0
1 �

3

4
u
0
2) �

2(u00
2 + u

0
1 +

1

2
u
0
2)

+ �
2(u00

1 +
1

2
u
0
1 +

3

4
u
0
2) �

2(u00
2 � u

0
1 +

1

2
u
0
2)

�
(H.3)

For evaluation the matrix elements of permutation operator P we have used the relation

between Jacobi momenta in di↵erent two-body subsystems (312, 4; 12), (231, 4; 12) and

(123, 4; 12).
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2

3

1

4

u
⇤
1

u
⇤
2

u
⇤
3

(231,4)

u
⇤
1 =

k2 � k3

2
⌘ �1

2
u1 �

3

4
u2,

u
⇤
2 =

2

3
(k1 �

k2 + k3

2
) ⌘ u1 �

1

2
u2,

u
⇤
3 =

3

4
(k4 �

k1 + k2 + k3

3
) ⌘ u3, (H.4)

3

1

2

4

u
⇤⇤
1

u
⇤⇤
2

u
⇤⇤
3

(312,4)

u
⇤⇤
1 =

k3 � k1

2
⌘ �1

2
u1 +

3

4
u2,

u
⇤⇤
2 =

2

3
(k2 �

k1 + k3

2
) ⌘ �u1 �

1

2
u2,

u
⇤⇤
3 =

3

4
(k4 �

k1 + k2 + k3

3
) ⌘ u3, (H.5)

Inserting Eqs. (H.2) and (H.3) into Eq. (H.1) leads to:

hu1 u2 u3|G0tP |u0
1 u

0
2 u

0
3i =

�
2(u3 � u

0
3)

E � u2
1

m � 3u2
2

4m � 2u2
3

3m

{�2(u2 + u
0
1 +

1

2
u
0
2) hu1|t(✏)|

1

2
u2 + u

0
2i

+�2(u2 � u
0
1 +

1

2
u
0
2) hu1|t(✏)|

�1

2
u2 � u

0
2i} (H.6)

Evaluating hv1 v2 v3|G0tP̃ |v0
1 v

0
2 v

0
3i

Representation of the second term, Eq. (5.22), follows the similar steps:

hv1 v2 v3|G0tP̃ |v0
1 v

0
2 v

0
3i =

1

E � v21
m � v22

2m � v23
m

Z
D

2
v
00hv1 v2 v3|t|v00

1 v
00
2 v

00
3i

⇥ hv00
1 v

00
2 v

00
3 |P̃ |v0

1 v
0
2 v

0
3i (H.7)

The matrix elements of two-body t�matrix and permutation operator P̃ are evaluated

as:

hv1 v2 v3|t|v00
1 v

00
2 v

00
3i = �

2(v2 � v
00
2) �

2(v3 � v
00
3) hv1|t(✏⇤)|v00

1i; ✏
⇤ = E � v

2
2

2m
� v

2
3

m
(H.8)

hv00
1 v

00
2 v

00
3 |P̃ |v0

1 v
0
2 v

0
3i = 12,34;12hv00

1 v
00
2 v

00
3 |v0

1 v
0
2 v

0
3i34,12;34

= �
2(v00

1 � v
0
3) �

2(v00
2 + v

0
2) �

2(v00
3 � v

0
1) (H.9)

For evaluation the matrix elements of permutation operator P̃ we have used the rela-

tion between Jacobi momenta in di↵erent two-body subsystems (12, 34; 12), (34, 12; 34).
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3

4 1

2

v
⇤
1

v
⇤
3

v
⇤
2

(34,12)

v
⇤
1 =

k3 � k1

2
⌘ v3
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k3 + k4

2
� k1 � k2

2
⌘ �v2,

v
⇤
3 =

k1 � k2

2
⌘ v1. (H.10)

Inserting Eqs. (H.8) and (H.9) into Eq. (H.7) leads to:

hv1 v2 v3|G0tP̃ |v0
1 v

0
2 v

0
3i =

�
2(v2 + v

0
2) �

2(v3 � v
0
1)

E � v21
m � v22

2m � v23
m

hv1|t(✏⇤)|v0
3i (H.11)

Evaluating hu0
1 u

0
2 u

0
3|(1 + P34)|u00

1 u
00
2 u

00
3i

For evaluation the third term, Eq. (5.22), we should use the relation between Jacobi

momenta in di↵erent chains (123, 4; 12) and (124, 3; 12).

1
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4

3

u
0
1

u
0
2

u
0
3

(124,3)

u
0
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u3,(H.12)

—-
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Evaluating hv0
1 v

0
2 v

0
3|(1 + P34)|u0

1 u
0
2 u

0
3i

Finally, for evaluation of the fourth term, Eq. (5.22), we should use the relation

between Jacobi momenta in two naturally di↵erent chains (123, 4; 12) and (12, 34; 12).
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1. CLASSIFICAÇÃO/TIPO 2. DATA 3. DOCUMENTO Nº 4. Nº DE PÁGINAS
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