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BIBLIOGRAPHIC REFERENCE

MARZOLA, Isabella Aparecida. Confinement and dark matter effects in an
equiparticle quark model.. 2024. 79f. Thesis of Doctor of Science – Instituto
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Abstract

In order to study quark matter under extreme conditions, such as high density and zero

temperature, that are usually associated with compact objects (e.g strange stars), we

explore two different scenarios throughout this work. In the first scenario, we introduce

the traced Polyakov loop into a thermodynamic consistent model with density-dependent

quark masses (m′
u,d,s). This implementation is responsible for the effects of quark confine-

ment/deconfinement phase transition. By applying realistic values for the current quark

masses, provided by the Particle Data Group, and by replacing the constants of the inter-

acting part of m′
u,d,s by functions of Φ, the symmetric and stellar quark matter systems

become capable of achieving a first-order phase transition structure, with Φ being the or-

der parameter. This improved model shows that the system goes towards a similar chiral

symmetry restoration behavior due to the emergence of a deconfined phase. Following,

we perform an analysis concerning the mass-radius profiles of quark stars, where we can

verify that the results found for the new model satisfy recent astrophysical observational

data coming from the LIGO and Virgo Collaboration, and the NICER mission concerning

the millisecond pulsars PSR J0030+0451, and PSR J0740+6620. The second scenario

concerns the study of strange stars admixed with dark matter. Here we restrict our-

selves into describing the ”visible”matter through the previously mentioned quark model,

but without the Polyakov loop. The dark sector is introduced into the system by two

approaches: the fermionic and the bosonic one, where we investigate the predictions of

both models. For the fermionic model, a spin 1/2 dark particle is considered, and for the

bosonic model, the particle is a dark scalar meson. In both models, there is the presence

of a repulsive vector interaction, which is responsible for avoiding the collapse of the star

due to the lack of degeneracy pressure in the bosonic model. Our findings for the two new

systems suggest that stable strange star configurations are consistent with data from PSR

J0030+0451, PSR J0740+6620, NICER, and HESS J1731-347. Additionally, we identify

stars with dark matter halo configurations for lower dark particle masses.
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1 Introduction

Since the dawn of mankind, humans have always been curious about the environment

that surrounds them, especially about the nature of matter since the atom’s idea emer-

gence (the smallest, solid, and indivisible portion of matter). Even nowadays with the

consensus of the hadrons atomic structure being composed of quarks and gluons, we con-

tinue to look for explanations about the microscopic world. Today, the Standard Model

of Particles (SM) (Tanabashi et al. 2018), which is based on the formalism of Quan-

tum Field Theory (QFT), is the one responsible for describing the most basic building

blocks of all known matter. One of the areas covered by the model concerns strongly

interacting particles and is called ”Quantum Chromodynamics” (QCD) (Weinberg 1973;

Fritzsch et al. 1973; Huang 1992).

1.1 The Quantum Chromodynamics (QCD)

Around the 60’s and 70’s, the American physicists Gell-man and Zweig made a

proposal that hadrons would be constituted by even more elementary particles, the

quarks (Griffiths 2008), in which these particles could arise in different types called “fla-

vors” carrying one of the three “color charge”, namely, red, green or blue (in analogy to

the primary colors of light, although there is no connection with color in the usual sense).

These color charges are the basis of quantum chromodynamics and play the same role as

electric charges in quantum electrodynamics (QED).

In QED, the quantum field theory of the electromagnetic force studies the electromag-

netic interactions of charged particles by assuming that the photons, best known as the

“particles” of light, are the mediators of these interactions. Here, there is only one type of

electric charge, which can be positive or negative (anti-charge). By analogy, in QCD, the

mediators of the strong interaction between quarks are the gluons. In Fig. 1.1, the color

charge of the quarks is displayed. Particles that are color neutral, such as baryons, are

built by three quarks each of a different color, and a mixture of the three colors produces

a neutral particle. Mesons, on the other hand, are composed only of two quarks (in pairs

of quarks and anti-quarks, their antimatter counterparts), and they are also color-neutral,
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but through the neutralization of the anti-color of the anti-quark with the color of the

quark.

FIGURE 1.1 – Diagram of quark composition of baryons. The RGB colors, i.e., red (R), green (G), and
blue (B) are associated with quarks, while cyan, magenta, and yellow are associated with anti-quarks.
The white region is associated with a baryon.

The gluons can also carry color charges, and for all interactions between the three colors

of quarks to exist there must be eight gluons. In QED, the photon carriers are electrically

neutral and the force is described as the inverse square of the distance between the charges,

which means that it becomes weaker when the distance increases. For QCD, that is not the

case, because the nature of the strong force is observed at short ranges, being limited by a

distance about 10−15 m (shorter than the diameter of an atomic nucleus), where apparently

quarks cannot be separated, since they have been observed only inside hadrons (baryons

and mesons). If one tries to knock a quark out of a proton, for example, the sufficient

energy invested will only create a quark-antiquark pair, i.e. a meson. This happens

because gluons can interact among themselves through their color charges, preventing the

charges involved from being pulled apart. However, if the distance between quarks is very

short, the asymptotic freedom can be achieved (ultraviolet region, at high energy). This

means that when quarks get very close together, the force that contains them inside the

hadrons becomes weaker, which would allow them to move freely. This is the definition

of asymptotic freedom.

In QCD, matter composed of quarks and gluons is studied at extreme conditions,

such as temperature and density, where it is known that there are, at least, two different

states of matter: the hadronic phase where quarks and gluons are confined inside hadrons,

and the quark-gluon plasma (QGP) where they are free. Inside compact stars, such as
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neutron stars (or quark or hybrid stars), it is believed that QGP can be found, as well

it may have existed in the early universe moments after the Big Bang, with temperature

and density being extremely high. In terrestrial experiments, such as the Relativistic

Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) (Harris e Müller 1996;

Emerick et al. 2012; Gunion e Vogt 1997; Singh 1993; Braun-Munzinger e Stachel 2007),

propitious conditions are created to investigate the QGP. In Fig. 1.2 we can identify the

different regions studied by QCD: hadrons concern the region at ordinary temperature

and density; and by increasing the temperature to the critical point or the density until

quarks are very close to each other that hadrons will dissolve themselves into quarks,

we have the regions concerning quark matter. Here, different phase transitions happen,

according to temperature and density conditions. There is, in fact, a wide discussion

about the location of the critical point, known as the connection between a first-order

phase transition of quark matter (as the one that occurs with water) and the crossover,

the phase transition where there is no discontinuities. Besides, there is the region where

matter can exhibit superconductivity (Alford et al. 2008), the one where it may present

the quarkyonic phase (Mclerran 2009), and the region where neutron stars are found: at

zero temperature and high densities.

FIGURE 1.2 – Schematic phase diagram of QCD (Menezes 2016).

As we can see, it is not simple to study QCD and its particularities. In fact, infinite

nuclear matter, finite nuclei, or even stellar matter should be described directly by this

theory. However, due to the non-perturbative nature of the QCD infrared region, this
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is not a trivial task to be implemented. Because of that, different approaches are used,

such as the lattice calculations (Kogut 1979; Kogut 1983). The Lattice Quantum Chro-

modynamics (LQCD) is based on numerical simulations done usually by Monte Carlo

methods to investigate the lower region of the QCD phase diagram, at the high temper-

ature and low chemical potential (or density) regime. Although being a powerful tool,

LQCD has some problems, such as the need to extrapolate their results to grid spac-

ing tending to zero, the “signal problem” (Muroya et al. 2003), where standard Monte

Carlo methods may become inefficient or even infeasible due to difficulties in sampling

configurations because of certain systems where the action becomes complex. Another

problem faced by this method involves the algorithm, in which auto-correlation and con-

vergence challenges appear due to the sample gauge configurations (Duane et al. 1987);

and there is also the need of increasingly advanced machines to perform the calcula-

tions, which are very costly from a computational point of view. Another method to

study the infrared region is the application of the Dyson-Schwinger equations, which

are an infinite set of coupled integral equations for Green’s functions built in Euclidean

space (Roberts e Williams 1994; Alkofer e Smekal 2001). Solving them requires truncat-

ing this infinite series in a way that captures the essential physics while remaining com-

putationally feasible.

Therefore, it is clear that these methods are not capable of describing QCD com-

pletely, which leads us to look for other methods, such as the effective/ phenomeno-

logical quark/gluons models, developed in order to present as many similarities with

QCD as possible. In that direction, many models were constructed and improved

over the years as, for instance, the Massachusetts Institute of Technology (MIT) bag

model (Chodos et al. 1974; Chodos et al. 1974), in which the building block particles are

submitted to a confining potential mathematically represented by a “bag” constant. Or,

as another example, the Nambu-Jona-Lasino (NJL) model (Nambu e Jona-Lasinio 1961;

Nambu e Jona-Lasinio 1961), where the dynamical breaking of chiral symmetry is taken

into account. In addition to these, some effective models consider the quark masses

as dependent on density and/or temperature (PlÜmer et al. 1984; Fowler et al. 1981).

However, it was verified a very relevant issue in these kinds of models: the lack of

thermodynamic consistency. Basically, this violation emerges because the pressure at

a density corresponding to the minimum of the energy per baryon is not vanishing as

it should be. In order to fix this problem, the equiparticle (EQP) model was proposed

in 2014 (Xia et al. 2014), in which the authors establish a suitable expression for the

density-dependent equivalent quark masses, along with the direct connection between the

quark Fermi momentum, at T = 0 regime, with an effective chemical potential instead of

the real one. The concept introduced for the effective chemical potential is also useful at

finite temperature regimes because it allows us to explore regimes where we can not use

direct simulation due to the already explained sign problem, and it also provides a means
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to validate theoretical models against numerical simulations and experimental data.

With the solution for the thermodynamic inconsistency, the EQP model was applied

to describe strange stars. These stars would be composed of strange matter, with the

concept being proposed by Bodmer (Bodmer 1971), where the strange matter would be

the true ground state of matter instead of hadrons, claiming that quark matter could

have lower energy per baryon than a normal nucleus (56Fe). The strange stars’ existence

itself was proposed by Witten (Witten 1984), who considered stable strange matter as

composed of quarks up, down, and strange. Combined, the authors’ idea was called the

Bodmer-Witten conjecture/hypothesis, and a final experimental/observational probe is

not available yet.

In order to test many effective hadronic (LourenÇo et al. 2019; LourenÇo et al. 2020;

Souza et al. 2020) and quark models, such as the EQP model, new astrophysical data

that have arisen over the last years are been used. Among them, there is the

recent detection, made by the LIGO and Virgo Collaboration (Abbott et al. 2017;

Abbott et al. 2018; Abbott et al. 2020), of gravitational waves coming from a bi-

nary system with its respective electromagnetic counterparts also detected by

many observatories (Abbott et al. 2017), the measurements from the x-ray tele-

scope installed on the International Space Station, named as the NASA’s Neu-

tron star Interior Composition Explorer (NICER), regarding the massive mil-

lisecond pulsars PSR J0030+0451 (Riley et al. 2019; Miller et al. 2019) and PSR

J0740+6620 (Riley et al. 2021; Miller et al. 2021), and also the measurement of

HESS J1731-347 (DOROSHENKO et al. 2022), which is the first simultaneous measure-

ment of mass, radius, and surface temperature of a compact star.

The compact stars present in our universe have been an interest to scientists be-

cause of their complex structure and dynamics which many areas of physics can be

applied, such as quantum field theory, general relativity, thermodynamics, etc. Since

these objects are extremely dense, the usual matter conditions are pushed to their ex-

tremes, which makes them environments full of possibilities where other enigmatic in-

gredients can be added to the system. Along with strange quark matter, dark matter

(DM) (Bertone e Hooper 2018; Arbey e Mahmoudi 2021; Salucci 2019) is a possible can-

didate to maybe coexist inside compact objects. The existence of DM is supported by

different evidence across various fields of astrophysics and cosmology. Among them, there

is the analysis of galactic rotation curves, where the rotational velocities of stars and

gas in galaxies remain constant at large distances from the galactic center, rather than

decreasing as expected from visible matter alone (Rubin Vera C. 1970). There is also

the use of gravitational lensing methods (Koopmans e Treu 2003; Massey et al. 2010)

that are responsible, for example, for mapping the distribution of mass in galaxy

clusters and large-scale structures (Clowe et al. 2006). These methods have found
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that around 80% to 90% of the galaxy cluster masses are composed of DM, and

only the remaining 10% to 20% are due to ordinary matter. The studies of cos-

mic microwave background (CMB) provide a snapshot of the early universe with

measurements of its temperature fluctuations (anisotropies) that also suggest the

presence of DM (Adams et al. 1998; Pierpaoli 2004; Padmanabhan e Finkbeiner 2005;

Aghanim et al. 2016; Hu e Dodelson 2002; Hu et al. 1997). Therefore, according to the-

oretical models, observations, and data from various cosmic surveys, it is a consensus that

our current universe is composed of 68% of dark energy, 27% of dark matter, and only 5%

of ordinary matter. In compact stars, theories are saying that the star’s gravitational pull

can capture DM particles, which allows dark matter to accumulate inside the star (due to

the high density and gravitational fields (Kouvaris e Tinyakov 2010)). The DM particles

could also annihilate their antiparticles producing high-energy particles, since they are

the same. This process could potentially change the luminosity and surface temperature

of the star by providing additional heat (Bertone et al. 2005).

In this work, we study strong interaction systems at high-density regions and zero

temperature regimes through two different approaches. The first one consists of imple-

menting the confinement/deconfinement phase transition phenomenology (PTP) into the

EQP model. For this part of the thesis, we divide the chapters as follows: in the next chap-

ter we introduce the original EQP model, where the thermodynamic consistency criterion

is established, and the equations of state and quark masses are developed through its for-

malism. Also, the symmetric and stellar matter systems that will be further investigated

are presented, and the criterion for the strange matter to be stable is discussed in more de-

tail with the model stability windows being presented by using recent values of the current

quark masses provided by the Particle Data Group (PDG) (Workman e Others 2022).

In sequence, in chapter 3, we introduce the improved EQP model, called

Polyakov equiparticle model (PEQP), where we follow the procedure performed

in (Mattos et al. 2019; Mattos et al. 2021; Mattos et al. 2021) and describe the PTP

through the inclusion of the traced Polyakov loop (Φ) by making the free parameters

of the model suitable functions of Φ. We show that the new improved model exhibits

a first-order phase transition structure, and we discuss the results when we consider the

symmetric matter case. This structure is also observed for the stellar matter case, in which

we present and discuss its particularities as well as the results found when applying the

new model for describing strange stars, where they are confronted by the aforementioned

astrophysical observational data.

For the second part of the thesis, in chapter 4, we focus on exploring the possibility of

strange stars’ existence admixed with two different types of dark matter, namely, fermionic

and bosonic. The procedure done here follows the two-fluid approach, which considers

only gravitational interactions between DM and quark matter. Therefore, in this chapter
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we will develop the formalism concerning each type of DM mentioned, with its equations

of state being presented, as well as the dark mass equations, and in the sequence, the

results and analysis are investigated and discussed. Finally, we present our final remarks

about the work and some future perspectives.



2 Equiparticle model

For a long time, the fundamental state of matter was considered to be composed

only of quarks up and down, which is the case for the matter found here on Earth.

However, in the seventies, a new proposition stated that the absolutely stable funda-

mental state of matter would be strange quark matter (SQM), which is the matter com-

posed of quarks up, down, and strange. That is called the Bodmer-Witten Hypothesis

(Bodmer 1971; Witten 1984) and, since then, it has been responsible for the development

of different kinds of phenomenological effective models concerning SQM. One of these

models was chosen for our study, the equiparticle model (EQP). This model was proposed

in 2014 (Xia et al. 2014) as a model that is density and/or temperature-dependent to

investigate strange quark matter assuming that the quark masses are density-dependent,

as well as to correct the lack of thermodynamic consistency found in other models of the

same type (Fowler et al. 1981; Zhang e Su 2002). This chapter presents the EQP model

in its original form with all its features: thermodynamic consistency, equations of state

(EOS), quark masses scaling, and the stability window for symmetric and stellar matter.

2.1 Thermodynamic consistency

Let’s begin by assuming a thermodynamic system of interacting particles given by

quarks up (u), down (d), and strange (s), and the leptons represented by electrons (e). The

thermodynamic consistency formalism of this system begins by deriving the fundamental

equation of standard thermodynamics, which leads to

dE = TdS − PdV +
∑
i

µidNi, (2.1)

where E = internal energy, T = temperature, S = entropy, P = pressure, V = volume, µi

= chemical potential of particle i, and N i = i particle number. This equation represents

the three different ways in which it is possible to increase the system’s internal energy,

i.e., heat transfer, doing work, and particle exchange. Once you add heat to a system, the

heat energy contributes to the random motion and vibration of the particles within the
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system, raising its overall internal energy. The same will happen when work is done: if

you change the volume of the system or if you apply force the energy will be transferred

into the system. In the case of particle exchange, it is possible to increase the system’s

internal energy through endothermic reactions, where the energy from the surroundings

is absorbed into the system. Following, we apply Eq. (2.1) with the one for the Helmholtz

free energy (F = E − TS), and obtain

dF = −SdT − PdV +
∑
i

µidNi. (2.2)

Because we are dealing with an isotropic system with homogeneously distributed par-

ticles, we define the following quantities: the energy density as ϵ = E/V , the free energy

density as F = F/V , the entropy density as S = S/V , and the particle number density

as ρi = Ni/V . From the free energy density and the particle number density we have that

F = FV → dF = dFV + FdV, (2.3)

Ni = ρiV → dNi = dρiV + ρidV, (2.4)

which is substituted into Eq. (2.2), resulting in

dFV + FdV = −SdT − PdV +
∑
i

µi(dρiV + ρidV )

dF = −SdT +

(
−P − F +

∑
i

µiρi

)
dV

V
+
∑
i

µidρi. (2.5)

Since the system is considered to be infinitely large, it becomes size-independent,

assuming an asymptotic behavior. Therefore, the correspondent term of volume can be

disregarded, leaving us with

dF = −SdT +
∑
i

µidρi. (2.6)

If we choose the energy density F as the characteristic quantity, the Eq. (2.5) indicates

that T , {ρi}, and V will be the independent state variables of the system, and once known,

they allow us to obtain all the other thermodynamic quantities:

S =
dF

dT

∣∣∣∣
{ρk}

, µi =
dF

dρi

∣∣∣∣
T, {ρk ̸=i}

, and P = −F +
∑
i

µiρi. (2.7)

From the entropy density (S) and the chemical potential (µi) equations, we can cal-
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culate

dS

dρi
=

d

dρi

(
dF

dT

)∣∣∣∣
{ρk}

and
dµi

dT
=

d

dT

(
dF

dρi

)∣∣∣∣
T, {ρk ̸=i}

, (2.8)

and because the second-order mixed partial derivatives of an arbitrary analytic function

are equal to each other, that is, ∂2F/∂ρi∂T = ∂2F/∂T∂ρi, we can obtain the Cauchy

conditions for the right-hand side of Eq. (2.6) to be integrable, which are given by

∆i ≡
dS

dρi

∣∣∣∣
T, {ρk ̸=i}

− dµi

dT

∣∣∣∣
T, {ρk}

= 0, (2.9)

∆ij ≡
dµi

dρj

∣∣∣∣
T, {ρk ̸=j}

− dµj

dρi

∣∣∣∣
T, {ρk ̸=i}

= 0, (i, j = u, d, s). (2.10)

As we can see, Eq. (2.6) is a temperature and density-dependent function. Defining

ρb = ρ ≡
∑

q ρq/3 (q = u, d, s) and ν = µu + µd + µs, for a given temperature T, we

have that dF/dρ =
∑

i µidρi/dρ. By applying the conditions of chemical equilibrium

(µu+µe = µd = µs), charge neutrality (2ρu/3−ρd/3−ρs/3−ρe = 0), and baryon number

conservation (ρu/3 + ρd/3 + ρs/3 = ρb), we obtain

ρ
dF

dρ
= ρ

[∑
q

µq
dρq
dρ

+ µe
dρe
dρ

]
= ρ

[
ν
∑
q

dρq
dρ

− µe
dρu
dρ

+ µe
dρe
dρ

]
=

= ρ

[
ν
d

dρ

(∑
q

ρq

)
− µe

d

dρ
(ρu − ρe)

]
= ρ(3ν − µe) =

= ν
∑
q

ρq − µeρ =
∑
q

µqρq + µeρu − µeρ =

=
∑
i

µiρi − µeρe + µeρu − µeρ =
∑
i

µiρi + µe(ρu − ρe − ρ) =

=
∑
i

µiρi, (i = u, d, s, e). (2.11)

Applying this result in the pressure expression in Eq. (2.7), we obtain P = −F +

ρdF/dρ. By considering that

ρ2
d

dρ

(
F

ρ

)
T

= ρ2
[
1

ρ

dF

dρ
− F

ρ2

]
= ρ

dF

dρ
− F, (2.12)
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we finally have that

P = ρ2
d

dρ

(
F

ρ

)
T

⇒ ∆ = P − ρ2
d

dρ

(
F

ρ

)
T

= 0. (2.13)

This equation tells us that the pressure must be zero at the free-energy minimum (or

at the energy minimum at zero temperature), which is coherent with the thermodynamics

since the free-energy minimum is a mechanically stable state of a system. Although

Eq. (2.13) was found considering stellar matter (by the inclusion of the electrons), it is

possible to obtain the same result when considering symmetric matter (where there is

only quarks u, d, s) by applying the chemical equilibrium condition (µu = µd = µs = µ)

into dF/dρ =
∑

i µidρi/dρ, resulting in

ρ
dF

dρ
= ρµ

d

dρ

(∑
q

ρq

)
= 3ρµ =

∑
i

µiρi, (i = u, d, s, e). (2.14)

Therefore, this formalism allows us to establish that Eqs. (2.9), (2.10) and (2.13) are

the necessary criteria for strange matter to be thermodynamically consistent for symmetric

and stellar cases.

2.2 Equations of state

From the free energy density equation we can start the formalism to obtain the equa-

tions of state (EOS) of the system:

F = Ω0(T, {µ∗
i }, {mi}) +

∑
i

µ∗
i ρi, (2.15)

where Ω0 = effective thermodynamic potential, T = temperature, µ∗
i = effective chemical

potential with i (i = u, d, s quarks), mi = effective particles mass and ρi = particle number

density. The effective thermodynamic potential is introduced as the quantity that allows

the heat and particle exchange in the system this is why it is a function that depends

on the temperature, the effective chemical potentials, and the effective particle masses.

Concerning the effective chemical potentials µ∗
i , they are chosen as effective to guarantee

the thermodynamic consistency of the system. For the effective particle masses, it is

considered effective because it will have a dependency on the baryonic density:

mi = mi0 +mI , (2.16)
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with mi0 = the current mass of the i quark and mI is the density dependent quantity.

This equation will be fully derived in the next section since it does not influence the

formalism of the EOS. The characteristic function will be the free energy density, with

the temperature T , the volume V , and the particle number density ρi as its independent

state variables. The effective chemical potential will be connected to the independent

state variables through the particle number density as follows:

ρi = − ∂

∂µ∗
i

Ω0(T, {µ∗
i }, {mi}). (2.17)

The other thermodynamic quantities of interest can be obtained from the derivative

of Eq. (2.15):

dF = dΩ0 +
∑
i

ρidµ
∗
i +

∑
i

µ∗
i dρi, (2.18)

where,

dΩ0 =
∂Ω0

∂T
dT +

∑
i

∂Ω0

∂µ∗
i

dµ∗
i +

∑
i

∂Ω0

∂mi

dmi, (2.19)

with

dmi =
∂mi

∂T
dT +

∑
j

∂mi

∂ρj
dρj. (2.20)

Applying Eqs. (2.17), (2.19) and (2.20) in Eq. (2.18), we have that

dF =

(
∂Ω0

∂T
+
∑
i

∂Ω0

∂mi

∂mi

∂T

)
dT +

∑
i

(
µ∗
i +

∑
j

∂Ω0

∂mj

∂mj

∂ρi

)
dρi. (2.21)

Comparing Eq. (2.21) with Eq. (2.6), to ensure that the free-energy density of the

model will be in agreement with the one derived in the previous section, we result with

the entropy density as being

S = −

(
∂Ω0

∂T
+
∑
i

∂Ω0

∂mi

∂mi

∂T

)
, (2.22)

and the real chemical potential results to be connected with the effective one as

µi = µ∗
i +

∑
j

∂Ω0

∂mj

∂mj

∂ρi
. (2.23)
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For the equations of state, the pressure is calculated by the substitution of Eqs. (2.15)

and (2.23) in Eq. (2.7):

P = −Ω0 +
∑
i

(µi − µ∗
i )ρi = −Ω0 +

∑
i,j

∂Ω0

∂mj

ρi
∂mj

∂ρi
, (2.24)

and the energy density through the substitution of Eqs. (2.15) and (2.22) in ϵ = F + TS,

so

ϵ = Ω0 −
∑
i

µ∗
i

∂Ω0

∂µ∗
i

− T

(
∂Ω0

∂T
+
∑
i

∂Ω0

∂mi

∂mi

∂T

)
. (2.25)

The real grand-canonical thermodynamic potential density is obtained from

Ω = F −
∑
i

µiρi = Ω0 −
∑
i,j

∂Ω0

∂mj

ρi
∂mj

∂ρi
,

with Ω0, given by (Peng et al. 2000), as being

Ω0 = −
∑
i

γT

2π2

∫ ∞

0

ln[1 + e−β(
√

k2+m2
i−µ∗

i )]k2dk, (2.26)

where γ = degeneracy factor (for quarks it is given by spin and color of the quarks

involved, in this case is 2spin x 3color = 6), and β = inverse of the temperature, since

kb = 1 in natural units. For zero temperature, we obtain that:

Ω0 = −
∑
i

γ

24π2

[
µ∗
i kFi

(
k2
Fi −

3

2
m2

i

)
+

3

2
m4

i ln
µ∗
i + kFi

mi

]
, (2.27)

with kFi = particle i Fermi momentum, which is given by kFi =
√

µ∗2
i −m2

i . Moreover,

Ω can be obtained from the pressure as Ω = −P .

Although the model is already constructed to be thermodynamically consistent, we can

verify its consistency from other two different viewpoints. The first one consists of taking

the derivative of −Ω0 concerning µ
∗
i and comparing it to the particle number density given

by ρi = γk3
Fi/6π

2, in which the results are equivalent. This relation is consistent with

the ones from fundamental thermodynamics, in other words, ρi = −∂Ω0/∂µ
∗
i = ∂P/∂µi.

The second verification concerns the energy density, where we simply apply the following

relation:

P + ϵ = µρ ⇒
∑
i

Pi +
∑
i

ϵi =
∑
i

µiρi (i = u, d, s, e). (2.28)
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2.3 Quark masses

The quark masses can be obtained by considering a density-dependent part on it,

written as

mi = mi0 +mI , (2.29)

where mi0 (i = u, d, s) is the current mass of the i quark and mI is its density dependent

part. In order to determine mI , as done in (Peng 2005), a Laurent series expansion is

applied to the Fermi momentum, and the leading term is taken in both directions:

mI =
a−1

kF
+ a1kF , with kF =

(
1

Nf

∑
i

k3
Fi

)1/3

, (2.30)

where kFi = Fermi momentum of the quark i and Nf = quark flavor number. The Fermi

momentum is connected to the baryonic density by

ρb =
∑
i

ρi
3

=

(∑
i

1

3π2
k3
Fi

)
.
Nf

Nf

=
Nf

3π2
k3
F . ⇒ kF =

(
3π2

Nf

ρb

)1/3

. (2.31)

At the limit where the Fermi momentum (or the density) approaches to zero, at lower

density, the first term of Eq. (2.30) dominates. This implies that mI = a−1/kF = D/ρ
1/3
b ,

where D is known as a lower energy free parameter (Wen et al. 2005). At higher density,

the second term of Eq. (2.30) dominates, so mI = a1kF = Cρ
1/3
B , where C is a second

dimensionless adjustable parameter. Therefore, the final equation for the quark masses is

given by

mi = mi0 +
D

ρ
1/3
b

+ Cρ
1/3
b . (2.32)

2.4 Symmetric and stellar matter

Since we are studying symmetric and stellar matter in this work, we need to describe

its properties properly. Beginning with symmetric matter we must address here that we

are establishing that only the chemical potentials of the quarks are equal, meaning that

their masses and densities are different from each other, which is a different description

when discussing hadronic models. Therefore, symmetric matter must obey the following

condition: µu = µd = µs ≡ µ. Because the model is carefully treated to be thermodynamic

consistent, it introduces the concept of effective chemical potentials, so an equivalent

relationship for them is given by µ∗
u = µ∗

d = µ∗
s. This can be found by checking Eq. (2.23)

where the real and effective chemical potentials only differ by the latter term, which is
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the same for every quark flavor.

For the EOS itself, Eqs. (2.24) and (2.25) must be written in terms of the zero-

temperature regime. The pressure is given by

P = −Ω0 + ρb
∂mI

∂ρb

∂Ω0

∂mI

, (2.33)

with its derivatives being

∂mI

∂ρb
= − D

3ρ
4/3
b

+
C

3ρ
2/3
b

, and
∂Ω0

∂mI

=
∑
i

γmi

4π2

[
µ∗
i kFi −m2

i ln
µ∗
i + kFi

mi

]
, (2.34)

and for the energy density, we have

ϵ = Ω0 −
∑
i

µ∗
i

∂Ω0

∂µ∗
i

. (2.35)

Alternatively, the energy density can be evaluated from the sum of the i quark energy

densities (ϵ =
∑

i ϵi), where ϵi is given in (Wen et al. 2005) as

ϵi =
γ

2π2

∫ kFi

0

k2
√

k2 +m2
i dk =

γ

16π2

[
µ∗
i kFi(2µ

∗2
i −m2

i )−m4
i ln

(
µ∗
i + kFi

mi

)]
. (2.36)

In the case of stellar matter, we are dealing with zero temperature and high-density

regime to be able to describe pure quark or hybrid stars (Schertler et al. 1999; Ranea-Sandoval et al. 2019;

Hanauske et al. 2001; Menezes et al. 2006; Lenzi et al. 2010; Drago e Pagliara 2020; Pereira et al. 2016;

Ferreira et al. 2020). This implies that beta equilibrium and charge neutrality are the

main conditions present in these systems. The first one happens after the Urca process

(Lattimer et al. 1991; Yakovlev et al. 2001), when neutrinos are emitted during the cool-

ing process of compact stars, with the loss of their initial energy. Once neutrinos are no

longer in the system, beta equilibrium comes along represented by the chemical potentials

of the particles as µu + µe = µd = µs. From the same procedure done for symmetric

matter, this expression can be written in terms of the effective chemical potentials as

µ∗
u +µe = µ∗

d = µ∗
s. Since the presence of leptons (electrons) is responsible for weak inter-

actions, such as d, s ↔ u + e + ν̄e, they play no role in strong interactions. That is why

its chemical potential remains the same in the beta-equilibrium condition. The second

condition refers to the fact that compact stars are electrically neutral objects, requiring

that 2
3
ρu − 1

3
ρd − 1

3
ρs − ρe = 0. Finally, the total energy density (ε) and pressure (p)

of stellar matter are found by implementing the leptons contribution. By assuming only
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mass-less electrons, these expressions read as

ε = ϵ+
µ4
e

4π2
, and p = P +

µ4
e

12π2
, (2.37)

with µe = (3π2ρe)
1/3, and P and ϵ are given by Eqs (2.33) and the sum of (2.36) for the

three quarks, respectively.

2.5 Stability windows

Following what Bodmer-Witten hypothesis states, phenomenological effective models

as the one presented here need to fulfill the conditions that guarantee the stability of

SQM, which is done by confronting it with nuclear matter. With the conditions being

established, a stability window is constructed to represent the stable regions of each type

of matter. We start by taking a large set of values for the C and
√
D parameters and

running it through the EQP model algorithm, where the minimum of the energy per

baryon, namely, (E/A)min = (E/ρb)min where E = ϵ (ε) for symmetric (stellar) matter, is

evaluated and classified according to the following criteria:

(i) SQM is stable when (E/A)min ⩽ 930 MeV. In other words, when the minimum of

energy per baryon is lower than the binding energy of 56Fe (because iron is the element

with the most stable nucleus found in nature).

(ii) SQM is said to be metastable when 930 MeV < (E/A)min ⩽ 939 MeV, which is

the value of the nucleon mass.

(iii) SQM will be unstable when (E/A)min > 939 MeV.

Besides fulfilling these criteria, SQM will only be stable if the two-flavor quark matter

(2QM) is unstable for the same set of C and
√
D parameters, because there is no matter

found in nature, neither in terrestrial experiments, where quarks u and d are deconfined,

which means that 2QM must satisfy the condition of (E/A)min > 930 MeV.

In order to model symmetric and stellar matter similar to what it is believed

to be in nature, the quark current masses used here are the ones provided by

PDG (Workman e Others 2022), which are mu0 = 2.16+0.49
−0.26 MeV, md0 = 4.67+0.48

−0.17 MeV

and ms0 = 93.4+8.6
−3.4 MeV. The stability windows were constructed based on these val-

ues, where, for symmetric matter, we applied mu0 = 1.90 MeV, md0 = 4.67 MeV, and

ms0 = 93.4 MeV, and for stellar matter: mu0 = 2.16 MeV, md0 = 5.15 MeV, and ms0 = 90

MeV. This choice was also made based on the analysis performed in (Backes et al. 2021),

where we were not so rigorous with the values of quarks current mass at that time.

Proceeding with our first results, the stability window for symmetric matter is shown
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in Fig. 2.1. The green region is the one of our interest because it represents where SQM is

stable. Below this area, the blue region corresponds to where the 2QM is stable, being a

forbidden region for SQM to happen. Above the stable region of SQM, the meta-stability

region is in orange, and the unstable one is in red.

FIGURE 2.1 – Stability window for symmetric matter: EQP model.

Concerning the stability window for stellar matter, the lower region continues to be

forbidden for SQM, since 2QM would be stable here, as shown in blue in Fig. 2.2. The

region where SQM is stable is again shown in green, with the meta-stable and unstable

ones being above it in orange and red, respectively. From the figure, it is also possible to

notice a white region where there are no solutions for either 2QM or SQM.
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FIGURE 2.2 – Stability window for stellar matter: EQP model.

For comparison purposes, it is possible to notice that the symmetric stability window

includes higher values of
√
D and lower values of C than the one for stellar matter.

The stellar stability window, on the opposite, allows higher values for C, which have

an important role when we model compact stars because it provides higher values of

maximum masses for these objects. One can also pay attention that the stable and

meta-stable regions of stellar matter are significantly thinner than the ones of symmetric

matter. Such differences can be explained by the presence of electrons in the system and

the impact they have on matter stability.



3 Polyakov equiparticle model

Phenomenological effective quark models were developed to describe different phe-

nomena of the QCD theory, in which the EQP model is included. Although these models

investigate SQM with an interesting approach, some of them do not consider the prediction

of a possible quark deconfinement at very short distances, which is an important char-

acteristic of strong interaction. In models like the MIT bag model (Chodos et al. 1974;

Chodos et al. 1974), quarks remain confined in a called “bag”, where a constant term is

implemented in the pressure equation representing its effects. In the Nambu-Jona-Lasinio

(NJL) model (Nambu e Jona-Lasinio 1961; Nambu e Jona-Lasinio 1961; Klevansky 1992;

Buballa 2005; Vogl e Weise 1991; Hatsuda e Kunihiro 1994), only the chiral transition

is described, with quarks interacting only when they are in contact with each other.

In order to introduce the dynamics of quark deconfinement in the NJL model at fi-

nite temperature, a first proposal was done in Ref. (Fukushima 2004) resulting in

the Polyakov-Nambu-Jona-Lasinio (PNJL) model (Ratti et al. 2006; Rößner et al. 2007;

Ratti et al. 2007; Fukushima 2008; Dexheimer e Schramm 2010; Dexheimer et al. 2021;

RÖßner 2009). However, at zero temperature regime, the PNJL model fails to describe

the dynamic of confinement/deconfinement transition, which is corrected by the PNJL0

model (Mattos et al. 2019; Mattos et al. 2021). In this chapter, we are going to present

the Polyakov equiparticle (PEQP) model, which is a version of the EQP model with the

implementation of the Polyakov loop, inspired by the PNJL0 model. This new model

will be now useful through the investigation of SQM phase transition at zero temperature

without losing its original thermodynamic consistency.

3.1 The Polyakov loop

The deconfinement dynamics of quarks will be incorporated in the EQP model

through the inclusion of the traced Polyakov loop (Φ) (Polyakov 1978; Susskind 1979;

Svetitsky e Yaffe 1982; Svetitsky 1986), which plays the role of an order parame-

ter for deconfinement in the absence of dynamical quarks at the heavy quark

limit (Fukushima 2004). In order to understand the relation between the Polyakov loop
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and the effects of deconfinement let’s take a step back into history. In 1974, Wilson

proposed a model to describe the confinement of quarks where massive quarks would be

coupled with a gauge field (with strength “g”) (Wilson 1974). For a weak coupling, the

quarks would be unbound because of the weak coupling in which the gauge field acts like a

normal free zero-mass field. On the other hand, for strong coupling, the quarks are bound

since the gauge field is massive. Throughout his work, the author develops the formalism

to find this binding mechanism between quarks, and in summary, he finds what is called

the “Wilson loop”, which is written in Euclidean space as

W (x, y) = P exp

[
i

∫ y

x

dxµAµ

]
, (3.1)

where Aµ = gluonic field and P = path order in an imaginary time (τ). If the integral

reaches the same spatial position x⃗ at two different Euclidean times, let’s say τ = 0 and

τ = β, the loop found is given by the operator L̂(x⃗) as

L̂(x⃗) = P exp

[
ig

∫ β

0

dτA4(x⃗, τ)

]
, (3.2)

with A4 = iA0, which is the Euclidean temporal component of the Aµ field associated

with the gluons, and β = 1/T is the temperature inverse. The formalism associated

with imaginary time is applied when quantum field theory (QFT) is treated at finite

temperature and is constructed through Wick’s rotation, which is a powerful tool since it

allows the rotation of the time axis into the pure imagination direction (Reinhardt 1996).

In a more effective way, as t → itE the Euclidean versions of the functional integrals are

being generated. In (3.2), when β → it, the integrals are now over tE with the limits

tE = 0 and tE = t instead of τ = 0 and τ = β. This implementation guarantees the

connection between QFT at zero temperature and the quantum statistical mechanics.

The interpretation that L̂ is a loop comes from the fact that it is calculated in the

same point of space connected by different times (0 and β). If we take the trace of this

operator we will find the Polyakov loop itself, which reads as

Φ ≡
〈

1

Nf

Tr[L̂]

〉
=

〈
1

3
Tr

[
exp

(
i

∫ β

0

dτA4

)]〉
, (3.3)

with Nf being the quarks flavor number. Here, Φ becomes a direct measure of the

quark’s confinement, since the quark’s free energy Fq is connected to Φ through Φ =

eFq/T (McLerran e Svetitsky 1981). Given that the divergence of the free energy is linked

to systems where quarks are confined, it is possible to represent this phenomenon for
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specific values of Φ as follows

Φ = e−F/T =

 0, F → ∞ and T finite (confinement),

1, F finite and T → ∞ (deconfinement).
(3.4)

Therefore, at finite temperature, the systems where the free energy diverges lead to

total confinement, and for the opposite, in systems where the temperature tends to in-

finity and the free energy is finite, i.e. Φ ̸= 0, deconfinement takes place. At the limit

of extremely high temperatures, the asymptotic freedom is expected to occur and quarks

will be deconfined at Φ = 1. In fact, confinement is directly related to center symme-

try (Weiss 1982; Holland e Wiese 2000).

Center symmetry is an important concept in gauge theories and the study of con-

finement because it refers to the symmetry related to the global transformations of the

gauge group that do not affect the local gauge invariance of the theory, i. e. these trans-

formations leave the physical observables invariant but change the configuration of the

fields (Polyakov 1977). In the confined phase, the expectation value of the Polyakov loop〈
L̂
〉

is zero, indicating that the center symmetry is unbroken. However, in the decon-

fined phase,
〈
L̂
〉
is nonzero, which implies that center symmetry is spontaneously broken

leading to the emergence of distinct phases.

For example, if we take an invariant gauge system only with bosonic fields, like QCD

containing only gluons, the gluonic field can be described by Aµ that transforms as Aµ →
A′

µ = U(Aµ + i∂µ)U
†, with U being a local gauge transformation. At finite temperature,

Aµ and A′
µ must satisfy the periodicity condition (Kapusta J. I.; Gale 2011) given by

Aµ(0) = Aµ(β) and (3.5)

A′
µ(0) = A′

µ(β). (3.6)

In order to verify Eq. (3.6), one can admit that U also obeys the periodicity condition of

U(0) = U(β) and by applying Eq. (3.5) we have that A′
µ(0) = U(0)(Aµ(0) + i∂µ)U

†(0) =

U(β)(Aµ(β) + i∂µ)U
†(β) = A′

µ(β). We can also probe this relation, by taking U(0) =

zU(β) with z = e2πik/Nc (k = 1, 2, 3, ... and Nc is the color number), as follows:

A′
µ(0) = U(0)(Aµ(0) + i∂µ)U

†(0) = zU(β)(Aµ(β) + i∂µ)z
∗U †(β) (3.7)

= e2πik/Nce−2πik/NcU(β)(Aµ(β) + i∂µ)U
†(β) (3.8)

= U(β)(Aµ(β) + i∂µ)U
†(β) = A′

µ(β). (3.9)

Once the periodic and antiperiodic boundary conditions are satisfied, as a direct con-
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sequence, we have that Φ = zΦ, which means that Φ is no longer an invariant quantity

and can only be verified if Φ = 0. As already discussed, this case represents the confined

phase and once Φ ̸= 0, the center symmetry is spontaneously broken (Φ becomes the order

parameter for the confinement/ deconfinement phase transition). With the inclusion of

quarks in the system, the fermionic field transforms as Ψ → Ψ′ = UΨ, and in order satisfy

the anti-periodicity conditions (Kapusta e Gale 2006) given by:

Ψ(0) = −Ψ(β) and (3.10)

Ψ′(0) = −Ψ′(β), (3.11)

the necessary gauge transformation leads to Ψ′(0) = U(0)Ψ(0) = −zU(β)Ψ(β) =

−zΨ′(β) ̸= −Ψ′(β). This result indicates that center symmetry is explicitly broken by

fermionic fields, always leading to Φ ̸= 0. Hence, Φ is defined as an approximate order

parameter for the quarks phase transition.

3.2 The Polyakov potential

For a system defined as an effective gas of gluons, its equations of state must agree

with the lattice QCD calculations in the pure gluon sector (PGS) at finite tempera-

tures. Therefore, the grand-canonical thermodynamic potential, also called Polyakov

potential, ΩPGS ≡ U(Φ,Φ∗, T ), is introduced to describe the PGS and its first order

phase transition when Φ jumps from 0 to a finite value (at a given temperature T0).

In the literature, U(Φ,Φ∗, T ) has different forms, such as RTW05 (Ratti et al. 2006),

RRW06 (Ratti et al. 2007; Rößner et al. 2007) and FUKU08 (Fukushima 2008), which

are given, respectively, by (Φ = Φ∗):

URTW05

T 4
= −b2(T )

2
Φ2 − b3

3
Φ3 +

b4
4
Φ4, (3.12)

URRW06

T 4
= −b2(T )

2
Φ2 + b4(T )ln(1− 6Φ2 + 8Φ3 − 3Φ4), (3.13)

UFUKU08

bT
= −54e−a/TΦ2 + ln(1− 6Φ2 + 8Φ3 − 3Φ4), (3.14)

with

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

, (3.15)
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and

b4(T ) = b4

(
T0

T

)3

. (3.16)

The parameters a, b, a0, a1, a2, a3, b3 and b4 in Eqs. (3.12) to (3.14) are dimensionless

free parameters. At T = 0, the Polyakov potential (U) presented in these equations is

equal to zero, resulting in the loss of the proposed phenomenology. The only exception oc-

curs when we choose the DS10 potential (Dexheimer e Schramm 2010; Dexheimer et al. 2021),

given as

UDS10 = (a0T
4 + a1µ

4 + a2T
2µ2)Φ2 + U0(Φ), (3.17)

with

U0(Φ) = a3T
4
0 ln(1− 6Φ2 + 8Φ3 − 3Φ4), (3.18)

where µ is the chemical potential. When we search for the minimum of U , we find the

Polyakov loop and its complex conjugate, Φ∗ =
〈
1/NfTr[L̂

†]
〉
, i.e.

∂U(Φ,Φ∗, T )

∂Φ
=

∂U(Φ,Φ∗, T )

∂Φ∗ = 0. (3.19)

Our intention here is to preserve the confinement physics in the new model at T = 0

by incorporating the effects of the traced Polyakov loop Φ in the equations that define

the constituent quark masses, as we show in the next section.

3.3 Parameters depending on the Polyakov Loop in the

EQP model

From now, we closely follow the paper (Marzola et al. 2023). We first incorporate the

Polyakov loop in the structure of the model, naming it as PEQP model. Then, we study its

capability to describe symmetric quark matter and stellar matter. The inclusion of Φ in the

equations of the EQP model is motivated as in (Mattos et al. 2019; Mattos et al. 2021),

where the authors impose the vanishing of all couplings in the limit of Φ → 1, i.e., no

interactions are expected anymore in the deconfined phase. Here we do the same by

making the following replacements in the constants of the EQP model:

C → C ′(C,Φ) = C(1− Φ2), (3.20)
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and

D → D′(D,Φ) = D(1− Φ2). (3.21)

As a consequence, the quark masses are now given by

m′
i = mi0 +m′

I = mi0 +
D′(D,Φ)

ρ
1/3
b

+ C ′(C,Φ)ρ
1/3
b . (3.22)

By doing so, notice that one has C ′ = D′ = 0 at Φ = 1 and, consequently, m′
i = mi0, i.

e. the interaction vanishes when quarks are deconfined (Φ = 1). Following, the chemical

potentials relation reads as

µi = µ∗
i +

1

3

∂m′
I

∂ρb

∂Ω0

∂m′
I

, (3.23)

and the system’s new equations of state, at zero temperature, are rewritten as

PPEQP = −Ω0 + ρb
∂m′

I

∂ρb

∂Ω0

∂m′
I

− U0(Φ), (3.24)

and,

ϵPEQP = Ω0 −
∑
i

µ∗
i

∂Ω0

∂µ∗
i

+ U0(Φ), (3.25)

in which the Polyakov Potential comes down to the latter term U0(Φ) expressed by Eq.

(3.18). The original EQP model can be recovered by taking a3 = 0, so U0(Φ) = 0,

as well as Φ. Therefore, C ′ = C, and D′ = D. The term U0 is included in an ad

hoc way to ensure Φ ̸= 0 solutions, obtained thorough ∂ϵPEQP/∂Φ = 0 in the canonical

ensemble for instance, and also to limit these solutions in the region of Φ < 1, as discussed

in (Mattos et al. 2021; Mattos et al. 2021).

3.4 Symmetric matter case

Once the PEQP model is built, the thermodynamical properties of the SU(3) sys-

tem can be investigated. Firstly, we need to define all the parameters involved in the

new model equations, such as the quark current masses (mi0), a3, T0, C and
√
D. The

quark current masses were already being defined following recent results provided by

PDG (Workman e Others 2022) in Sec. 2.4 as (mu0,md0,ms0) = (1.90, 4.67, 93.4) MeV.

For the gluonic sector of the model, the parameters a3 and T0 from Eq. (3.18) are

initially fixed as −0.4 (Dexheimer e Schramm 2010) and 190 MeV (Mattos et al. 2021;
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Ratti et al. 2006), respectively, since they contribute to reproduce lattice data and infor-

mation about the QCD phase diagram. However, the model that we are working on here

is very different from the cited references, so this value for a3 does not offer solutions of

Φ ̸= 0, at least, not for symmetric matter. Because of that, a3 will be treated as a free

parameter so that we can explore its influence in providing satisfactory solutions to Φ.

Finally, from the symmetric matter stability window in Fig. 2.1 the parameters C and
√
D

are chosen, with C within the range of −0.8 ≤ C ≤ 0.2 and
√
D between 150 ≤

√
D ≤ 195

MeV. In our analysis the pair (C,
√
D) = (0.2, 150 MeV) provides results related to more

massive stars, which is why these values were chosen.

The original EQP model is constructed with the appeal that the thermodynamic con-

sistency is respected, so we expect that even with the modifications done in the PEQP

model it continues to obey the thermodynamic consistency conditions. The procedure to

verify that this is the case is by taking the energy per baryon with ϵ given in Eq. (3.25) and

plotting as function of the baryonic density for both EQP (a3 = 0) and PEQP (a3 ̸= 0)

models, as Fig. 3.1 shows.
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FIGURE 3.1 – Energy per baryon, E/A = ϵ/ρb, as function of ρb for EQP (a3 = 0) and PEQP (a3 ̸= 0)
models.

In Sec. 2.5 we have established the necessary criteria for strange quark matter to

be stable, i.e. the minimum of the energy per baryon needs to be lower or equal to

930 MeV. In the figure, the black dot indicates that this condition is confirmed since it

is < 930 MeV. As for the thermodynamic consistency, at this point pressure is zero, as

requested by Eq. (2.13) condition, for both models. Notice that for the case of the PEQP



CHAPTER 3. POLYAKOV EQUIPARTICLE MODEL 35

model, even for different values of a3(a3 ̸= 0) the minimum of E/A is not modified by

the emergency of Φ ̸= 0 solutions. This is an important result because it means that the

symmetric matter stability window shown in Fig. 2.1 can be safely considered as the same

one for the PEQP model at symmetric quark matter, and then we can rely on the pairs

(C,
√
D) that produces stable SQM to go on through our investigations.

By doing so, we can step on the dynamics of deconfinement in T = 0, which can be

achieved by analyzing the effect of the Polyakov potential U(Φ). We already discussed that

this term is responsible for non-null solutions of Φ, and as Eq. (3.18) shows, the parameter

a3 regulates this effect. From the thermodynamics point of view, this effect is properly

observed by looking at the grand-canonical thermodynamic potential, ΩPEQP = −PPEQP,

where pressure is given by Eq.(3.24), as function of the traced Polyakov loop for the pair

C = 0.2,
√
D = 150 MeV, for instance, in Fig. 3.2.
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FIGURE 3.2 – ΩPEQP as function of Φ for the pair C = 0.2,
√
D = 150 MeV for different values of µ,

panels (a) to (d).

To generate the results present in this figure, Eq. (3.23) was rewritten in terms of the

quarks Fermi momenta, kFi =
√
µ∗2
i −m2

i , and the quarks densities, ρb =
∑

i ρi/3, as

follows:

µi = µ∗
i +

1

3

∂m′
I

∂ρb

∂Ω0

∂m′
I

= (k2
Fi +m2

i )
1/2 + f(ρu, ρd, ρs), (3.26)

where we impose the symmetric matter condition of µu = µd = µs = µ, which results in
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a system of three equations to determine ρi:

µ =


[
kFu(ρu)

2 +mu(ρu, ρd, ρs)
2
]1/2

+ f(ρu, ρd, ρs), (3.27)[
kFd(ρd)

2 +md(ρu, ρd, ρs)
2
]1/2

+ f(ρu, ρd, ρs), (3.28)[
kFs(ρs)

2 +ms(ρu, ρd, ρs)
2
]1/2

+ f(ρu, ρd, ρs), (3.29)

with µ and a3 as inputs, and f(ρu, ρd, ρs) as the function that represents the term 1
3

∂m′
I

∂ρb

∂Ω0

∂m′
I

in Eq. (3.26). This manipulation allows us to provide specific values for the common

chemical potential, and Φ is now free to run as can be observed in the figure. For each

chosen µ, in each panel, we can test different values of a3 where some will produce a global

minimum for ΩPEQP when Φ ̸= 0.

At a very particular value of the chemical potential, named here as µconf, some curves

present two minima, meaning that the ΩPEQP × Φ curves play an important role for the

confinement/deconfinement phase transition because the two minima characterize the

transition from a confined system to a deconfined one. To explicitly illustrate it, we plot

in Fig. 3.3 curves for a3 = −0.14 and different values of µ.
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FIGURE 3.3 – ΩPEQP as function of Φ for three different values of µ.

Paying attention to the green curve, we identify that µconf = 316.629 MeV is the

case where the two minima happen. If we slowly decrease µ, µ < µconf (µ = 314 MeV

for instance), it is only possible to obtain minima at Φ = 0, indicating the confined

phase (red curve). On the other hand, in the blue curve where µ is slowly increased,

µ > µconf (µ = 319 MeV for instance), the deconfinement phase is established, since a
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minima for Φ ̸= 0 appears. At µ = µconf, the first order phase transition takes place,

and the two minima emerge at ΩPEQP ≈ −5.7 MeV/fm3 (points p1 and p2 in Fig. 3.3).

In (Masayuki e Koichi 1989), the same thermodynamic analysis is performed in a different

context at finite temperature, where the authors explore how chiral symmetry restoration

affects the thermodynamic quantities such as the energy density, pressure, and specific

heat. The critical temperature for chiral symmetry restoration is a key parameter in their

study, which is the temperature above which chiral symmetry is restored.

Back to our work, it is possible to verify the confinement/deconfinement transition

exhibited by the PEQP model from another perspective, namely, by investigating the

dependency of the traced Polyakov loop towards the chemical potential. Hence, the

model’s algorithm will run µ so that each value used as input has its correspondent Φ

determined, where the ones that minimize ΩPEQP(µ,Φ), will be selected. In other words,

we select the Φ’s that are solutions of ∂ΩPEQP/∂Φ = 0. The results are displayed in

Fig. 3.4.
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FIGURE 3.4 – Φ as a function of the common quark chemical potential.

Note in the figure that the discontinuity that appears in the values of the traced

Polyakov loop, from Φ = 0 to Φ ̸= 0, characterizes a first-order phase transition. This

discontinuity delimits the thermodynamic phases of confinement, where µ < µconf indicates

the confinement region and when µ > µconf the deconfinement one. With the Φ solutions

in hand, Fig. 3.5 is able to be constructed, where ΩPEQP is now evaluated as a function of

µ.
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FIGURE 3.5 – ΩPEQP as function of the common quark chemical potential.

As we saw in Fig. 3.3, µconf is a very sensible value that needs to be carefully investigated

to be found. One way to accomplish this search is through the presented two minimum

points of view. Another way is by looking for the crossing point in the curve of ΩPEQP vs.

µ (Fig. 3.5). Here, we identify µconf as being exactly 316.629 MeV, and for ΩPEQP we find

that it is ≈ −5.7 MeV/fm3. These values are in agreement with the two minima method,

which indicates that this second method of determining µconf by the grand canonical

thermodynamic potential behavior as a function of µ is indeed another signature of the

first-order phase transition exhibited by the model.

3.5 Stellar matter case

The motivation for applying the modifications in the EQP model, beyond the sym-

metric matter, is to look into the stellar matter behavior and analyze its features when

working with compact stars (pure quarks or hybrid ones). On top of that, we are in-

terested to know if the PEQP model is suitable enough to correspond positively to the

observational data available about these objects. Therefore, in this section, we are going

to analyze the effect of the traced Polyakov loop in a system composed of quarks and

leptons (electrons) under charge neutrality and weak equilibrium conditions, which are

the ones that describe systems like quark starts. Once again, we are relying on the PDG

data mentioned in Sec. 2.4 to define the quark current masses for stellar matter as being

(mu0,md0,ms0) = (2.16, 5.15, 90) MeV.
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From the stellar stability window (Fig. 2.2), we know that the presence of electrons

gives us more possible values for the (C,
√
D) pair where SQM is stable. Hereafter, we

take this set as being C = 0.81 and
√
D = 127 MeV. However, as done in the previous

section, the stability window needs to be verified to see if it remains the same for the

PEQP model stellar matter system. In Fig. 3.6 we have this analysis depicted.
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FIGURE 3.6 – Energy per baryon, E/A = ε/ρb, as function of ρb for EQP (a3 = 0) and PEQP (a3 ̸= 0)
models.

The figure shows the curves of the EQP (a3 = 0) and PEQP (a3 ̸= 0) models for the

energy per baryon as a function of the baryonic density. In the y-axis , E/A = ε/ρb,

where ε is given by

ε = ϵPEQP +
µ4
e

4π2
. (3.30)

The x-axis parallel line corresponds to 930 MeV, which is the limit value of the minimum

energy per baryon for SQM to be stable. As we can see, the minimum of the energy per

baryon of all curves are concentrated at the same point, represented by the black dot.

The chart range is not favorable for us to see clearly that this value is lower than 930

MeV, but in fact it is, by being equal to 929.92 MeV. This means that the stellar stability

window shown in Fig. 2.2 is a reliable source for us to choose the C and
√
D parameters

for the next applications of the PEQP model.

Following, to make it possible to identify the µconf regarding stellar matter, we need to
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evaluate the grand canonical potential of the system Ω. This is done through

Ω = −p = −PPEQP −
µ4
e

12π2
, (3.31)

and the results are plotted in Fig. 3.7, where the typical structure of systems that present

a first-order phase transition emerges, exactly as in the symmetric matter case. For

reference, we also show the curve related to the original EQP model (a3 = 0) in blue.
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FIGURE 3.7 – Ω as a function of the common quark chemical potential for different values of a3.

In the PEQP model, for each value of a3 ̸= 0 there is a corresponding value of Ω

and µconf as Tab. 3.1 shows. Note that as a3 decreases, lower values of Ω are obtained,

and for the chemical potential related to the deconfinement phase transition the opposite

happens, namely, it is higher when a3 is lower.

a3 Ω(MeV/fm3) µconf(MeV )

- 0.30 - 81.912 419.485

- 0.35 - 111.219 439.289

- 0.40 - 141.055 457.184

- 0.50 - 208.687 488.596

TABLE 3.1 – The grand canonical potential (Ωtotal) and the confinement chemical potentials (µconf)
according with the parameter a3 for a stellar matter system.

Considering that quark stars are found at zero temperature and high density, we need
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to verify the values predicted by the PEQP model for the baryonic density at the phase

transition point, because quarks are expected to be asymptotically free at this regime. In

Fig. 3.8 we have this analysis displayed. Here, the ratio of the baryonic density to the

nuclear saturation density, taken here as ρ0 = 0.15 fm−3, is plotted against the chemical

potential.
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FIGURE 3.8 – ρb/ρ0 as function of the common quark chemical potential for different values of a3.

Looking at the figure, we are interested in identifying the points r1 and r2, because

they represent the beginning and the end of the phase transition, respectively. Usually,

ρb is expected to be at least 2 or 3 times higher than ρ0. However, for the PEQP model,

when we decrease the parameter a3, ρb becomes from 2 to almost 7 times higher than

ρ0. The details are also given by Tab. 3.2 for better visualization. Notice that when

a3 = −0.30, ρb is 2.94 times higher than ρ0 when the phase transition starts and equal to

4.19ρ0 at the final border of the co-existence phase. Now, when a3 = −0.50, ρb is 5.24ρ0

at the phase transition beginning and 6.84ρ0 at the end. For a3 = 0, when the original

EQP model is restored, we can see that the (blue) curve is continuous, i.e. there are no

deconfined phase transitions associated.
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a3 r1 r2

- 0.30 2.94 4.19

- 0.35 3.52 4.88

- 0.40 4.10 5.52

- 0.50 5.24 6.84

TABLE 3.2 – Ratio of the baryonic density to the nuclear saturation density, ρb/ρ0 for the phase
transition of the system.

Since the quark masses are written in terms of density, it is interesting to investigate

its phase transition when the Polyakov loop is introduced in the new model. This investi-

gation is presented in Fig. 3.9, where we take a single value of a3 and observe the behavior

of each quark mass as a function of the chemical potential.
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FIGURE 3.9 – Quark masses, calculated as in Eq. (3.22), as function of the common chemical potential
for a3 = −0.50 (PEQP model) and a3 = 0 (EQP model).

From the expression of the quark masses, given by Eq. (2.32) in the EQP model, we

can see that the term related to the parameter C will cause a drop on the quark masses

and the latter term, related to the parameter
√
D, will be responsible for slowly increasing

its mass. This can be confirmed by the curves of the quarks u, d, and s with a3 = 0 in the

figure. However, for the PEQP model, the quark masses are now written as in Eq. (3.22).

When we compare both models, a significant reduction of the quark masses is caused by

the inclusion of the traced Polyakov loop. This result indicates that the system is going
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toward the direction of a similar chiral symmetry restoration, especially mu and md since

it is associated with the reduction of the constituent masses of the quarks.

Analyzing now the equations of state, we have them represented in Fig. 3.10, where

the total energy density was obtained from Eq. (3.30), and the total pressure of the system

from Eq. (3.31).
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FIGURE 3.10 – Equation of state p× ε for different values of a3.

As we can see from this figure, there is a plateau happening in the pressure simul-

taneously with an energy density gap. This is another clear consequence of the con-

finement/deconfinement phase transition. The transition pressure (pTrans) and the energy

density gap at the transition point (∆εTrans) are highlighted in the figure according with

its correspondent value of a3. When a3 decreases we notice that pTrans and ∆εTrans increase.

In (Mattos et al. 2021), pTrans and ∆εTrans were generated by a hadron-quark phase tran-

sition where this pattern was also detected. The PNJL0 model was applied in the quark

sector of the transition in this referenced work.

Obtaining the EOS is an essential step in the compact stars study because they

are the necessary ingredient to solve the Tolman-Oppenheimer-Volkoff (TOV) equa-

tions (Tolman 1939; Oppenheimer e Volkoff 1939). These equations are given by
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dp(r)

dr
= − [ε(r) + p(r)][m(r) + 4πr3p(r)]

r2 − 2rm(r)
(3.32)

dm(r)

dr
= 4πr2ε(r), (3.33)

for which the solution is constrained to p(0) = pc (central pressure) and m(0) = 0, with

the conditions p(R) = 0 and m(R) = M satisfied at the star surface. R is the radius of

the respective quark star of mass M . From this procedure, we display the mass-radius

diagrams for the quark stars in Fig. 3.11.

FIGURE 3.11 – Mass-radius diagrams constructed from the PEQP model for different values of a3. The
contours are related to data from the NICER mission, namely, PSR J0030+0451 (Riley et al. 2019;
Miller et al. 2019) and PSR J0740+6620 (Riley et al. 2021; Miller et al. 2021), and the GW190425
event (Abbott et al. 2020), all of them at 90% credible level. The violet horizontal band is also re-
lated to the PSR J0740+6620 pulsar (Fonseca et al. 2021).

Usually, the curve representing a quark star family follows the behavior of the blue

curve of the EQP model, where a3 = 0. However, once we introduce the Polyakov loop

to achieve the confinement/deconfinement phase transition in the PEQP model, we can

notice the “cusp” followed by the decreasing linear branches emerging in the PEQP pa-

rameterization for quark stars of mass greater than two solar masses (M⊙). This same

feature was also observed in the hadron-quark phase transitions present in the hybrid stars

analyzed in (Mattos et al. 2021) in which the quark sector was described by the PNJL0

model, that also contains the Polyakov loop in its structure. The first conclusion that
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comes to mind about these linear branches, in both PEQP and PNJL0 models, is that

they are composed by unstable stars, when we analyze the criterion ∂M/∂ε > 0, that

coincides with the curves built until the star with the maximum mass.

In order to verify the stability of these star configurations, we perform the spe-

cific response of the stars to radial oscillations (ARBAÑIL et al. 2023; Lenzi et al. 2023;

Parisi et al. 2021; Pereira et al. 2018; Mariani et al. 2019; ARBAÑIL e Malheiro 2015;

Sun et al. 2021; Jiménez e Fraga 2019). This is done through the solution of the following

coupled equations

dξ

dr
= −1

r

(
3ξ +

∆p

Γp

)
− dp

dr

ξ

(p+ ε)
, (3.34)

and

d∆p

dr
= ξ

[
ω2eλ−ν(p+ ε)r − 4

dp

dr

]
+ ξ

[(
dp

dr

)2
r

p+ ϵ
− 8πeλ(p+ ε)pr

]

+∆p

[
dp

dr

1

p+ ε
− 4π(p+ ε)reλ

]
, (3.35)

with eλ = 1− 2m(r)/r, dν/dr = −2(dp/dr)(p+ ε)−1, and Γ = (1 + ε/p)(dp/dε). ξ is the

relative radial displacement, and ∆p is the pressure perturbation, both quantities time

dependent as eiωt in which ω is the eigenfrequency. If ω2 > 0 after the point of maximum

mass, we can find stable stars in the linear branches of configurations such as those

presented by the PEQP and PNJL0 models, where a first-order phase transition happens,

but only if we consider slow phase transitions (ARBAÑIL et al. 2023; Lenzi et al. 2023;

Parisi et al. 2021; Pereira et al. 2018). By this approach we can find the last stable star

where ω = 0 in the point of the mass-radius diagram.

Applying the method through all parameterizations of the PEQP model used to con-

struct the mass-radius profiles we verified that they present ω2 > 0, when the slow phase

transitions are considered. In other words, all of the curves presented in Fig. 3.11 for

a3 ̸= 0 are stable under radial oscillations. Therefore, one verifies that a particular class

of twin quark stars (stars with the same mass but different radii), namely, one of them

composed by confined quarks, and the other one in which deconfined strongly interacting

particles are found.

Still regarding Fig. 3.11, our results are compared with the recent observational

astrophysical data provided by the NICER mission regarding the millisecond pul-

sars PSR J0030+0451 (Riley et al. 2019; Miller et al. 2019) and PSR J0740+6620

(Riley et al. 2021; Miller et al. 2021), and with data from the gravitational wave event

named GW190425 (Abbott et al. 2020) analyzed by LIGO and Virgo Collaboration. Ad-
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ditionally, we also display the PSR J0740+6620 data extracted from (Fonseca et al. 2021),

that corresponds to M = (2.08 ± 0.07M⊙) at 68.3% of credible level. Additionally,

Tab. (3.3) displays the maximum masses, Mmax (M⊙), and its respective radius, R (km),

found for each value of a3. Observe that as a3 decreases the quark star maximum mass

increases, as well as its radius. Our findings point out to agreement between the results

generated by the PEQP model and all observational data.

a3 Mmax (M⊙) R (km)

- 0.30 2.18 14.69

- 0.35 2.20 14.37

- 0.40 2.21 14.06

- 0.50 2.21 14.13

TABLE 3.3 – Quark stars maximum masses and respective radius according with the parameter a3.



4 Strange stars admixed with dark

matter

As already discussed in this work, strange stars represent a type of compact stars

composed of strange quarks and may be formed during the collapse of massive stars in

supernova events, where densities are so high that quark matter becomes stable. These

objects can provide insights into the equation of state of nuclear matter at extreme condi-

tions, and challenge our understanding of the fundamental forces at play in the universe.

That’s because researchers are not capable yet to fully describe its detailed composition,

structure, and dynamics. For that reason, the study of such objects involves different

areas of physics like thermodynamics, quantum field theory, general relativity, nuclear

reactions, etc. In that direction, there are currently studies with the proposal that dark

matter (DM) (Bertone e Hooper 2018; Arbey e Mahmoudi 2021; Salucci 2019) could be

present in compact stars.

The existence of DM is supported by the analysis of galaxies rotation curves,

in which its rotational velocities do not decrease as expected with distance from

the galactic center. Instead, they remain constant or even increase, suggest-

ing the presence of unseen mass (Rubin Vera C. 1970). The gravitational lens-

ing method also provides strong evidence because the gravitational field of mas-

sive foreground objects is responsible for bending the light from distant ob-

jects, which indicates that more mass is present than can be seen (only 10%

to 20% is due to the visible mass of galaxy clusters) (Koopmans e Treu 2003;

Massey et al. 2010). The anisotropy present in measurements of cosmic mi-

crowave background (CMB), especially the missions like WMAP (NASA 2001) and

Planck (ESA 2009), show fluctuations that are consistent with a universe composed

of dark matter (Adams et al. 1998; Pierpaoli 2004; Padmanabhan e Finkbeiner 2005;

Aghanim et al. 2016; Hu e Dodelson 2002; Hu et al. 1997). Besides, the distribution of

galaxies and galaxy clusters across the universe aligns with models that include dark

matter to explain the observed large-scale structure (Springel et al. 2005). Due to these

evidences, there is a consensus, at the present day, that the universe is composed of

68% of dark energy, 27% of DM, and 5% of ordinary matter. It is evident that the
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universe exhibits a significant asymmetry between baryonic matter and antimatter, with

observable matter far outnumbering antimatter. This phenomenon is often referred to as

baryon asymmetry and is a critical element in understanding the early universe. There

are mechanisms proposed to explain this asymmetry, such as Baryogenesis, where similar

processes could also apply to dark matter, leading to a surplus of dark matter parti-

cles (Sakharov 1991).

Although many models treat DM as a symmetric component, meaning that for every

dark matter particle, there is an antiparticle, in the asymmetric dark matter (ADM)

scenario, dark matter particles are produced in a way that results in a net asymmetry.

This could have occurred in the early universe, influenced by interactions and processes

that distinguish between particles and antiparticles (PETRAKI e VOLKAS 2013). One

of the processes is called Leptogenesis (Buchmüllera R. D. Pecceib 2006), where the decay

of heavy leptons creates an imbalance in lepton and baryon numbers that can transfer

to dark matter. Another one is the Affleck-Dine mechanism, which involves scalar fields

that can generate an asymmetry in the number density of dark matter through their

dynamics during inflation (Affleck e Dine 1985). The main point here is that repulsive

self-interactions in asymmetric dark matter and small attractive interactions with baryonic

matter would be possible.

To investigate the potential existence of strange stars admixed with dark matter we

implement the two-fluid approach. One of the fluids is due to the “visible” matter de-

scribed by the equiparticle quark model (EQP) without the Polyakov loop, and the other

is the dark sector described by two different models: the fermionic and the bosonic one.

The interaction between the “visible” and dark particles will be gravitational. Therefore,

this chapter is divided as follows: the next section is dedicated to the formalism concern-

ing the dark sector models, and in sequence, the calculations and results coming from

this investigation are presented as well as the discussion. The recent astrophysical obser-

vational data will be responsible for checking the capability of the EQP model admixed

with DM in satisfying these observational measurements as done in the previous section,

with the inclusion of the compact star named HESS J1731-347“.

4.1 Dark Matter models

In our approach, the dark sector will be described by a fermionic and a bosonic model.

For the first one, we begin with a Lagrangian density that includes a kinetic term (Dirac

Lagrangian density) for a single fermionic component, in addition to a vector meson

coupled to the Dirac spinor (Xiang et al. 2014; Das et al. 2022; Thakur et al. 2024). The
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expression reads as

LFDM = χ̄ [γµ(i∂
µ − gV V

µ)−mχ]χ− 1

4
FµνF

µν +
1

2
m2

V VµV
µ, (4.1)

where Fµν = ∂µVν − ∂νVµ is the strength tensor of the vector meson. The quantities mχ

and mV are the dark fermion mass and the mass of the dark vector meson, respectively.

According to the authors in (Xiang et al. 2014), the dark scalar meson is not included

in order to avoid one more free parameter to deal with, and for that reason, we followed

the same procedure. This makes the model simpler to work with. Furthermore, by

including a scalar particle, the attractive interactions would increase in the system, which

would lead to lower final compact star masses. That’s because the increase in its mass is

directly related to repulsive interactions. Therefore, the dark scalar meson is not taken

into account.

To calculate the energy density and pressure of the system, the mean-field approach

is used, which is a typical procedure done in relativistic hadronic models with the same

mathematical formulation for the Lagrangian density. Thus, the equations of state are

given by

EFDM =
1

π2

∫ kFχ

0

dk k2(k2 +m2
χ)

1/2 +
1

2
C2

V ρ
2
χ, (4.2)

PFDM =
1

3π2

∫ kFχ

0

dk
k4

(k2 +m2
χ)

1/2
+

1

2
C2

V ρ
2
χ, (4.3)

with CV = gV /mV and ρχ = k3
Fχ/(3π

2). The Fermi momentum of the dark particle is

kFχ. Besides strange stars, neutron stars admixed with DM have also been the target

of studies, where fermionic self-interacting dark matter is coupled to hadronic matter, as

done in (Mariani et al. 2024), for instance.

Concerning the choice of fermionic and bosonic particles as dark particles, this occurs

because the true nature of DM particles remains poorly understood, despite the efforts

done through the last direct and indirect detection methods (Bauer et al. 2015). As a

consequence, many possible candidates have been studied over the years, such as grav-

itinos, axinos, axions, sterile neutrinos, WIMPzillas, supersymmetric Q-balls, and mirror

matter (Kusenko e Rosenberg 2013; Feng 2010). Since we are assuming that the dark

sector in our study is composed of fermionic and bosonic particles, the latter one will be

treated as the bosonic asymmetric dark matter model proposed in (Nelson et al. 2019;

Rutherford et al. 2023). The authors define asymmetric dark matter as being composed

of bosonic particles with repulsive self-interaction, in a MeV-GeV mass scale. Through

scattering, two identical particles can self-interact by exchanging a gauge boson, i. e. a

force carrier, which leads to attraction or repulsion between the particles. In our case, the
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bosons exchange an eV-MeV mass-scale vector gauge boson (which also carries the Stan-

dard Model baryon number) resulting in a repulsive self-interaction. This vector gauge

boson is responsible for generating the “dark asymmetry”. In units of ℏ = c = 1, the

action is given by

SBDM = −
∫

d4x
√
−g

(
D∗

µσ
∗Dµσ +m2

σσ
∗σ +

1

2
m2

ϕϕµϕ
µ +

1

4
ZµνZ

µν − gBϕµJ
µ
B

)
, (4.4)

where g is the determinant of the metric, σ is the charged bosonic ADM field, σ∗ is the

anti-ADM field, mσ is the mass of the bosonic ADM field, ϕµ is the vector boson field of the

ADM mediator, mϕ is the mass of the vector boson field, Zµν = ∇|µϕν | = ∇µϕν −∇νϕµ is

the field strength tensor of ϕµ, ∇ν is the covariant derivative, gB is the interaction strength

of ϕµ with the Standard Model baryon number current Jµ
B, Dµ = ∇µ + igσϕµ, and gσ is

the interaction strength of σ with the ϕµ vector field. Only the necessary interactions are

being considered: the ADM repulsive self-interactions, ADM minimal interaction with

gravity, and ADM interaction with baryons (quarks in our case).

To simplify our calculations let’s take some approximations into account: gB ≤ 10−10

due to measurements of supernova SN1987A, where the energy radiated due to the pos-

sible production of ϕµ, from nucleon-nucleon Bremsstrahlung reactions in proto-neutron

stars, must be consistent with the neutrino data of SN1987A (Rrapaj e Reddy 2016). Fol-

lowing, by assuming that gB << gσ, as discussed in (Nelson et al. 2019), the interaction

between ADM and baryonic matter can be ignored, and the latter term of Eq. (4.4) can

be discarded. The last one concerns neglecting the effects of gravity relative to the in-

verse length scales of neutron stars (Ivanytskyi et al. 2020), and for that we consider a

flat spacetime.

If we take the gradient of the gtt component of the metric, we can write the gradient

as

dgtt
dr

=
−2gtt
P + ϵ

dP

dr
, (4.5)

where P = pressure, ϵ = energy density. From the stellar surface, we have that gtt =

−1 + 2GM
Rc2

and P = 0, where M = star total gravitational mass and R = star radius,

which leads Eq. (4.5) to be

dgtt
dr

=
−2GM

c2R2
. (4.6)

When the limit where gtt = 0, 2GM
Rc2

= 1, and we have that dgtt/dr < 1/R. Considering

the radius of a star as 10 km, such as the ones for compact stars, and a spherical layer of

thickness δr = 10−3 km, which is large enough to treat DM thermodynamically, we have
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also had to ensure that

dgtt
dr

δr <
δr

R
= 10−4. (4.7)

Since the derivatives of the metric are small compared to the spatial scales of a compact

star, we can approximate the spacetime as flat, leading us to the Lagrangian given by

LBDM = −
√
−g

(
D∗

µσ
∗Dµσ −m2

σσ
∗σ − 1

2
m2

ϕϕµϕ
µ − 1

4
ZµνZ

µν

)
. (4.8)

By variations of the action and the approximations discussed, one can obtain the

equations of motion as being

[
DµD

µ −m2
σ

]
σ = 0 (4.9)[

D∗
µD

∗µ −m2
σ

]
σ∗ = 0 (4.10)

∇µZ
µν + igσ[σ

∗Dνσ − (D∗νσ∗)σ]−m2
ϕϕ

ν = 0. (4.11)

From the mean-field approximation, the stationary scalar field ansatz is given by

σ(r, t) = (Aeikr +Be−ikr)e−iwt, (4.12)

with A and B = real constants, k = the wave number, and ω = the eigen frequency of

the spherically symmetric bound state of the scalar field. If the vector field is treated as

a classical field, then ϕµ = (ϕ0, 0), with ϕ0 = constant. Applying the fields σ and ϕµ into

the equations of motion, and letting k = 0, we find ω = gσϕ0 ±mσ. Considering that mσ

could be larger than gσϕ0, we assume ω > 0 and take the ”+” solution. From the equation

of motion of ϕµ and ϕµ = (ϕ0, 0) we have that m2
ϕϕ0 = 2gσmσσ

∗σ.

For the calculation of Jµ, let’s take J0 = ρσ, where ρσ = ADM number density, leading

us to

Jµ =
i

√
g

(
σ∗ ∂Lσ

∂∇µσ∗ − ∂Lσ

∂∇µσ
σ

)
= −i(σ∗∇µσ − (∇µσ∗)σ) + 2gσϕ

µσ∗σ. (4.13)

Since J0 = g0νJ
ν , and using the equation for ω, we can obtain ρσ = 2ωσ∗σ −

2gσϕ
µσ∗σ = 2mσσ

∗σ ⇒ ϕ0 =
gσ
m2

ϕ
ρσ. The energy-momentum tensor is obtained as

Tµν = 2D∗
µσ

∗Dνσ − gµν
(
D∗

ρσ
∗Dρσ +m2

σσ
∗σ
)
+m2

σ

(
ϕµϕν −

1

2
gµνϕρϕ

ρ

)
, (4.14)

and it is used to find the equations of state for the bosonic DM model, which are given
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by

EBDM = mσρσ +
1

2
C2

σϕρ
2
σ, (4.15)

PBDM =
1

2
C2

σϕρ
2
σ, (4.16)

with Cσϕ = gσ/mϕ.

When analyzing bosonic DM inside compact stars, it is important to highlight that

Black holes can be formed once a certain limit is reached (McDermott et al. 2012). For

fermionic matter in its ground state, the Pauli exclusion principle counteracts gravity

through the presence of degeneracy pressure. In contrast, bosonic systems lack the Fermi

pressure, resulting in a lower limit for stability. However, this limit can be raised due to re-

pulsive interactions, as indicated by Eq. (4.8). To satisfy this condition, we restrict the val-

ues of mσ and Cσϕ to 10−2 MeV ⩽ mσ ⩽ 108 MeV and 10−2 MeV−1 ⩽ Cσϕ ⩽ 103 MeV−1,

respectively, in agreement to the findings of (Rutherford et al. 2023). For a deeper study

of scalar fields, one can check (Khlopov et al. 1985). Other related bosonic dark matter

models that interact with luminous matter, especially in the context of neutron stars,

were examined in (Shakeri e Karkevandi 2024; Karkevandi et al. 2024).

4.2 Two-fluid approach

The goal of the study in this chapter is to analyze the characteristics arising from

strange stars admixed with dark matter. For this purpose, the two-fluid approach is a

suitable treatment, where the inter-fluid interaction uniquely comes from gravitational

effects. This method treats the star as composed of two distinct fluids, allowing a detailed

analysis of their respective contributions to the star’s structure and stability. One fluid

represents quark matter (identified as ”visible” matter), while the other represents dark

matter. Each fluid has its energy density E and pressure P , satisfying the conservation

of energy-momentum separately. In other words, that is equivalent to having P (r) =

Pvis(r) + PDM(r) and E(r) = Evis(r) + EDM(r), with r being the radial coordinate from the

center of the star.

Usually, we make use of the TOV equations to obtain the mass and radius of the

stars, but these equations are solved for a one-fluid only. For our study, it is necessary

to develop TOV equations considering the two-fluid approach. Following what was done

in (Xiang et al. 2014), we start from the star mass given by

M =

∫ ∞

0

4πr2[Evis(r) + EDM(r)]dr, (4.17)
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which needs to be stationary concerning all variations of Evis(r) and EDM(r) to achieve the

equilibrium of a particular stellar configuration when one has the uniform entropy per

particle and the chemical composition of the “visible” and dark contribution in hands. At

the same time, the energy densities must maintain the conservation of the quantities

Nvis =

∫ ∞

0

4πr2ρvis(r)

[
1− 2Gm(r)

r

]−1/2

dr, (4.18)

NDM =

∫ ∞

0

4πr2ρDM(r)

[
1− 2Gm(r)

r

]−1/2

dr, (4.19)

where m(r) = mvis(r)+mDM(r) is the total mass contained in the sphere of radius r. The

visible matter mass is mvis(r), and the dark matter mass is mDM(r). These equations will

keep the entropy per particle and the chemical composition unchanged. To ensure that is

the case, the Lagrange multipliers λ and α are introduced, and the function variation for

the given variation δEvis(r) and δEDM(r) is written as

δM − λδNvis − αδNDM =

∫ ∞

0

4πr2[δEvis(r) + δEDM(r)]dr

− λ

∫ ∞

0

4πr2
[
1− 2Gm(r)

r

]−1/2

δρvis(r)dr

− λG

∫ ∞

0

4πr2
[
1− 2Gm(r)

r

]−3/2

ρvis(r)δm(r)dr

− α

∫ ∞

0

4πr2
[
1− 2Gm(r)

r

]−1/2

δρDM(r)dr

− αG

∫ ∞

0

4πr2
[
1− 2Gm(r)

r

]−3/2

ρDM(r)δm(r)dr,

(4.20)

with

δm(r) =

∫ r

0

4πr
′2[δEvis(r

′) + δEDM(r
′)]dr′. (4.21)

Notice that the integrands vanish outside R + δR and the upper limit ∞ is used for

convenience. With these variations, the entropy for “visible” and dark matter is supposed

to remain unchanged, and we have that

δ

(
Evis(r)

ρvis(r)

)
+ Pvis(r)δ

(
1

ρvis(r)

)
= 0, (4.22)

δ

(
EDM(r)

ρDM(r)

)
+ PDM(r)δ

(
1

ρDM(r)

)
= 0, (4.23)
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thus

δρvis(r) =
ρvis(r)

Pvis(r) + Evis(r)
δEvis(r), (4.24)

δρDM(r) =
ρDM(r)

PDM(r) + EDM(r)
δEDM(r). (4.25)

Applying Eq. (4.21) in Eq. (4.20), and interchanging the r and r′ integrals, we find

δM − λδNvis − αδNDM =

∫ ∞

0

4πr2{1− λρvis(r)

Pvis(r) + Evis(r)

[
1− 2Gm(r)

r

]−1/2

− λFvis(r)− αFDM(r)}δEvisdr

+

∫ ∞

0

4πr2{1− αρDM(r)

PDM(r) + EDM(r)

[
1− 2Gm(r)

r

]−1/2

− λFvis(r)− αFDM(r)}δEDMdr, (4.26)

with the quantities Fvis and FDM being defined as

Fvis(r) = G

∫ ∞

0

4πr′ρvis(r
′)

[
1− 2GM(r′)

r′

]−3/2

dr′, (4.27)

FDM(r) = G

∫ ∞

0

4πr′ρDM(r
′)

[
1− 2GM(r′)

r′

]−3/2

dr′. (4.28)

From Eq. (4.26), δM − λδNvis − αδNDM will vanish for all δEvis(r) and δEDM(r), if and

only if,

1− λρvis(r)

Pvis(r) + Evis(r)

[
1− 2Gm(r)

r

]−1/2

− λFvis(r)− αFDM(r) = 0, (4.29)

1− αρDM(r)

PDM(r) + EDM(r)

[
1− 2Gm(r)

r

]−1/2

− λFvis(r)− αFDM(r) = 0, (4.30)

which can be rewritten as

ρvis(r)

Pvis(r) + Evis(r)

[
1− 2Gm(r)

r

]−1/2

+ Fvis(r) +
α

λ
FDM(r) =

1

λ
, (4.31)

ρDM(r)

PDM(r) + EDM(r)

[
1− 2Gm(r)

r

]−1/2

+ FDM(r) +
λ

α
Fvis(r) =

1

α
, (4.32)

with

λ

α
=

ρDM(r)[Pvis(r) + Evis(r)]

ρvis(r)[PDM(r) + EDM(r)]
, (4.33)

which is obtained from the left-hand side of Eqs. (4.29) and (4.30) once they are equalized.
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Now, let’s take the derivative of both sides of Eq. (4.31), we have{
ρ′vis(r)

Pvis(r) + Evis(r)
− ρvis(r)[P

′
vis(r) + E ′

vis(r)]

[Pvis(r) + Evis(r)]2

}[
1− 2Gm(r)

r

]−1/2

+
Gρvis(r)

Pvis(r) + Evis(r)

{
4πr[EDM(r) + Evis(r)]−

m(r)

r2

}[
1− 2Gm(r)

r

]−3/2

− 4πrGρvis(r)

[
1− 2Gm(r)

r

]−3/2

− 4πrGρvis(r)
PDM(r) + EDM(r)

Pvis(r) + Evis(r)

[
1− 2Gm(r)

r

]−3/2

= 0. (4.34)

For uniform entropy per nucleon, the condition is given as

d

dr

(
Evis(r)

ρvis(r)

)
+ Pvis(r)

d

dr

(
1

ρvis(r)

)
= 0, (4.35)

which leads to

ρ′vis(r) =
ρvis(r)E ′

vis(r)

Pvis(r) + Evis(r)
. (4.36)

If we take Eq. (4.36) and substitute in Eq. (4.34), we find the TOV equation for

“visible” matter as being

ρ′vis(r) = −G[Pvis(r) + Evis(r)]

[
1− 2Gm(r)

r

]−1{
4πr[Pvis(r) + PDM(r)] +

m(r)

r2

}
. (4.37)

Similarly, we can calculate the TOV equation for dark matter as

ρ′DM(r) = −G[PDM(r) + EDM(r)]

[
1− 2Gm(r)

r

]−1{
4πr[Pvis(r) + PDM(r)] +

m(r)

r2

}
.

(4.38)

We can rewrite the TOV equations for “visible” and dark matter as follows

dPvis(r)

dr
= − [Evis(r) + Pvis(r)] [m(r) + 4πr3P (r)]

r [r − 2m(r)]
, (4.39)

dPDM(r)

dr
= − [EDM(r) + PDM(r)] [m(r) + 4πr3P (r)]

r [r − 2m(r)]
, (4.40)

dmvis(r)

dr
= 4πr2Evis(r), (4.41)

dmDM(r)

dr
= 4πr2EDM(r). (4.42)
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In these equations, one has DM = FDM (BDM) for fermionic (bosonic) dark matter.

These equations are solved to model strange stars admixed with dark matter, and the

procedure adopted here is: there are four initial conditions defined as mvis(0) = mDM(0) =

0, Pvis(0) = P c
vis, and PDM(0) = P c

DM, where P c
vis and P c

DM are the central pressures related

to “visible” and dark matter, respectively, given by the equations of state presented in the

previous sections. For each set of initial conditions, the fourth-order Runge–Kutta method

is used to obtain pressures and masses as functions of r. As for the the radii Rvis and

RDM, we define them as quantities that lead to Pvis(Rvis)/P
c
vis = 0 and PDM(RDM)/P

c
DM = 0,

within a certain tolerance. These radii are also useful to determine Mvis ≡ mvis(Rvis), and

MDM ≡ mDM(RDM). Therefore, the total mass of the respective star is M = Mvis +MDM,

and its radius is R = Rvis if Rvis > RDM, or R = RDM if RDM > Rvis. This latter case

identifies dark matter halo configurations for the star of mass M and radius R. This

mechanism is repeated for each point of the input equations of state, resulting in the final

collected pairs (M,R) that form the mass-radius diagram.

In every star, a certain fraction of dark matter must be present in its composition,

i.e., a fixed value of FDM = MDM/M . To satisfy this condition, first all the inputs for

the TOV equations are constructed, namely P c
vis, Ec

vis, P
c
DM and Ec

DM (although not used

as initial conditions, the energy densities must also be provided since their relations with

the pressures are utilized to replace E ’s by P ’s in the TOV equations). The “visible”

matter equations of state (EOS) are straightforward, directly evaluated from Eq. (2.37).

For both DM models, fermionic and bosonic, its EOS are connected with the ones from

the “visible” sector through EDM = fEvis, where the energy density fraction, f , is a con-

stant (Xiang et al. 2014) varying from 0 to 1. In the case of the bosonic DM model, this

leads to an analytical expression for the dark boson density, given by

ρσ =
mσ

C2
σϕ

√1 +
2C2

σϕ

m2
σ

fEvis − 1

 , (4.43)

and, consequently, to a direct relation between dark pressure and quark energy density

that reads as

PBDM =
m2

σ

2C2
σϕ

√1 +
2C2

σϕ

m2
σ

fEvis − 1

2

. (4.44)

Nevertheless, there are no analytical expressions linking the equations of state for

quark matter and dark matter in the fermionic dark matter case. The free parame-

ters of the dark sector used here are mσ = 15 GeV (Rutherford et al. 2023), Cσϕ =

0.1 MeV−1 (Rutherford et al. 2023), mχ = 1.9 GeV, and CV = 3.26 fm. The last

two values, inside the ranges 0.5 GeV ⩽ mχ ⩽ 4.5 GeV (Calmet e Kuipers 2021) and
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0.1 fm ⩽ CV ⩽ 5 fm (Xiang et al. 2014), were taken from (Thakur et al. 2024). As an

illustration, we display BDM and FDM cases in Fig. 4.1 for fixed f .
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FIGURE 4.1 – Dark matter pressure as a function of its respective energy density for the fermionic and
bosonic cases.

Note that for the selected set of parameters, the fermionic equation of state is stiffer

than the BDM one, as expected. Given the relation EDM = fEvis, the two-fluid TOV

equations are solved for a wide range of values for f . For each solution corresponding to

a specific f , we evaluate FDM and select only the solutions where the (M,R) pairs that

meet the chosen value of FDM. The final outcome is a mass-radius diagram representing

quark stars, each containing a fixed fraction of dark matter.

It is important to point out that the two-fluid approach requires a thorough anal-

ysis of the stability of the resulting compact quark-dark matter star, as detailed

in (Barbat et al. 2024; Hippert et al. 2023). In a single-fluid system, the search for sta-

ble configurations involves examining the star’s response to radial oscillations through a

Sturm-Liouville problem for the relative radial displacement and the pressure perturba-

tion, both of which depend on time via eiωt, where ω is the eigenfrequency. Essentially,

the solutions to the resulting differential equations indicate that stable stars are those

for which ω2 > 0. Conversely, solutions with ω2 < 0 correspond to an exponentially

growing perturbation, ultimately leading to the collapse of the compact star, as discussed

in the previous chapter. For homogeneous stars case - those with a single phase - the

location of the last stable configuration (ω = 0) aligns with the maximum mass point in

the mass-radius diagram, corresponding to the condition ∂M/∂Ec = 0.

In the two-fluid approach, the generalization indicates that, at the onset of unstable
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configurations, the number of “visible” (Nvis) and dark (NDM) particles remain constant

under variations of Ec
vis and Ec

DM. As noted in (Hippert et al. 2023; Barbat et al. 2024), it

is analogous to diagonalizing the matrix ∂Ni/∂Ec
j (i, j=VIS, DM) to identify its associated

eigenvalues, which should be positive for stable stars configurations. However, as discussed

in (Hong e Ren 2024), dark matter models with central pressures in the range of P c
DM ≲

5.1 fm−4 are expected to produce stars in a stable region. Here, both DM models, bosonic

and fermionic, comply with this constraint. Moreover, the authors of (Liu et al. 2023;

Liu et al. 2024) have noted in their calculations, based on prior studies (Leung et al. 2012;

Leung et al. 2022), that the maxima of the fixed FDM curves correspond to the last stable

stars in the mass-radius diagram, similar to one-fluid systems. In our study, we adopt

the same procedure and exclude points beyond the maximum. The resulting mass-radius

diagrams for both models are presented in Fig. 4.2.



CHAPTER 4. STRANGE STARS ADMIXED WITH DARK MATTER 59

10 12 14 16
R (km)

0

0.5

1

1.5

2

2.5

M
 /

 M
O.

0
2 %
4 %
6 %
8 %
10 %

PSR J0704+6620

PSR J0030+0451
GW190425

HESS J1731-347

F
DM

(a) bosonic case
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FIGURE 4.2 – Mass-radius relations for different fractions of dark matter in each strange stars. Results
for (a) bosonic and (b) fermionic cases. The brown contours are related to data from the NICER mission,
namely, PSR J0030+0451 (Riley et al. 2019; Miller et al. 2019) and PSR J0740+6620 (Riley et al. 2021;
Miller et al. 2021), and blue ones are related to the GW190425 event (Abbott et al. 2020), all
of them at 90% credible level. The orange contours are related to HESS J1731-347 measure-
ment (DOROSHENKO et al. 2022). The violet horizontal lines are also related to the PSR J0740+6620
pulsar (Fonseca et al. 2021).

From this figure, it is clear that the maximum mass (Mmax) of each diagram decreases

as the dark mass fraction increases. This trend aligns with previous studies that predict a

reduction in stars configurations featuring a DM core (Nelson et al. 2019; Ellis et al. 2018;

Ivanytskyi et al. 2020; Leung et al. 2011; Karkevandi et al. 2022). As an illustration, we

plot Mmax versus FDM for both cases (BDM and FDM models) in Fig. 4.3.
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FIGURE 4.3 – Maximum total mass versus mass fraction for the strange-DM stars presented in Fig. 4.2.

It is noteworthy that there is a strong linear relationship between the maximum

mass and the dark matter content. Consequently, the rate of decreasing Mmax as a

function of FDM remains constant. This behavior is difficult to predict beforehand

due to the complex structure of both the two-fluid equations and the equations of

state employed as input - specifically, the EQP model for the “visible” sector and the

fermionic/bosonic models for the dark one. We also provide the slope of the linear fit,

which is −0.0343 for the bosonic and −0.0315 for the fermionic model; notably, both

slopes are quite similar. Furthermore, these values are very close to −0.0362, a result

obtained in (Mukhopadhyay e Schaffner-Bielich 2016) using a different quark model in

the ordinary matter sector: the MIT bag model. In their dark sector, they employed a

model consisting of fermionic particles with a mass of 100 GeV, which is more than 50

times greater than the mass used for the FDM model in our study. This similarity may

suggest a potential universality in the linear decreasing trend of maximum mass in quark

models mixed with dark matter.

In Fig. 4.3, the FDM model produces maximum masses slightly greater than the

ones generated from the BDM model, a feature observed for the range of parameters

investigated in our analysis. This indicates that the dark matter equations of state are

stiffer for the fermionic case with fixed dark matter content compared to the bosonic

description of the dark sector, as we have previously shown in Fig. 4.1. Although this

particular figure was plotted for a fixed f , the input equations of state remain the same,

so the curves produced for a constant value of FDM are also identical.
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Continuing with the characteristics related to Fig. 4.2, we emphasize that the differ-

ences between the complete mass-radius curves generated from the quark-FDM approach

and the quark-BDM one are minimal. We attribute this effect to the dominance of the

effective quark model over both the bosonic and fermionic dark matter models employed

in our analysis. To illustrate this point, we display in Figs. 4.4 the profiles of the same

star constructed by using both BDM and FDM models, with M = 1.81M⊙ and 10% of

dark matter in its composition.
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FIGURE 4.4 – Pressure (panels a and b) and enclosed mass (panels c and d) as functions of the radial
coordinate for a mass fraction equal to 10% and total stellar mass of M = 1.81M⊙. Full (dashed) lines:
visible (dark) matter. For the bosonic (fermionic) case in panel a (b), the energy density fraction is
f = 0.87 (0.6).

From this example, we see that the radius of the star is R = Rvis ≃ 13.6 (13.7) km,
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since Rvis > RDM in this case, using the bosonic (fermionic) model for the dark sector. The

primary change resulting from the switch between dark matter models is in the central

pressure (at r = 0) in both sectors. However, Rvis remains nearly identical for both

models, determining the final star’s radius based on the criterion that R corresponds to

the outermost radius between Rvis and RDM. This is not the case for stars that have a dark

matter halo surrounding them. We can observe this effect in the example of M = 1.86M⊙

and FDM = 10%, as shown in Fig. 4.5, particularly for the strange star constructed with the

inclusion of bosonic dark matter. In this figure, we present two parametrizations of the
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FIGURE 4.5 – Pressure as a function of radial coordinate for a mass fraction equal to 10% and total
stellar mass of M = 1.86M⊙. Full (dashed) lines: visible (dark) matter. Strange star admixed with the
bosonic dark matter with mσ = 15 GeV (panel a) and mσ = 2 GeV (panel b).

BDM model, specifically with different dark boson masses: mσ = 15 GeV (standard value

previously used) andmσ = 2 GeV. Notice that reducing the dark particle mass leads to the

condition RDM > Rvis, consequently producing the formation of a DM halo. In this case,

the radius of the final star changes from R = Rvis ≃ 13 km to R = RDM ≃ 19 km. Since

fermionic and bosonic models generate similar mass-radius diagrams formσ = 15 GeV and

mχ = 1.9 GeV, the decrease in mσ will create a more pronounced difference between the

diagrams obtained from FDM model with mχ = 1.9 GeV with those from the BDM model

with mσ = 2 GeV, due to the emergence of DM halos in the latter. These features are

compatible with findings in studies such as (Karkevandi et al. 2022), where the authors

utilized the two-fluid approach with bosonic DM and in (Routaray et al. 2023) which

applied a fermionic dark matter model to describe stellar matter. In both cases, the

formation of DM halos is observed when the mass of the dark particles (whether bosons

or fermions) is decreased. While those studies focus on neutron stars using hadronic

models for the visible matter sector, our work examines strange stars, yet exhibits the
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same effect.

Last but not least, we remark on the compatibility of our results with

the recent observational astrophysical data from the NICER mission concerning

the millisecond pulsars PSR J0030+0451 (Riley et al. 2019; Miller et al. 2019) and

PSR J0740+6620 (Riley et al. 2021; Miller et al. 2021), as well as data from the grav-

itational wave event GW190425 (Abbott et al. 2020) analyzed by LIGO and Virgo Col-

laboration. This consistency is also seen with the PSR J0740+6620 data extracted

from (Fonseca et al. 2021), which corresponds to a mass of M = (2.08 ± 0.07)M⊙

at 68.3% of credible level, along with the compact star designated as HESS J1731-

347 (DOROSHENKO et al. 2022). These findings suggest possible scenarios in which

strange stars can contain dark matter in their interiors.



5 Conclusion

The first proposal presented in this work brought us interesting results concerning the

dynamics of the quarks phase transition at zero temperature. From a density-dependent

quark model, with its thermodynamic consistency verified, we performed the introduction

of the Polyakov loop (Φ) in its equations of state. By applying the recent values for

current quark masses, all of them extracted from PDG, we were able to describe a system

more similar to what is believed to exist.

For the symmetric matter case, we could analyze the confinement/deconfinement phase

transition through different thermodynamic quantities, and also identify the particular

chemical potential in which it happens. For the stellar matter case, we could also analyze

the model predictions and quark stars more specifically. The asymptotic freedom of quarks

at high densities was analyzed through the baryonic density, in which a discontinuity

exactly at the transition point was identified, and the deconfined phase was found to be

attained for values of ρb in a range of around 3 to 7 times the nuclear matter saturation

density. In sequence, the quark masses analysis showed that the emergence of Φ ̸= 0

solutions led these quantities to a strong reduction, indicating a behavior similar to a

chiral symmetry restoration of the system.

The EOS analysis of the PEQP model verified that the decreasing of the additional free

parameter of the model increases the transition pressure plateau and the gap in the energy

density presented by the confinement/deconfinement phase transition. For the mass-

radius profiles themselves, the PEQP model was capable of generating quark stars with

stable configurations that agree with the recent observational data provided by the NICER

mission concerning the millisecond pulsars PSR J0030+0451 and PSR J0740+6620, and

by the LIGO and Virgo Collaboration regarding the gravitational wave event named

GW190425.

For the second proposal of this work, we explored the possible scenarios regarding

the existence of strange quark stars that incorporate dark matter. We employed the

equiparticle (EQP) model to describe strongly interacting matter, where the masses of the

constituent quarks (u, d, s quarks) are affected by the medium through specific baryonic

density-dependent functions. The parameters in these functions were selected based on
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an analysis of the stability window of stellar matter, ensuring that they yield lower energy

per baryon compared to iron nuclei.

The dark matter content of the system was examined through two distinct models: a

fermionic model and a bosonic one. The fermionic model is described by a Lagrangian

density in which the dark spinor experiences a repulsive interaction from a dark vector

field. The equations of state in this model are determined by two free parameters: the dark

fermion mass (mχ), and the ratio of the vector interaction strength (gV ) to the vector field

mass (mV ). We consider these quantities within the ranges of 0.5 GeV ⩽ mχ ⩽ 4.5 GeV

and 0.1 fm ⩽ CV = gV /mV ⩽ 5 fm. In the bosonic model, we adopt a version that neglects

interactions between the dark boson and the quarks. Similar to the fermionic model, we

incorporate a vector interaction, which is essential to prevent the star from collapsing

due to the lack of degeneracy pressure. We derive the final equations for energy density

and pressure, which also depend on two free parameters: the dark scalar mass (mσ) and

Cσϕ = gσ/mσ, where gσ is the interaction strength of the dark scalar field with the dark

vector field. Here we consider values compatible with 10−2 MeV ⩽ mσ ⩽ 108 MeV and

10−2 MeV−1 ⩽ Cσϕ ⩽ 103 MeV−1.

With the luminous and dark matter models established, we allowed both sectors to

interact solely through gravity using a two-fluid approach. Our findings suggest that

strange stars mixed with dark matter, characterized by a fixed dark matter fraction,

could represent a viable scenario consistent with the astrophysical observational data

previously mentioned with the inclusion of the measurement related to the compact star

named HESS J1731-347. Additionally, we also identify stars that have dark matter halo

configurations for smaller dark particle masses.

As for prospects, we are interested in continuing to work with the EQP and PEQP

models to explore their capabilities in different scenarios that concern strange matter,

such as hybrid stars and heavy ion collisions, for instance. To finish, let me address here

that the work performed in chapter 3 was published as a paper in the Physical Review

D (PRD 108, 083006). As for the work performed in chapter 4, the paper concerning its

study was also submitted to a scientific journal with a good impact factor, and we are

waiting for the response.



Bibliography

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T. D.; ACERNESE, F.; ACKLEY, K. et

al. Gw170817: Observation of gravitational waves from a binary neutron star inspiral.

Phys. Rev. Lett., American Physical Society, v. 119, p. 161101, Oct 2017. Available at:

https://link.aps.org/doi/10.1103/PhysRevLett.119.161101. 14

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T. D.; ACERNESE, F.; ACKLEY, K.;

ADAMS, C. et al. Multi-messenger observations of a binary neutron star merger*. The

Astrophysical Journal Letters, The American Astronomical Society, v. 848, n. 2, p. L12,

oct 2017. Available at: https://dx.doi.org/10.3847/2041-8213/aa91c9. 14

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T. D.; ACERNESE, F.; ACKLEY et al.

Gw170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett.,

American Physical Society, v. 121, p. 161101, Oct 2018. Available at: https://link.aps-

.org/doi/10.1103/PhysRevLett.121.161101. 14

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T. D.; ABRAHAM, S.; ACERNESE, F. et

al. Gw190425: Observation of a compact binary coalescence with total mass 3.4 m. The

Astrophysical Journal Letters, The American Astronomical Society, v. 892, n. 1, p. L3,

mar 2020. Available at: https://dx.doi.org/10.3847/2041-8213/ab75f5. 14, 44, 45, 59, 63

ADAMS, J. A.; SARKAR, S.; SCIAMA, D. W. Cosmic microwave background anisotropy

in the decaying neutrino cosmology. Monthly Notices of the Royal Astronomical Society,

v. 301, n. 1, p. 210–214, 11 1998. ISSN 0035-8711. Available at: https://doi.org/10.1046-

/j.1365-8711.1998.02017.x. 15, 47

AFFLECK, I.; DINE, M. A new mechanism for baryogenesis. Nuclear Physics B, v. 249,

n. 2, p. 361–380, 1985. ISSN 0550-3213. Available at: https://www.sciencedirect.com-

/science/article/pii/0550321385900215. 48

AGHANIM, N.; ARNAUD, M.; ASHDOWN, M.; AUMONT, J. e. a. Planck 2015 re-

sults - xi. cmb power spectra, likelihoods, and robustness of parameters. Astronomy and

Astrophysics, v. 594, p. A11, 2016. Available at: https://doi.org/10.1051/0004-6361-

/201526926. 15, 47



BIBLIOGRAPHY 67

ALFORD, M. G.; SCHMITT, A.; RAJAGOPAL, K.; SCHÄFER, T. Color supercon-
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DEXHEIMER, V.; GOMES, R. O.; KLÄHN, T.; HAN, S.; SALINAS, M. Gw190814 as

a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C,

American Physical Society, v. 103, p. 025808, Feb 2021. Available at: https://link.aps-

.org/doi/10.1103/PhysRevC.103.025808. 28, 32



BIBLIOGRAPHY 69

DEXHEIMER, V. A.; SCHRAMM, S. Novel approach to modeling hybrid stars. Phys.

Rev. C, American Physical Society, v. 81, p. 045201, Apr 2010. Available at: https:/-

/link.aps.org/doi/10.1103/PhysRevC.81.045201. 28, 32, 33

DOROSHENKO, V.; SULEIMANOV, V.; PÜHLHOFER, G.; ANDRESANTAN-
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RATTI, C.; RÖßNER, S.; THALER, M.; WEISE, W. Thermodynamics of the pnjl model.

The European Physical Journal C, v. 49, p. 1434–6052, Jan 2007. Available at: https:/-

/doi.org/10.1140/epjc/s10052-006-0065-x. 28, 31

RATTI, C.; THALER, M. A.; WEISE, W. Phases of qcd: Lattice thermodynamics and

a field theoretical model. Phys. Rev. D, American Physical Society, v. 73, p. 014019, Jan

2006. Available at: https://link.aps.org/doi/10.1103/PhysRevD.73.014019. 28, 31, 34

REINHARDT, G. Field Quantization. [S.l.]: Springer, 1996. 29

RILEY, T. E.; WATTS, A. L.; BOGDANOV, S.; RAY, P. S. et al. A nicer view of

psr j0030+0451: Millisecond pulsar parameter estimation. The Astrophysical Journal

Letters, The American Astronomical Society, v. 887, n. 1, p. L21, dec 2019. Available at:

https://dx.doi.org/10.3847/2041-8213/ab481c. 14, 44, 45, 59, 63

RILEY, T. E.; WATTS, A. L.; RAY, P. S.; BOGDANOV, S. et al. A nicer view of the

massive pulsar psr j0740+6620 informed by radio timing and xmm-newton spectroscopy.

The Astrophysical Journal Letters, The American Astronomical Society, v. 918, n. 2,

p. L27, sep 2021. Available at: https://dx.doi.org/10.3847/2041-8213/ac0a81. 14, 44, 45,

59, 63

ROBERTS, C. D.; WILLIAMS, A. G. Dyson-schwinger equations and their applica-

tion to hadronic physics. Progress in Particle and Nuclear Physics, v. 33, p. 477–575,

1994. ISSN 0146-6410. Available at: https://www.sciencedirect.com/science/article/pii-

/0146641094900493. 13
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