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Abstract

In this study, we investigate the impact of dark matter (DM) and short-range correla-
tions (SRC) on the physical properties of neutron stars (NS). In the second chapter we
enhance a van der Waals-type model by incorporating the effects of short-range correla-
tions (SRC). The attractive and repulsive components of the nucleon-nucleon interaction
are treated as density-dependent functions. Specifically, we adopt the Carnahan—Starling
(CS) approach for the repulsive term and employ a suitable expression for the attractive
term to replicate the Clausius (C) real gas model structure. The resulting model, referred
to as the Clausius—Carnahan—Starling (CCS)-SRC model, demonstrates its capability to
reproduce the flow constraint at high-density regimes of symmetric nuclear matter, with
incompressibility values within the range of Ky = (240 £ 20) MeV.

In the context of stellar matter, the CCS-SRC model shows good agreement with recent
astrophysical observations, including mass-radius contours and dimensionless tidal de-
formability constraints obtained from gravitational wave data associated with the GW170817
and GW190425 events, as well as observations from NASA’s Neutron Star Interior Com-
position Explorer (NICER) mission. Furthermore, the slope of the symmetry energy (L)
predicted by this model aligns with recent results, consistent with those reported by the
updated Lead Radius Experiment (PREX-2) collaboration. Our findings indicate that
higher values of Ly are preferred for ensuring simultaneous compatibility with astrophys-

ical data, while lower values of Lg fail to meet this criterion.

In the third chapter, we incorporate dark matter (DM) and SRC into the relativistic
mean-field model FSU2R using the fermionic and bosonic dark matter models. Both
models include a repulsive vector interaction, which is particularly crucial for the bosonic
model, as it prevents the collapse of the star in the absence of degeneracy pressure.
We explore its effects on the mass-radius (MR) diagram. Our findings show that both
fermionic and bosonic DM models influence the MR diagram in a similar manner. The
inclusion of SRC results in a notable increase in the maximum mass of NS balancing the
reduction yielded by the inclusion of DM. Our findings suggest the existence of potentially
stable configurations of neutron stars that are consistent with observations from PSR
J0030+0451, PSR J0740+6620 and NICER.
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1 Introduction

The universe possesses many kinds of interesting structures and among them compact
objects, remnants of massive stars (mass bigger than six to eight times that of our sun)
that can be identified as stellar black holes, white dwarfs and neutron stars (NS), with
these later system subject of intense studies nowadays. They are one of the densest
objects in the universe and their internal structure is not fully known. The high-density
environment found in these objects makes them excellent natural laboratories for the study
and development of nuclear physics theories. Likewise, progress in theoretical modeling

could help to predict and outline the internal content and thermodynamics of NS.

The number of NS is estimated to be around one billion in Milky Way, but only a
few thousand have been already observed (CAMENZIND, 2007). However, this scenario
has been changing with advances in observational technologies of gravitational waves and
high-frequency telescopes. The operating missions such as the Neutron Star Interior Com-
position Explorer Mission (NICER) and interferometers such as the Laser Interferometer
Gravitational-Wave Observatory (Abbott et al., 2009, LIGO), VIRGO (Accadia et al., 2012)
and KAGRA collaboration have increased on a daily basis the number of detected ob-
jects. The fourth LIGO observation run started in the middle of 2023 with a sensitivity
of 160-190 megaparsecs (Mpc) for binary neutron star mergers. That means an increase
in sensitivity of 35%, and certainly, a large amount of data (LIGO-CALLTECH, 2022).

With the NS data increasing and the constraints brought by modern telescopes and
interferometers, theoretical research in nuclear physics is more than ever a prominent field,

from which many scientific developments are expected to come.

1.1 Neutron Stars

Initially, it is indispensable that one understands what is a neutron star and how it
is formed. Neutron stars are the final evolutive stage of stars with masses greater than
8-10 solar masses (CAMENZIND, 2007). Such stars, in their final moments, such stars have
accumulate in their core elements of the iron family. Fe has the highest binding energy,

so further fusions do not happen anymore in that region. Immediately outside the core, a



CHAPTER 1. INTRODUCTION 16

silicon shell is still being converted into iron. That implies in a Fe-rich region expanding

until it gets close to the Chandrasekhar mass.

Without producing energy, gravity promotes a contraction in the inert iron core
(FOGLIZZO, 2017). Because of the compression, Fe nuclei starts to capture electrons,
reducing the outwards electron pressure inside the core and emitting neutrinos. These
neutrinos carry energy away from the star, increasing, even more, the inwards pressure
and so the density. With high densities (10'° g cm™3) (CERDA-DURAN; ELIAS-ROSA, 2018),
photons from the electron capture and other sources trigger the photo-disintegration of
iron nuclei, which starts to decay into « particles (KIPPENHAHN et al., 2013). The se-
quence of events that dictates the final of the star’s life is now complete. From there on,

the star core can not counter the self-gravity, so it will collapse in the next few minutes.

The processes of cooling and the loss of leptons by the star’s core speed up the star’s
collapse by decreasing its temperature (NEGREIROS et al., 2018; FISCHER et al., 2016).
Density increases up to 102 g ecm™. With such high density, not even neutrinos escape
from the core, the deleptonization stops and the temperature stagnates. Rapidly the
beta-equilibrium is achieved, which means that no more neutrinos are generated and the
net number of electrons remains stable. With no more energy escaping, the core keeps
shrinking to the point that atomic nuclei are disintegrated into their nucleon components
(HANSEN et al., 2012). This process will stop when the densities reach nuclear values, with
repulsive short-range forces starting to act and matter becoming almost incompressible.
At a certain point, the interaction between nucleons is the most significant source of

pressure and the contraction stops (JANKA, 2012).

After stopping the contraction, external parts of the core that are shrinking to centre
shock with the 10 kilometers radius stiffened region, rebounding towards the outer parts
which are still falling. When the collision happens, a shock wave is formed. The kinetic
energy transmitted by the shock photo-dissociates the softer core parts, and as a conse-
quence shock weakens, stalling about 100 kilometers from the centre, propagating now
in a non-radial direction. In that way, the shock wave is not sufficient enough to expel
the other layers of the onion-structured star (JANKA, 2012; CERDA-DURAN; ELIAS-ROSA,
2018).

What happens next is uncertain. The more accepted theory, supported by modern
computational simulations says that under specific conditions a small fraction of the en-
ergetic neutrinos coming from the photo-dissociation can be retained behind the shock.
Neutrino’s energy will then revive the shock, promoting its expansion through the outer
core and other strata of the star. This mechanism is called delayed neutrino heating, it
will explode the star, expelling most of the star’s core together with all external layers
(JANKA; MULLER, 1996; BURROWS et al., 1995; BETHE; WILSON, 1985). The about 10

kilometers core remnants, a super-dense region composed basically by nucleons and other
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fundamental particles, become the so-called neutron star. It is worth mentioning that
if the neutrino heating fails for whatever reason, the mass excess will promote a gravi-
tational collapse that will break even the short-range repulsion, what emerges then is a
stellar black hole (CERDA-DURAN; ELIAS-ROSA, 2018).

The neutron star is usually divided into five structures, from innermost to outermost,
they are inner core, outer core, inner crust, outer crust and atmosphere. Some authors
consider another region between the crust and the atmosphere, called envelope or ocean.
In this work, we will not use this division, but we consider the ocean as a part of the outer

crust.

The atmosphere is the NS’s thinnest part, with a few centimeters thick. It has as main
component ionized hydrogen atoms and a plasma of electrons, once heavier elements will
probably be gravitationally attracted to the star’s interior. In despite of the fact that the
atmosphere is thin, it is fundamental to the modeling of the electromagnetic spectrum.
From observations of the X-ray spectra emitted by this region, one can deduce properties
of the star such as effective temperature and magnetic field pattern (POTEKHIN et al.,
2015). Furthermore, in a non-trivial and under specific conditions (e.g. being in a binary
system), one can obtain pieces of information from the atmosphere about neutron star’s
radius and temperature. (DEGENAAR; SULEIMANOV, 2018)

Innermost to the atmosphere, one may find the outer crust. In this region, the rel-
atively low density still allows nucleons to group as heavy atomic nuclei. Thence, the
outer crust is composed of ions and electrons. Its typical densities go from 10* g/cm?
to 10! g/cm? (Piekarewicz, 2022). At the lower density areas, the nucleons are grouped
mainly as °Fe. Moving to densest regions, one may also find, for example, ions of 92Ni,
%6Ni, 81Se and even ?"Kr (Riister et al., 2006; Anti¢ et al., 2020). As matter of fact, several
other elements and isotopes exist within the outer crust and this topic has been largely
investigated with advances in computational methods such as neural networks, machine

and deep learning (NEUFCOURT et al., 2020; LOVELL et al., 2022).

The third NS region is the inner crust. There the density has grown to the point that
atoms suffer inverse §-decay becoming neutron-rich. With density continuously growing,
the permanence of nucleons inside nuclei is no more energetically favorable, so the neutrons
start to drip off the nuclei. The density in which such a phenomenon happens is known
as neutron drip density and the region where it first occurs is the beginning of the inner
crust. As one goes to most internal regions the medium is even more neutron-rich. At
this region’s top places, the atomic nuclei are still relatively well organized in a lattice,
but now with a neutron gas filling the structure. The neutrons inside the gas will form
Cooper pairs, analogously to what happens with electrons in terrestrial superconductors
(PAGE et al., 2009; GRABER et al., 2017).
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At the bottom of the inner crust, nucleons are dissolved in the environment, so the
long-range Coulomb repulsion amidst nuclei does not exist anymore. In that regime, the
pressure is enough to sufficiently approach nucleons in a way that the short-range attrac-
tion is comparable to the long-range Coulomb force. That will lead to the called “Coulomb
frustration”. The matter then organizes itself as a “nuclear pasta”, a complicated and with-
out terrestrial counterpart structure (Piekarewicz, 2022; DEGENAAR; SULEIMANOV, 2018).
With densities of one to two times the nuclear saturation density (pp), no more atomic
nuclei will be found. The nuclear pasta decomposes into neutrons, a small fraction of
protons and electrons marking the beginning of the outer core. Muons will also be found
and all these nucleons (and muons) are in beta and chemical equilibrium. Neutrons are
expected to be in a super-fluid state, behaving as a superconductor (Sauls, 2019; Lopez et
al., 2022).

Inwards to the outer core, densities will surpass ten times the saturation density,
marking the transition to the inner core (DEGENAAR; SULEIMANOV, 2018). Above 10p,
due to the high Fermi energies, it is energetically favorable to form hyperons than keep
adding protons and neutrons to the medium (OERTEL et al., 2015). Apart from hyperons,
other exotic matter states are also believed to exist, such as pions, kaons and deconfined
quarks. However, our poor knowledge of the strong interaction behavior under high
densities restricts the theoretical calculations and so further conclusions. (Piekarewicz,
2022)

Our knowledge about regions such as the atmosphere and the outer crust of neutron
stars is relatively well established. Direct observations from electromagnetic spectra (e.g.
X-ray) and the use of constraints from terrestrial laboratories (as finite nuclei experiments)
(Carlson et al., 2022) allow us to set with some certainty its micro-physics and composi-
tions. In another way, if one is treating the inner core, outer core and bottom layers of
the inner crust, the description of its phenomenona relies mainly on theoretical models
constrained by astronomical or nuclear observations. Those models are expected to repro-
duce the nuclear properties observed in finite nuclei. Some properties to be obtained are
the binding energy, the saturation density, and the symmetry energy, also called bulk pa-
rameters. Furthermore, one should also obtain consistent thermodynamics, summarized

in the equations of state (EoS).

The equations of state are essential quantities used to determine the mass and ra-
dius of NS, found by solving a set of coupled differential equations, named as Tolman-
Oppenheimer-Volkoff (TOV) equations (OPPENHEIMER; VOLKOFF, 1939a; TOLMAN, 1939a).
They are a direct consequence of general relativity. In the NS, the matter is so concen-
trated that Newton’s gravity is no longer enough to describe the massive interaction, so
one must consider the correction into the hydrostatic equilibrium equations. For a star

static, spherically symmetric and with a negligible magnetic field the TOV are given by
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dP(r) [e(r) + P(r)][m(r) + 4mr3 P(r)]
dr 2 [1 _ 2m<r>} ’

(1.1)
dm(r)

dr

= d7r?e(r).

The relationship between pressure P(r), energy density €(r) and density p is dictated
by the EoS. It is worth mentioning that EoS are not unique for a neutron star. For
instance, it is common to describe a single neutron star writing different EoS for its
different regions. As EoS are related to energy density and pressure, it is natural to
expect that its form is linked to the description of the system microphysics, or at least
reproduce its observable in a satisfactory way. Many approaches are possible to construct
the EoS. There are multiple types of models and treatments. They may be relativistic
or not, phenomenological or not, with hadrons only or also including quarks, and so on.
Some of models will be discussed in the next section. Those used in this work will be

described in a more specific and complete way in the next chapters.

1.2 Main models and treatments

1.2.1 Brueckner-Hartree-Fock Treatment

An important class of methods is the ab initio methods, in which realistic interactions
are considered. The most used in this context is the Brueckner-Hartree-Fock (BHF).
In this approach, the interaction of every particle is considered. The effective potential
acting in one particle is taken as a combination of the potential generated by all oth-
ers. The effective interactions are concentrated in the G-matrices, which arise from the
solutions of the Bethe-Goldstone equation (BETHE, 1971), written in a first chosen ba-
sis. The G-matrices will compose the Hartree-Fock equations, becoming from the energy

minimization using the variational principle.

In this way, for a n-particle system, an ansatz state is proposed as a set of n single-
particle functions. Another set should be found by using the first one applied into the
Hartree—Fock equation. This new set will generate new G-matrices, which should generate
another set of solutions. This procedure is taken iteratively until one achieves the desired
convergence. By using this procedure one should find the individual energies of each
particle (RING; SCHUCK, 2004). From the obtained G-Matrix, the thermodynamics and
bulk parameters emerge. Although this method was conceived as a quantum method, a

three decades old relativist treatment (RBHF') also has been used in several works (TONG
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et al., 2022; ZHANG et al., 2022; SHEN et al., 2016), increasing the range of applications as

well as the model’s quality in terms of experimental data reproduction.

A work done using the BHF is the one by Fan et al. (2022). In their study, the called
extended BHF was applied to finite nuclei. The authors modified the model to include in
it the proton-neutron short-range correlations. This kind of correlation receives a detailed
discussion forward in this work. Once with the theoretical results, they compared it with
data from nuclear experiments, finding a satisfactory correspondence. Afterward, they
applied the constructed model to several isotones of multiple elements, finding that the
number of correlated pairs for a same element increases with the number of neutrons in
it.

The BHF or the RBHF are powerful treatments, however, multiple problems can
arise. The G-Matrices are frequently energy-dependent and this energy dependency is
not uniquely defined. This can lead to a difficulty that is choosing the most satisfactory
dependence form. Besides, if one is treating very large and complex systems with the
RBHF, G-Matrices will certainly generate unfriendly math. Another usual problem is
the change of basis in each iteration. Once G-Matrices have been changed after iteration,
the initial basis also has to be changed. That sequence of required changes leads to a
considerable numerical effort. (SHEN et al., 2016; Oertel et al., 2017)

1.2.2 Skyrme and Gogny Models

First proposed by T.H.R. Skyrme (1958), the Skyrme model belongs to a class of
the non-relativistic phenomenological models, in which a set of parameters is fitted to
reproduce the nuclear matter and/or finite nuclei properties. This approach no longer can

be understood as an ab-initio one.

Nuclear forces are known to be of a short range. If one is using a realistic description
the acting forces should have a finite range. In that way, some phenomenological models
assume that particles only interact if they are in contact, that is, the force only acts if the
distance between particles is zero. This kind of treatment is called zero-range treatment.
This is the approach taken by the Skyrme model, in which the effective potential carries a
dependence on Dirac’s function. Once the potential depends on the delta function instead
of more complicated ones, the model is very simple to be treated (SKYRME, 1958; RING;
SCHUCK, 2004).

In its original form, the Skyrme potential presents a three-body term added to a two-
body interaction term written as a short-range momentum expansion. The three-body
interaction term contributes with a parameter to be settled and the two-body with seven.

Vautherin e Brink (1972) shown that the three-body interaction term is equivalent to
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a density-dependent two-body term. Such formalism is powerful because it allows the
inclusion of the microscopic density dependence, as a phenomenological representation,
into the Skyrme model. One may notice that it is usual to treat Skyrme potential under
mean field approximations (which will be discussed in more detail later) and was used by
Vautherin e Brink (1972). Several notorious applications of Skyrme-like models have been
done in the past century. Vautherin e Brink (1972) have calculated the binding energy
and the nuclear radii of multiple chemical elements. Beiner et al. (1975) have studied the

effects of pairing and deformation correlations on the binding energy.

As may be clear now, calculations using the Skyrme potential will generate density-
dependent equations of state. For that reason, if one uses it in systems with high densities,
divergences can appear. Recently, authors have proposed many extensions to the original
Skyrme model over the years, intending to use this kind of model in systems such as
Neutron Stars. A detailed review of a huge collection of models can be found in Dutra et
al. (2012). Besides, successful applications in NS are described in works such as Tsang et
al. (2019) and Zhang e Chen (2016).

Zero-range models such as the Skyrme model can lead to divergences when describing
some phenomena such as pairing correlations. To solve problems related to contact-only
interaction, Gogny proposed a model similar to the Skyrme one, but instead of Dirac’s
delta functions, he proposed functions with a finite acting range. As an advantage, one
may notice the possibility of describing the realistic medium and long-range part of the
interactions with this kind of representation (DECHARGE; GOGNY, 1980).

As Gogny-like models use finite range functions, it is more laborious to construct and
apply it. The expressions generated are more sophisticated and demand more effort to
do the numerical calculations. Being so, very few alternative Gogny models have been
proposed since the original one, although, some recent applications can be seen in the
context of neutron stars. Mondal et al. (2020) constructed in his work an EoS for the
inner crust using three finite range Gogny forces, considering pairing correlations and their
influence in the global properties of the NS as mass and radius. Another prominent work
is (Vidas et al., 2021) in which a new Gogny model was built aiming to generate stiffer EoS
for NS, keeping the already good description of finite nuclei. With the model ready, they
compared the results achieved to other well-settled models, finding a good agreement with

observational data.

Even being powerful methods, Skyrme and Gogny models have some limitations. The
first and more obvious one is the fact that they are non-relativistic. A huge analysis done
by Dutra et al. (2012) has shown that for more than 200 different Skyrme-like models,
only half a dozen satisfy all the required constraints. In another hand, 66 of them satisfy

all except one, which is still a good result for a relatively simple model.
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1.2.3 Other models

Models such as the Skyrme and Gogny or treatments such as the (Dirac-)Brueckner-
Hartree-Fock are the most famous used to describe finite or infinite nuclear matter, as
well as NS. Many other models exist, though. Within the class of ab initio methods,
we highlight some: Green’s function, variational, quantum Monte Carlo and perturbative
quantum chromodynamics methods(Oertel et al., 2017). Within the class of the phenomeno-
logical, the remnant fundamental type of model is the one with meson-exchange in the
relativistic mean-field approximation. These models are called RMF and will be discussed

in the next section.

Some models can arise directly from adaptations of thermodynamical descriptions of
real or quantum gases. This class of model is useful due to its simplicity. With a relatively
simple form, one can try to incorporate complex phenomena present in the nuclear matter

such as the so-called short-range correlations (SRC).

1.3 Short-range correlations

To understand the SRC, one must first look into a specific way of describing nuclear
matter. Inside the atomic nuclei, nucleons can be considered Fermi particles. Being so, it
is valid to describe the core as a bound system composed of interacting fermions. Within
this context, each component particle must be restricted to a maximum momentum and
energy, the Fermi ones. To obtain the complete form of energy, one must solve the N-
body Schrodinger equations considering the potential outcoming from each one of the

other nucleons.

An alternative approach is the called “shell model”. In this treatment, the nucleon
is supposed to move independently of all others, under an average potential from the
remaining nucleons and generated by the strong interaction (HEYDE, 1994). The shell
model is successful to describe many atomic nuclei, predicting shells filled for atoms with
2, 8, 20, 28, 50, 82 or 126 protons or nucleons. (Souza et al., 2020).

Disagreeing with the shell model, studies from the late years of the twentieth century
and modern scattering experiments have shown that of all nucleons, only 75 to 80% are
in the independent state. The other 25 to 20% are linked in pairs to other nucleons.
An important work regarding this matter is the one by Ramos et al. (1989). In their
study, the authors investigated the role of short-range correlations in shaping the single-
particle properties of nuclear matter, employing the self-consistent Green function (SCGF)
method within the ladder approximation. Unlike conventional Brueckner-Hartree-Fock
(BHF) approaches, the SCGF framework treated particle-particle (pp) and hole-hole (hh)
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propagations symmetrically, capturing both attractive and repulsive contributions to the
self-energy. They used Reid’s soft-core interaction, a semi-realistic nuclear potential, to
avoid pairing instabilities and ensure numerical stability. The primary objective of the
study was to compute the self-energy, spectral functions, and momentum distributions
at various densities, offering a detailed view of how short-range forces modified nucleon
interactions. This method provided refined predictions of quasi-particle properties, such

as effective masses, which are essential for understanding nuclear dynamics.

The findings revealed that short-range correlations redistributed a significant fraction
of the single-particle strength to high-energy states, contradicting the traditional assump-
tion that most nucleon strength is concentrated near the Fermi surface. The study re-
ported a depletion of approximately 13% in the momentum distribution at normal nuclear
densities, caused by the inclusion of high-momentum components stemming from short-
range repulsions. Additionally, by incorporating both pp and hh propagations, the model
captured critical contributions to the nucleon self-energy, particularly at high densities,
where hole-hole correlations became increasingly relevant. Ensuring consistency between
these interactions enabled accurate calculations of the real and imaginary components of

the self-energy, providing deeper insights into the energy broadening of nuclear states.

The results suggested that the quasi-particle model remained relevant across a broader
range of energies in nuclear matter compared to simple Fermi liquids. The authors em-
phasized that while the shell model remained effective for describing nuclear structure
at low excitation energies, it had to be supplemented with corrections for short-range
correlations to align with experimental observations. This integration of quasi-particle
theory with advanced correlation treatments allowed for a more accurate description of

phenomena such as partial shell occupancy and quenching of transition strengths.

In the beginning of the twentieth one century, an experiment using electron-induced
quasi-elastic knockout shed light on the effects of short-range correlations. In these experi-
ments, a nuclear target was hit by electrons expelling a nucleon from the core. Surprisingly,
in 20 to 25% of the cases another nucleon was also expelled, leading to the conclusion of
some kind of correlation. (CLAS Collaboration, 2018)

Experiments also have shown that the correlated pairs possess relative momentum
higher than the Fermi one, but with centre-of-mass momentum smaller. The graphics of
the distribution function of the nucleons versus the Fermi momentum is now modified due
to the inclusion of SRC. The high-momentum nucleons will originate a tail beyond the
Fermi momentum kp. That tail is known as the high-momentum tail, or shortly, HMT.
(CLAS Collaboration, 2018; CAT; LI, 2015a)

It is worth mentioning that SRC act in intermediate to short distances (< 1.2 fm). In

this way, the study of SRC is fundamental to help improving our knowledge about the
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dynamics of the quantum chromodynamic theory (QCD). In so short distances, interesting
subnuclear effects could appear and phenomena such as quark interchanges and chiral
symmetry probably have an important role. Indeed, Fomin et al. (2017) have argued that
superfast quarks could be probed by the short-range correlations if it was explored with
higher energy colliders. More than that, the authors argued that studies in this direction
will probe the QCD under extreme conditions, opening many possibilities to explore the

nuclear medium with the chromodynamics theory.

In addition to applications in subnuclear physics, the SRC also has been applied within
the context of high-density physics, more explicitly, in NS modeling. Recent works have
shown that this correlation strongly influences NS properties and its EoS. In recent work,
Hen et al. (2015a) have calculated, using many-body theories, the correction to the sym-
metry energy promoted by the insertion of SRC. The value found was very smaller than
the symmetry energy for the matter without correlations. The significant difference be-
tween values with and without SRC changes considerably the slope and skewness of the
system. The slope is proportional to the first derivative of the symmetry energy and the

skewness to the second.

Another rich discussion was done by Souza et al. (2020). In their work, SRC were
included in an RMF modeling, named as RMF-SRC. From this model, they obtained
the corresponding EoS and mass-radius diagram. For a mass of 1.4M, they found a
radius value compatible with the NICER data (Miller et al., 2019). Comparing the cases
with and without SRC, it was clear that the EoS with the effect included become stiffer.
They also showed that the inclusion of SRC favors the tidal deformability (TD) to be in
accordance with observational data. Tidal deformability (A) measures how prone a star
is to deform due to tidal force. Higher tidal deformability means that a star is more prone
to deform. The value of TD for a 1.4M neutron star must be of A; 4 = 1907359 (Abbott
et al., 2018) and authors have found a value of A4 inside the confidence interval, what
did not happen without SRC. In general, authors have demonstrated that the inclusion of
SRC could help to find mass-radius diagrams and tidal deformability in agreement with

observational data.

Several other works have included SRC in treatments of finite or infinite nuclear matter,
as the reader can found in Souza et al. (2020), Guo et al. (2021a), Lu et al. (2021) and
Dutra et al. (2022),for instance. Due to the importance of inclusion and utilization of
SRC in NS description, we will consider this phenomenon in the next sections, since the
comprehension of its effects in hadronic models and NS properties is the main objective
of this study.
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1.4 Dark matter content in neutron stars

The term “dark matter” was first used by Zwicky (1937) in his study of clusters of
nebulae, which are now identified as galaxies. Zwicky’s initial aim was to propose new
methods for determining the masses of these nebulae. By applying the virial theorem to
the cluster, he anticipated that the average kinetic energy of the group would equal minus
half of the average potential energy, assuming the system was stable and gravitationally
bound. However, based solely on gravitational effects, he found that the mass required
to satisfy the virial theorem was significantly greater than that inferred from galaxy
components luminosity. This indicated the presence of an unseen mass component, which
he called dark matter.

Approximately thirty years after Zwicky’s work, another seminal study by Rubin e
Ford (1970) demonstrated that visible matter alone could not sufficiently explain the
rotational patterns of galaxies. In this study, which was focused on the Andromeda
Galaxy (M31), they discovered that M31’s rotational velocity does not decrease in its
outer regions. A decrease in velocity was expected because the luminosity is significantly
lower in the galaxy’s most distant parts. Therefore, the conclusion once again, was that
visible matter alone could not account for the dynamics of these large celestial structures,

so another undetectable kind of matter should exist.

These two works laid the foundations for the definition of dark matter (DM): a type
of matter that does not emit, absorb, or reflect light, being detectable only by its grav-
itational effects. Nowadays, we believe that visible matter represents only 10% to 20%
of galaxy clusters, result found by the use of gravitational lensing (Natarajan et al., 2024).
Besides, studies in the context of X-ray emission have contributed to understanding the
nature of dark matter. Regarding this topic, the work by Clowe et al. (2006) can be
considered a milestone. Their analysis of X-ray emission revealed that most of its mass is
separated from the gas region, indicating that dark matter and baryonic matter are dis-
tinct entities. Finally, the Planck Collaboration results obtained from the Planck satellite,
indicates that considering large-scale structures: galaxy filaments, super-clusters, and oth-
ers with sizes of tens of Mega-parsecs, the amount of normal matter is approximately 15%
of the total matter (Planck Collaboration, 2020).

Considering the presence of dark matter in large and medium-scale astrophysical struc-
tures and its interaction with normal matter, it is reasonable to expect its presence among
other massive objects. A probable candidate to concentrated DM would be neutron stars.
This scenario is particularly favored by the description of dark matter as weakly interacting
massive particles (WIMPs), which are massive, stable, electrically neutral particles with
masses typically ranging from 10 GeV to several TeV (SCHUMANN, 2019; ROSZKOWSKI
et al., 2018; GRIEST; KAMIONKOWSKI, 1990). Due to the high densities and strong grav-
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itational fields, neutron stars could capture and accumulate DM. Such accumulation is
possible because WIMPs constitute cold dark matter, meaning that the dark particles
travels at relative low velocities and can be trapped by neutron stars (GOLDMAN; NUSSI-
NOV, 1989), leading to several observational effects such as changes in thermal evolution,
mass-radius relations, and tidal deformability of neutron stars (YOUNG, 2016; DELIY-
ERGIYEV et al., 2019; LOURENCO et al., 2022).

To describe the influence of dark matter in the neutron star environment, one must rely
on modeling. This necessity arises mainly due to the unknown composition and interaction
mechanisms of dark matter, both with itself and with normal matter. Regarding the
interaction mechanisms, two primary descriptions can be employed for dark matter studies
in neutron stars. One approach involves the usage of Lagrangian with the Higgs portal
mechanism. This mechanism posits that fields related to the dark particles, often assumed
to be scalar, interacts with the ordinary matter particles by coupling with the standard
model Higgs field. Within this formalism, to describe a neutron star in the presence of
DM, usually are inserted in the Lagrangian a coupled term that contains both, the DM
field and the Higgs field. That changes the star equation of state, resulting, among several
other effects, in consequent changes in the relation between mass and radius of the star
(LOURENCO et al., 2022).

Another approach possible to describe the DM in the NS is to consider DM as indepen-
dent of the ordinary matter, coupling with it only gravitationally. This is a coherent choice
if one considers that much of the dark matter properties are still unknown. For example,
one can not precise the way that the dark matter field interacts with the standard model
fields, hence, is reasonable to treat only the gravitational interaction of both matters,
what is done by altering the TOV equations. It now becomes a system of four coupled
equations, taking into account the dark matter energy density and the dark matter pres-
sure, in addition to the ordinary ones. These set of equations can lead to quantities that
are already constrained by observations, to cite some, tidal deformability and mass-radius

relations.

This approach has been widely used, Xiang et al. (2014) for example, use it to study
the possible presence o dark matter halos in neutron stars, that is, the surpass of the dark
matter radius in relation to the ordinary matter radius. Das et al. (2022) used it to find a
range of possible values for the dark mass particle by applying a Bayesian analysis. Miao
et al. (2022) used it to study the influence of the dark halos on the pulsar profiles. In this

work, we the two fluid formalism was also chosen rather than the Higgs portal description.

Similarly to what happens in the presence of only ordinary matter, to solve the set
of Tolman-Oppenheimer-Volkoff (TOV) equations, one must provide the relation between
pressure and energy for dark matter, its equation of state. Once that the DM particle is

not known, it could be described by both: a bosonic or a fermionic equation of state.
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In the bosonic description, the dark matter particles are treated as bosons, which
means that they can share the same quantum state and form the Bose-Einstein con-
densate. The last is particularly interesting, because it can form dense cores and halos
leading to specific observational signatures (SATKAWA; YANAGIDA, 2020; NELSON et al.,
2019). Futhermore, the lack of degeneracy pressure could lead a bosonic dark matter to
accumulate, affecting the stability of the NS, even bringing about the collapse of the star
in a black hole (CHAVANIS, 2015).

In contrast, the fermionic description assumes that the dark matter particles obey
Fermi-Dirac statistics, meaning they cannot occupy the same quantum state. The Pauli
exclusion principle generates a degeneracy pressure, which can lead to an increase in the
maximum mass of a stable star. This is a significant result because it could lead to the
existence of over-massive stars, which may be observed in merger phenomena (POPOLO
et al., 2018; DAS et al., 2018). Evidently, the two types of DM description, at the level
of EoS, lead to different consequences in the NS. Considering that, this work use both

descriptions.

The present work is divided into three chapters. In the second chapter, the van der
Waals model will be introduced with a brief discussion about its construction, recent uses,
its weakness and strengths. In sequence, short-range correlations will be introduced to the
model and unpublished results from this research will be presented. Finally, applications
of this model to the study of NS will be shown, with results obtained for NS quantities

such as mass, radius and tidal deformability.

In the third chapter, we will discuss the relativistic mean field model. After the
introductory explanation, this model will be used to describe nuclear matter under the
presence of short-range correlations. Additionally, we will add on it the bosonic and

fermionic dark matter models to study the effects on NS structure.
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2 Van der Waals models with

short-range correlations

2.1 Initial propositions of van der Waals models

The van der Waals model was first conceived in as an option to study real gases.
Proposed by Johannes Diderik van der Waals, his model introduced into the equation of
state of a real gas an additional ingredient coming from the supposition that molecular gas
components are not point-like but in the form of hard and impenetrable particles, with
a finite dimension. Being so, the effective volume available V4 to one of the composite

molecules will be the total volume V' minus the volume occupied by all other molecules

Viy =V — bN (2.1)

This altered volume should be included into the equation of state. In addition, Van
der Waals proposed the inclusion of a term regulates the systems tendency to form bound
states, reducing the pressure exerted over the boundaries (HUANG, 2008). With this new

phenomenology, the pressure of the model is written as

pT 2
T p) = — 2.2

with b being called the excluded volume constant and a the constant gibing the strenght

of the attractive part. Notice that (2.2) is the form of the vdW equation in the Canonical

Ensemble.

Aiming to apply the vdW equation of state in nuclear matter, a pioneering treatment
was done by Vovchenko et al. (2015a), with the EoS being first written in the Gran-
Canonical ensemble (GCE). The vdW in GCE does not possess a simple form such as
(2.2), far from that, the pressure considering the excluded volume P(T, u) is written as
a transcendental equation in terms of the ideal pressure Pj(7T, i) which is a function of

the chemical potential
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(T, w) =py(T, u*) —ap®,

(2.3)
= p—bP(T, i) — abp® + 2ap.

With p being the chemical potential of the ideal gas, p* the chemical potential of the
VAW gas, T the temperature.

Another way to write the vdW EoS is in terms of the density of particles (VOVCHENKO
et al., 2015a). In this form, the transcendental equations becomes from the chemical

potential and the particle’s density

p:d(Ta :u*)
p(T, p) = - =

b
,u*zu—T—p + 2ap.
IL—p

To describe nuclear matter one must treat the gas particles in the quantum regime.

To do that, Vovchenko et al. (2015b) introduced the pressure of a quantum ideal gas

-1

(2.5)

(T, p) = L /dk—k4 exp | VAR Zp)
(1 ) - X
pia(Ts j) = o el = 7

where 7 is chosen depending on what system one aims to study. For a system with Fermi

statistics (n = 1), for the Bose statistics (n = —1) or in the Boltzman approximation
(n = 0). Using the thermodynamic relation between pressure and chemical potential

p(T, ) = (Op/Op)r one may obtain the equation for the density

-1

(2.6)

_ 7 = 2
pia(T, p) = 2—7r2/ dkk

o0

[ (m_u)
exp - +1

with p;q standing for the ideal density of the quantum ideal gas. After the use of the
thermodynamic relation that writes energy density as a function of pressure and chemical

potential, one must find

-1

eia(T, 1) = 2%2 /dk K22 k2 +ql . @)

(m_u>
exp -

where M is the mass of the particles. For Fermi gas of nucleons, M ~ 938 MeV.
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The final form for the pressure becomes from the insertion of expression (2.5) into

(2.3). If one takes the limit to the Boltzmann statistics with the appropriate values of p*
and T, the classical vdW gas is recovered. Alternatively, taking a = b = 0 the EoS for
the quantum ideal gas is recovered (VOVCHENKO et al., 2015b).

With the consistency verified, it was possible to apply the vdW model to describe
nuclear matter. Vovchenko et al. (2015b) considered in its application only regimes of
small temperatures, in which the effects of pion production could be ignored. At zero
temperature, the expressions (2.5) and (2.6) must be modified, and one may find that
the dependence on the exponential term disappears in both equations. As one is treating
nuclear matter, the system is composed of a Fermi gas of nucleons, so n = 1. Besides,
it was considered only symmetric matter, what means v = 4. In the zero-temperature
regime, the authors have successfully settled numerical values for the constants a and b.
Using as a constraint the binding energy of By = —16 MeV and saturation density of
po = 0.16 fm 3, the values found was a ~ 329 MeV fm? and b ~ 3.42 fm®. With these a
and b, some basic properties of phase transition in nuclear matter were explored at finite

temperatures.

The vdW as presented by Vovchenko et al. (2015b) can not be used at high densities.
If one intends to apply the model to dense astrophysical objects, the sound velocity should
remain lower than the light velocity for the typical densities of these objects. As previously
mentioned, density inside the NS can easily reach values of 5py to 10py. However, the
vdW model is limited to densities of puax = b7!, as one may see directly from (2.4).
Furthermore, the NS interior is composed of asymmetric matter, which this vdW version

does not cover.

To circumvent the restriction over the maximum density, an alteration was proposed
in the excluded volume term of the vdW model. This alteration comes from a mathemat-
ical expansion (called Starling-Carnahan approximation) first proposed by Carnahan e
Starling (1969) to describe a dense fluid composed of rigid spheres. The work Vovchenko
(2017a) uses this approximation in the van der Walls model, increasing the model’s den-
sity range. The name is also changed to vdW-CS model. From now on, we will discuss

only the vdW-CS model, and for simplicity, call it only vdW. The pressure now becomes

1 2 .3
1—n3

P(T, n)=Tp

with 7 = bp/4 being the packing fraction. With this modified pressure, they were able to
find the value of Ky = 9(0P/dp),, = 333 MeV for incompressibility. This value is still far
from the empirical range of 240 £+ 20 MeV (Shlomo et al., 2006; GARG; COLo, 2018). Even
if one considers a wider range such as the one found by Stone et al. (2014) of 250 — 315
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MeV, their result is still unsatisfactory.

Vovchenko et al. (2017b) changed again the vdW model to consider the asymmetric
matter. In their work, the pressure and chemical potential (2.4) becomes a sum of the
individual quantities for each of the species taken into account. In addition to the study
of asymmetric matter with nucleons only, they also did a treatment with a particles in

the system. Considering only protons and neutrons, pressure becomes

pp) = p;(P;) + (o) — appp2 — Qpnp” — AnpPpPr — ApnPpPn; (2.9)

with o5 . = ppn/(1 = bppn Pon = brppn Ppn)- The constants app,@np, by, byp, in equation
(2.9) are the attractive and repulsive vdW parameters for different species, but a,, and
byp stands for the interaction between same particle species. With this modified vdW
model, considering only protons and neutrons, the authors found the value of 18 MeV
for the symmetry energy at saturation density. This value underestimates the empirical
range of 31.7 &+ 3.2 MeV (Oertel et al., 2017).

2.2 Density dependent van der Waals model

Summarizing, the works with symmetric or asymmetric vdW and vdW-CS previously
cited, fail in achieving satisfactory results for empirical symmetry energy, incompressibility
or both.

In Lourenco et al. (2019) is proposed a generalization of the vdW model and a possible
solution to the mentioned problems. More specifically, possible density dependence in
the attractive contribution is taken into account. For the term containing the excluded
volume, the aforementioned CS procedure is used as well. The EoS for energy density

and pressure are given, respectively, by

e(p, yp) = [1 — pB(p)] (62 + ) — P> Alp) + d(2y, — 1)*p?, (2.10)

and

p(p, yp) = P2+ pitt — p°Alp) + pX(p, yp) + d(2y, — 1)%p?, (2.11)

with X(p,y,) = pB' (P + P;") — p*> A’ being the rearrangement term with A" = d.A/dp,

kin

and B’ = dB/dp. The kinetic contributions are

P

F
P = l/ dk k2VEZ + M2, (2.12)

2
212 ),
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and

o _ [ Ak
Dan = 672 0 /k2+M2'

The Fermi momentum of the nucleon of mass M = 939 MeV and degeneracy factor v = 2

(2.13)

is related to its respective density as k7" = (67?2/0;,71/ 7)*/3, where

— P _ Pp
P 1—pB 1—pB(p)’
pB(p) pB(p) (2.14)
p* _ (1 — yp)p _ Pn
" 1=pB(p) 1-pB(p)
Finally, the density-dependent functions A and B are
Alp) = ——— (2.15)
P A by '
and ( “
11 bp (4 —22)
Blp)=—-—=exp |——~—22|, 2.16
OEFEE [ oy (2.16)

with this last one determined through the CS approach for the repulsive interaction (ex-
cluded volume). It is worth noticing that from this general structure, it is possible to
recover the other real gases studied in Vovchenko (2017a) for the y, = 0.5 case, as for
instance the vdW-CS model itself, by using n = 0, and the Clausius-CS one, for which
n = 1. The traditional versions of these models regarding the excluded volume method
are obtained by making B(p) — b in addition. Another formulation involving a vdW
model in which induced surface tension is taken into account was implemented in Sagun

et al. (2018), Bugaev et al. (2019).

*D,T1
kin

perature. So, it comes from (2.7) by taking the limit of 7" — 0.

The terms €5 (p5,,) in Eq. (2.12) comes from a Fermi gas of nucleons at zero tem-

The last term of (2.11) considers the matter’s asymmetry. The parameter d was
added by the authors as an adjustment to reproduce the symmetry energy correctly.
The expression for the symmetry energy is, as a good approximation (Baldo; Burgio, 2016;
LOURENCO et al., 2019), given by

1826 *kin
Bon(p) = {7 = B (o) dp. 217

Thus, using as a constraint the value for symmetry energy expected in stellar environ-

ments, one could find d by using

(Eoyuw(p) — EXM(p))
p

d:

(2.18)
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with S(po) = J, that is, the desired symmetry energy and S}, (p) = kj/(64/k} + M?).

One could derive the chemical potential for the asymmetric matter from the expression

for the energy density. Lourenco et al. (2019) have done it, finding
Hpn =ty + B(p) (0, + 1) +X(p) — 2A(p)p £ 2d(2y, — 1)p. (2.19)

This new model, named the density-dependent vdW (DD-vdW) model, has shown to
preserve causality in a density regime capable of producing mass-radius diagrams consis-
tent with data obtained from the PSR J0348+4-0432 pulsar (ANTONIADIS et al., 2013), as
well as those from the GW170817 neutron-star merger event. It is also compatible with
the flow constraint established in Danielewicz et al. (2002). The four free parameters (a,
b, d and n) are determined by imposing specific values for pg, By, Ky and J (symmetry

energy at pp). Furthermore, it also produces some clear correlations in SNM as one can
see in Dutra et al. (2020).

To apply the newborn DD-vdW model to the Neutron Stars modeling, it was necessary
to consider some of the nuclear processes inside the star. One process that must be
regarded is the inverse and ordinary beta decay. The star is said to be in beta-equilibrium
if the inverse and ordinary processes happen with equal rate. That condition is imposed

in many models and it implies

n — pt+e +1,
(2.20)
p+e — n+rv..

The stellar interior also favors the formation of muons. Muons are leptons of charge
equal to the electron, with spin 1/2 and a mass approximately 200 greater than the
electron’s mass. Muons can be formed if the chemical potential of electrons becomes larger
than the muon mass. With their formation, pressure and energy density will change to

total quantities

(2.21)

4 uz(pe)—m, 4

e (Pe 1 z v dk k
pr(p; pes Yp) = P(Ps Yp) + (p.) 3.2 /
0

1272 R+ mi

and

/fel(/)e> 1 Vi (pe)=mi; 2 2 2
er(p; pe, yp) = €(p, yp) + + /0 dk k™[ k> +m3. (2.22)

472 2

From the energy density expression, it is possible to calculate the chemichal potential.

This quantity is important once it helps to establishing a quantitative relation between
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the species in the system. The ordinary and inverse beta-decay process demands equality

between the chemical potential of the initial species and of the formed species

a5 y) = bp(p, y) + He(pe). (2.23)

Another condition to be fulfilled is charge neutrality

Pp(P:Y) = pulpe) + pe; (2.24)

with p, = (u7 — m2)¥?/(3n%), p, = pe = (37°p.)"/* and p, = y, p. The terms p,
p, and m,, are the density of electrons , the density of muons, and the mass of muons,
respectively. The equations (2.23) and (2.24) are coupled. Those equations must be solved

for the electron density and the proton fraction y, for inputs of density p.

Using the previous formalism, Lourenco et al. (2019) have analyzed several proper-
ties of NS. The first compelling result was the agreement between the maximum mass
obtained with the DD-vdW model and experimental observations. Data from the elec-
tromagnetic spectrum obtained by the Very Large Telescope (VLT) of the European
Southern Telescope (ESO) found a mass of 2.014+0.04M, for a pulsar in an orbit with
a white dwarf (Antoniadis et al., 2013). Data from the PSR J0740+6620 by Fonseca et
al. (2021b), suggests a similar mass of 2.0840.07M, with 68.3% of credibility. Thus,
even with contemporary information, the mass-radius relation from DD-vdW model is

still satisfactory for describing the mass of a NS in a pulsar-white dwarf orbital system.

One should notice that of two calculations for maximum masses by the authors, only
one is inside the symmetry energy range of 31.7 £+ 3.2 MeV (Oertel et al., 2017). But the
two were done considering the incompressibility between the observational constraints of
240+ 20 MeV (GARG; COLo, 2018). Besides, the authors argue that their maximum mass
was obtained with the causal limit being broken in the maximum density of p,,.. = 5.66p¢
for calculation using the symmetry energy out of 31.7 + 3.2 MeV, and pae = 5.00pg
using the energy within the limits. These values for p,,., show that, compared with the
constant parameters version of the model, the inclusion of density-dependent parameters
on the vdW by Lourenco et al. (2019) substantially increases the model maximum density,

keeping the other bulk parameters with satisfactory values.

However, values from the NICER collaboration have brought a maximum mass of
2.3540.17M, for a 20 km radius pulsar (ROMANT et al., 2022). The discrepancies between
the measured masses from the observations of Fonseca et al. (2021b) and Romani et al.
(2022) are probably caused by the NS formation process. In any case, one should notice
the model DD-vdW underestimates the NS maximum mass in comparison with the new

measurement.
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Lourencgo et al. (2019) also calculated the tidal deformability of a single NS. Pieces of

information about TD can be obtained directly from the gravitational waveform. Compar-
ing a merger of two NS and a pair of black holes it is possible to trace differences between
the gravitational wave signal phases of these two kinds of events. The phase difference
from NS to BHs mergers appears in the expansions that describe the inspiral dynamics
of each event. The leading order of the different terms is proportional to the star tidal
deformability parameter (GRALLA, 2018; Abbott et al., 2018). In this way, measurements
of TD are free from modeling and usually used as a constraint to models. Using data from
the GW170817 event, Abbott et al. (2018) found for a star with a mass of 1.4M® the
tidal deformability of A; 4 = 190f1)’38. The value obtained by the authors was A4 = 527,
that is, consistent with the previously mentioned range (Abbott et al., 2018).

The tidal deformability can also be calculated if the NS is in a binary system. In
this case, the gravitational force that one exerts on another will provoke a TD on each
other. The phenomenon now is provoked by the gravitational attraction between the
two bodies and no more by an intrinsic quantity of the isolated star, such as the spin.
One way to calculate the TD of the set consists in varying one mass of the two stars,
with the other varying with a given proportion to keep the chirp mass always constant.
For each pair of masses, one calculates the two deformability for that set. The values of
TD for the pairs should satisfy the observable constraints within the diagrams of A; by
As in some confidence interval. The calculations by Lourenco et al. (2019) were inside
the 90% confidence interval for all chosen parameters. This shows the strong capability
of the model to reproduce the observed TD. Thus, with the NS properties reproduced,
the authors have shown that the DD-vdW model is a powerful and promising method to

describe NS high-density environments.

2.3 Density dependent van der Waals with short-range cor-

relations

The above model has proved its efficiency. Now, due to its simplicity, one could
improve it by including modifications related to observed nuclear phenomena. The focus
of this work is to develop a model with short-range correlations using a formalism similar
to the one used by Vovchenko et al. (2017b) and Lourenco et al. (2019) with the DD-vdW
model proposed by the last one. Basically, I will show in this chapter the results presented
and discussed in Rodrigues et al. (2023).

Experimental research in short-range correlation establishes that a fraction of fermions
is in a high momentum state which leads to a change in the functional form of pressure

and energy density. That happens because the energy density of a fermionic gas is related
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FIGURE 2.1 — Momentum distribution with HMT included for symmetric nuclear matter. Curves for
p/po =1,2,3 and 4, with py = 0.15 fm~3.

to the occupation of those fermions and so to its momentum distribuition. The inclusion
of the short-range correlation is done by modifying the single-nucleon momentum distri-

butions, from the usual Fermi step functions to those encompassing the high-momentum
tail (HMT) that read

JAV 0<k<kR"
N (k) = (2.25)

(k%n)él p,n »,n
Con e kp® <k < ¢pnkp

with A,,, =1 —3C,,(1 —1/¢p,), Cp = Co[l — C1(1 — 2y,)], C,, = Co[1 + C1(1 — 2y,)],
bp = Po[l —p1(1—2y,)] and ¢, = Po[1l+ ¢1(1—2y,)]. The values Cy = 0.161, C; = —0.25,
¢o = 2.38, and ¢ = —0.56 are determined (CAT; LI, 2015b; CAT; L1, 2016b; CAT; L1, 2016a)
by taking experimental data concerning d(e,€’,p) and two-nucleon knockout reactions,

medium-energy photonuclear absorption, as well as by using the normalization condition

1 [~ kB3
— dk k> npn(k) = ppn = (k") :

72 Jo ’ 3m?

(2.26)

Furthermore, the fraction of nucleons in the HMT given by ™" = 3C,, (1 — ¢,) is also
used in this determination, namely, it = 28% and xpyy: = 1.5%: numbers obtained for
symmetric nuclear matter and pure neutron matter, respectively (CAT; LI, 2015b; CAT; LI,

2016b; CAT; LI, 2016a). In Fig. 2.1 we depict the n(k) distribution in SNM for some values
of p/po.
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Some papers have explored possible modifications in Eq. (3.15) and their consequences.

In Cai e Li (2022), for instance, it was studied the effect of generalizing n,, ,(k) to arbitrary
dimensions. In Guo et al. (2021b), on the other hand, the authors investigated three
different shapes for the SRC HMT, namely, proportional to k*, k% and k°. A study of
these high order tails is done in appendix A. There, the constants Cy, C1, ¢g, and ¢, are
calculated for each case. Besides, the new functional forms of A, ,,, C,,, and ¢, ,, are also

found for a generic tail order m, resulting in a generalization of the expressions.

In this work, the further analysis is based on hard photons emissions due to the
reactions “N+12C and *Ca+'?4Se at beam energies around the Fermi energy. From the
reactions, they analyzed the yields, angular distribution, and energy spectra of the hard
photons, leading them to important conclusions. The first is related to the yields, which
increase equally for all different powers of k. The second is that the shape of the HMT
does not affect the angular distribution of the produced hard photons. In this way, if one
looks only at the yields or at the angular distribution, the shape seems not to be relevant.
The two first conclusions make the third one the most meaningful. The authors have
calculated the effects of the HMT shape in the hard photons spectra, finding that this
effect is considerable and should not be ignored. The effects are greater as greater are the
energy of the photons. We address the reader to appendix B for more details regarding
SRC.

Here we use the expression given in Eq. (3.15) adapted to the case in which excluded
volume effects are implemented in the system, namely, taking k%" — k" in order
to generate new EoS for the vdW-type model presented before. This procedure leads
to generalized thermodynamical quantities, such as energy density and pressure, given

respectively by,

e(p,yp) = [1 = pB(p)] [68 sno) T €nmisney]) — P7A(P) + d(2y, — 1)*p7, (2.27)
and
P(Ps Yp) = Pl sney + Prinsney — P2AP) + pZsre(p; Yp) + d(2y, — 1)%p7, (2.28)
where
Ssrc(ps Up) = PB [P ey T Phinisney) — P2A', (2.29)

and with modified kinetic terms written as

k*p,’n

Ay, [HF Y L ey v
6*p,n _ Y2pn / dk k2‘ /k2 + M2 + M/ dk ; (230)
0 k

kin(SRC) 272 272 s k2 ’
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won YA [ dRE G (R [ d (2.31)
pkin(SRC) - 67T2 0 /k2 + M2 67T2 k;}’,n /—k2 + M27 .
with the normalization condition, now taken as fooo Np.n (k) k2dk = phn = (k}p,n)g /3,

giving the same numbers for Cy, C1, ¢g, and ¢;. Furthermore, we consider the CS excluded
volume mechanism for the function B(p), Eq. (2.16). In the case of the attractive density-

dependent function A(p), we make n =1 and b — ¢ in Eq. (2.15), namely,

Alp) = . (2.32)

By doing so, we actually assume the three parameters Clausius-CS model applied to
the nuclear matter as shown in Vovchenko (2017a), Vovchenko et al. (2018), but also
generalized to include SRC effects. Hereafter we name it as CCS-SRC model. The four
free parameters of the model, a, b, ¢ and d, are determined by imposing py = 0.15 fm=3,
By = —16 MeV, J = E_,.(po) = 32 MeV, and some values for Ky = K(po,y, = %) The

expression for the incompressibility in SNM is given by

oP 1+Bp*
K(p) = 98_,0 i I[Esrc(p) + PEGke ()] + WK“"(SRC) — 9p[2A(p) + A'p],
(2.33)
Wlth ESRc(p) - zSRC(p? yp = 1/2)7
. 0+BABp 2
E/SRC(p) - (BHP + B/)pkin(SRC) + 9[1 _ B(p)p]g Kkin(SRC) - A//p - 2-'4/p> (2'34)
RYAY oo 1
Kl snoy = ———e—= + 3Cok}? —
wene) = e | g MR R
4 ke 2k*2 M?2
i Pok}: + / OokF + ’ (2.35)
kg ke + k2 + M?

and A =1-3C(1—1/¢g). For p, sne, shown in Eq. (2.34), we use the expression given
in Eq. (2.31) with k7" replaced by k}. and v = 4.



CHAPTER 2. VAN DER WAALS MODELS WITH SHORT-RANGE
CORRELATIONS 39

The symmetry energy reads

- 22? cocbl(i; ) 2]\12; (1 . ;2;22)3/2 B I;W_F 14 EZQ — arcsinh (%F)]

n 200@?(201 +1) 1+ f_}j - \/1 + %;g + arcsinh (kl*;;bo) — arcsinh (%) ]
15 ey (S0 22 2502

. 00(36;1 +4) {Fﬁ(i%z; +1) E;} +dp. (2.36)

with B = \/k? + M2 and Ff = \/$Zk;Z + M2

It is worth mentioning that Eq. (2.33) reduces to that one related to the DD-vdW
model (LOURENCO et al., 2019) when SRC are turned off, by taking ¢y = 1 and ¢; = 0,
and when Eq. (2.15) is used instead of Eq. (2.32). With regard to the symmetry energy,
notice that its kinetic part, given by £ (p) = E,,(p) —dp, is exactly the same presented
in Cai e Li (2016b) for the case in which no excluded volume effects are considered in the
system, i.e., for k3 = kp. Furthermore, we find E***(py) = —14.7 MeV for the kinetic
part of the symmetry energy at the saturation density. This value is compatible with
respective numbers obtained in Cai e Li (2016b) from a nonlinear relativistic mean-field

(RMF) model, and from a nonrelativistic calculation, both including SRC effects.

For the sake of completeness, we also investigate how the symmetry energy and its
slope, obtained through L = 3p(0E,,../Jp), correlates with each other (both quantities
evaluated at the saturation density: J and Ly = L(po)). Such a relationship is depicted in
Fig. 2.2. From the figure, it is verified a strong linear correlation between these quantities,
in accordance with many other approaches performed in the literature, as can be seen,
in Drischler et al. (2020), Li et al. (2021), Santos et al. (2015), for example. Another
feature exhibited in the figure is that SRC significantly increase the values of L for the
same J. It is also observed that there is no big impact in L, for Ky changing in the range
of Ky = (240 £+ 20) MeV.

Applications in SNM and stellar matter

We show in Figs. 2.3a and 2.3b the effect of the SRC applied to the CCS-SRC model
in the energy per particle and pressure of the system in SNM. From these figures, we
notice that SRC mainly affects such thermodynamical quantities especially for densities

greater than 0.2 fm=3, approximately. In this case, it is important to verify the results
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FIGURE 2.4 — Pressure versus p/pg for different parametrizations of the CCS-SRC model. Curves for
symmetric nuclear matter with py = 0.15 fm=3 and By = —16 MeV. Band: flow constraint extracted

from Danielewicz et al. (2002).

of the model regarding the high-density regime. For this purpose, we also investigate
how it behaves against the so-called flow constraint. It is based on the study performed
in Danielewicz et al. (2002) in which limits on the pressure of SNM (zero temperature
case) at high densities were established from experimental data related to the motion of
ejected matter in energetic nucleus—nucleus collisions, more specifically, particle flow in
the collisions of %" Au nucleus at incident kinetic energy per nucleon running from about
0.15 GeV to 10 GeV.

The comparison of the model with the flow constraint is displayed in Fig. 2.4. It is
verified that parametrizations of the CCS-SRC model constructed by fixing Ky in the
range of Ky = (240 + 20) MeV (GARG; COLo, 2018) are completely in agreement with
the band provided by the flow constraint. All these curves were generated in a density
range that ensures causality to the system. In the case of excluded volume models, like
the one we are presenting here, nucleons are treated as finite-size objects and therefore
a suitable Lorentz contraction should be taken into account for relativistic frameworks
in order to avoid causality violation for any density (BUGAEV, 2008). An alternative
to this procedure is the implementation of the CS excluded volume treatment, since
this mechanism effectively produces an excluded volume depending on the density, more
specifically, as a decreasing function. In the case of the model proposed in this work,
we verify that SRC moves the density in which causality is broken to higher values in
comparison with the model without this phenomenology implemented. This feature is

observed in Fig. 2.5.
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model with (full lines) and without (dashed lines) SRC included. Curves for symmetric nuclear matter
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We also investigate the capability of the CCS-SRC model in describing stellar mat-
ter in general, and some recent astrophysical observations in particular. In order to do
that, it is necessary to solve the Tolman-Oppnheimer-Volkoff (TOV) equations (TOLMAN,
1939b; OPPENHEIMER; VOLKOFF, 1939b), given by dP(r)/dr = —[e(r) + P(r)][m(r) +
4rr3P(r)]/[r*g(r)] and dm(r)/dr = 4mwr?e(r), where g(r) = 1 — 2m(r)/r. The solution
of these equations is constrained to P(0) = P. (central pressure) and m(0) = 0, with the
conditions P(R) = 0 and m(R) = My satisfied at the star surface. Here R defines the

radius of the respective neutron star of mass Mys.

To construct the EoS of the star, some considerations must be done. In the outer
layers of the Neutron Stars such as the outer crust and outer parts of the inner crust,
atoms still are expected to be found (Piekarewicz, 2022). Furthermore, the S-equilibrium
has not yet been reached and so it can not be described by the CCS-SRC. In this work, we
have used the model proposed by Baym et al. (1971) to describe the outer crust (hereafter
referred to as BPS model). The BPS model takes into account the presence of decoupled

nucleons, atomic nuclei, and atoms themselves in the calculation.

Despite being useful in the outer crust, the BPS model can not be applied in a sat-
isfactory way to the innermost star regions. If one does that, the NS radius will be
hugely underestimated. So, in its original form, it is applied in the density range of
6.3 x 1072 fm ™ < poyer < 2.5 x 107*fm ™3, being the higher limit the beginning of the
inner crust (Baym et al., 1971).
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Two options arise from the use of the BPS model. One could simply connect the

hadronic model to it. But that could lead to imprecise calculations on the tidal deforma-
bility (PTEKAREWICZ; FATTOYEV, 2019). An alternative approach consists add another
model to describe the inner crust, linking it to the liquid core. This is the procedure
chosen. But the inner crust is a heterogeneous structure with many complex constituents
such as the nuclear pasta. That makes precise modeling of this region a herculean task.
Besides, the role of pasta in nuclear systems is still unknown, what has led some to
choose a simple polytropic interpolation of the form (LINK et al., 1999; Xu et al., 2009;
PIEKAREWICZ; FATTOYEV, 2019)

P(e) = A+ Be'/3. (2.37)

The polytropic is connected to the BPS model in the density of p = 2.50 x 1072 fm~3.
The connection of the polytropic with our hadronic model is done in a transition density p;.
This density is defined using the concepts of the thermodynamical instability region which
is the region where the uniform liquid becomes unstable against small density amplitude
fluctuations, in such region, nuclear clusters start to be formed. The density at which
that happens is the transition density. Using this concept and expressions brought by Xu
et al. (2009) and Gonzalez-Boquera et al. (2019), one is able to find the p; by solving the

system of equations

2 2 2 2 -1
Viner (1) = 2p8Eb(p, Yo) | 20 Eb(p ) _ (8 Ey(p, yp)> ((9 Ey(p, yp)> _0

dp? P o dp Oyp dys
(P, Yp) = bp(05 Yp) + e (Ypp)-
(2.38)

Where we are using for E,(p,y,) the parabolic approximation (GONZALEZ-BOQUERA et
al., 2017). The values of p and y, that solve the above set of equations are respectively

the transition density p; and the transition proton fraction y.

Now, all three domains of the three component models are defined. The BPS model
acts in the outer crust to the beginning of the polytropic modeling in the inner crust. This
polytropic is connected to the CCS-SRC model at the transition density p;. For values of
density greater than p;, the physics is described by the CCS-SRC model.

The total energy density and total pressure of the system composed of protons, neu-

trons, electrons, and muons are written as

M;} 1 \/ #ﬁ(ﬂe)*mg

R = L

(K* +m2)"/? (2.39)
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and

Popyte 41 / T dkk (2.40)
=Dp 127’(’2 371'2 0 (k2+mi)1/2’ .

where, by chemical equilibrium and charge neutrality conditions, both imposed in an NS,
one has i, — 1, = e and p, — pe = p, with pe = (372pc)'/3, p, = [(z, — m?)*?]/(37%),
and p, = p., for m, = 105.7 MeV (muon mass) and massless electrons. €, and p are

determined from the CCS-SRC model, as well as the chemical potentials for, namely,

86 *D, N *D, N n
Hpn = ap = AP,”H’kiI;’ + /"ka::(SRC) + B(p) [PI:?Z(SRC) + Pl:n(SRC)]
p7n
+ ZSRC(pv yp) - 2A(p)p + Qd(Qyp - l)p (2'41)

for protons (upper sign) and neutrons (lower sign).
Regarding the chemical potential, two different approaches are done, firstly we con-
sidered the full form of it

( 2 Jox2 + M2)1/2
*P,n _ *P,n p,n""Fp,n
Hyinsrey = 3Cpn [Nkin -

¢P,n
2 ppn

+ P?[l = B(p)p [1pn; (2.42)

o | B (G M)
+ p,nVEpmn n k> T (/{3*2 + M2)1/2

Fpn Fpn

and " = (k32

2 0+ M*)'Y2 The term 1, is given by

C, C

"o N 1/2 ' N N 1/2
Npin = Pod1—5 kFin < f?,nkFi,n + M2) — G015 k’Fi,p (@Zﬁ,kai,p + M2>
p’n n?p
Spnk, k}‘l Pk, ]{;}4
+ CoCh / dk b — CoCr / dk O
By k? (k* + M?) T k? (k* + M?)
1 Conl [From
~3 [0001 (1 - —) + wm%} / dk (K + M?) "% 12
pr,n DN 0
1 . K
+3 {0001 (1 o ) + dothn 02 ’p} / dk (K + M) i (2.43)
n,p n,p 0

We also considered an approximation ué?% to the chemical potential in which A, ,, C,,,

and @, ,, are made independent of y, in equation (2.30) leading to 7, , = 0. This approach
also ensures the validity of the Euler relation. Both cases, the exact and the approximated
one, are presented in this work. The results and diagrams for astrophysical quantities are

constructed for each case.

Notice that Eqgs. (2.41) reduce to the chemical potentials of the DD-vdW model when
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FIGURE 2.6 — Total pressure vs total energy for the CCS model with (full lines) and without (dashed
lines) SRC included. Both cases are shown, the case with approximated chemical potential (maroon)

and the case with exact chemical potential (blue). Curves for stellar matter with pg = 0.15 fm=3,
By = —16 MeV, Ky = 240 MeV, and J = 32 MeV.

SRC are turned off (¢9 = 1 and ¢; = 0 case). Furthermore, in the case of no excluded
volume implemented in the model, i.e., for B(p) — 0, the first two terms of Eqs. (2.41)
become identical to ones related to the relativistic model studied in Souza et al. (2020),
for M — M*, see Eqs. 6 to 8 of that reference.

Before presenting the outcomes of the model concerning the mass-radius diagrams,
we first discuss the effect of SRC in the EoS used as input to the TOV equations, by
analyzing the outcomes presented in Fig. 2.6. As already mentioned, SRC move the break
of causality to higher densities, or equivalently, to higher energy densities. Moreover, one
can also notice that SRC make softer the EoS since the pressure is lower for the same
value of € in comparison with the case in which no SRC are included. This is not the case
for RMF models that present quartic interaction in the vector field w,, i.e., a term given
by C,(w,wt)? in its Lagrangian density, where C, is a constant free parameter, namely Li
et al. (2008), Dutra et al. (2014),

L =Py 0y — M) + goob — guprtwib — %%“ﬁﬁ@b + %(5”‘0(%0 —mgo”)
A, B 1

Ry o g

1 15,2 1 1
3 1 1 o T imiwuwu + Colwuw")? = ZBWBW + —aggigiwuw”ﬁuﬁ” +3

2 2
(2.44)
For models with this structure, it is verified that SRC make stiffer the EoS (the pressure

is higher for the same energy density). For instance, we display in Fig. 2.7a this finding
for the FSU2R parametrization (TOLOS et al., 2017b) with and without SRC.
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FIGURE 2.7 — Total pressure as a function of total energy density (stellar matter) for the (a) FSU and
(b) NL3 parametrizations with (full lines) and without (dashed lines) SRC included.

For the construction of the 2.7a curves, the bulk parameters were kept the same for
both approaches (with and without SRC) as well as the value of the constant C,,, the
procedure also adopted in Cai e Li (2016b), Souza et al. (2020). Despite this result, it is
worth mentioning that SRC can also soften the EoS even for RMF models. This is the
case for parametrizations with C,, = 0. As an example, we plot in Fig. 2.7b total pressure
as a function of total energy density for the NL3 (LALAZISSIS et al., 1997; SILVA et al.,
2008) parametrization, for which there is no quartic self-interaction in the repulsive vector
channel. As we see, the effect of including SRC is exactly the opposite of that verified
for the FSU2R parametrization, but the same as the one presented by the CCS-SRC
model. It is known that hadronic models with stiffer EoS produce more massive neutron
stars. This is a direct consequence of introducing SRC in RMF models with C, # 0,
as verified in Cai e Li (2016b), Souza et al. (2020), Lourenco et al. (2022), for instance.
For the case of models with softer EoS, the opposite is expected. In our case, despite
SRC generating softer EoS, we still find possible parametrizations of the CCS-SRC model

capable of reproducing recent astrophysical observational data, as presented in Fig. 2.8.

Notice that the model produces mass-radius diagrams in agreement with the following
astrophysical constraints: gravitational waves data related to the GW170817 (ABBOTT
et al, 2017, ABBOTT et al., 2018) and GW190425 (ABBOTT et al., 2020) events, some
of them provided by the LIGO and Virgo Collaboration; data from the NICER mis-
sion regarding the pulsars PSR J0030+0451 (RILEY et al., 2019; MILLER et al., 2019) and
PSR J0740+6620 (RILEY et al., 2021; MILLER et al., 2021); and data from the latter pulsar
extracted from (FONSECA et al., 2021a). Such agreement is true for both, the approxi-
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FIGURE 2.8 — Mass-radius diagrams constructed from the CCS-SRC model with different values of Ky,
for (a) - approximated chemical potential and (b) - complete form of the chemical potential. The contours
are related to data from the NICER, mission, namely, PSR J0030+0451 (RILEY et al., 2019; MILLER et
al., 2019) and PSR J07404-6620 (RILEY et al., 2021; MILLER et al., 2021), the GW170817 (ABBOTT et al.,
2017; ABBOTT et al., 2018) and the GW190425 events (ABBOTT et al., 2020), all of them at 90% credible
level. The red horizontal lines are also related to the PSR J0740+6620 pulsar (FONSECA et al., 2021a).

mated and the exact form of the chemical potential, depicted in the Figs. 2.8a and 2.8b,

respectively.

For the sake of completeness, we present in Fig. 2.9b the plot of the stellar mass as a

function of the central density for the different CCS-SRC parametrizations used here.

In addition, we show in Fig. 2.9a the squared sound velocity for beta-equilibrated
matter, v2 = OP/0e, also as a function of the density. By comparing the results of

both panels, it is possible to confirm that a break of causality is not observed for the
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FIGURE 2.9 — (a) Squared sound velocity for beta-equilibrated matter, and (b) stellar mass in units of
Mg, both as a function of the central density for the CCS-SRC model. All curves constructed by using
po = 0.15 fm™3, By = —16 MeV, J = 32 MeV, and different values of Ky, considering the approximate
form of chemical potential.
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FIGURE 2.10 — (a) Squared sound velocity for beta-equilibrated matter, and (b) stellar mass in units of
Mg, for the same parameters in Fig. 2.9, but for the complete form of chemical potential.
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configurations of the stars generated by the model.

We also verify the results obtained through the model with regard to the dimensionless
tidal deformability. This quantity is defined as A = 2k, /(3C?), with C' = Mygs/R, and the

second Love number given by

ks = 2(1 = 20)[2+2C(yn — 1) — yn x {2C16 = 3yp + 3C(5yp — 8)]
+4C3[13 — 11yg + C(3ygr — 2) + 2C%*(1 + yr)]
—1
+3(1 = 20)%[2 — yr + 2C(yr — D)In(1 — 20)} , (2.45)

with yg = y(R). The quantity y(r) is determined from the solution of the differential
equation r(dy/dr) + y* + yF(r) + r*Q(r) = 0, solved simultaneously with the TOV ones.

The expressions for the functions F'(r) and Q(r) are

1 — 47r?[e(r) — p(r)]

F(r) = o) : (2.46)
(2.47)

Q) = 5 [actr) +opto) + LLEE S
4 {m(r) ;gél(g‘?’p(?")} ’ ’ (2.48)

with v2(r) = 9p(r)/de(r) being the squared sound velocity (POSTNIKOV et al., 2010;
HINDERER, 2008; DAMOUR; NAGAR, 2010; BINNINGTON; POISSON, 2009). We show the
results concerning A in Fig. 2.11. From this figure, one notices that the inclusion of SRC
in the system favors the model to attain the constraint of Ay 4 = 1901“‘?38 (ABBOTT et al.,
2018) for both forms of the chemical potential.

For the model presented here, it is also clear that the inclusion of SRC systematically
decreases A in all cases. The physical reason for this effect comes from the fact that
SRC soften the EoS, as already discussed. In this case, the NS radius is also reduced by
these correlations, and due to the relation given by A ~ R®, verified in different hadronic
models for a 1.4 M, star for instance (Lourenco et al., 2019; Lourenco et al., 2020), it is
straightforward to conclude that A decreases with the radius decreasing. For the CCS

model, this decrease makes the model compatible with the astrophysical data analyzed.

Finally, we plot in Fig. 2.12 the tidal deformabilities A; and A, of the binary neutron
stars system with component masses m; and my (m; > msy), related to the GW170817
event, and taking into account the range for m; given by 1.365 < m; /Mg < 1.60 (ABBOTT

et al., 2017). The mass of the companion star ma, is obtained from the relationship between
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FIGURE 2.11 — A versus Mys/Mg, for the CCS model with py = 0.15 fm 3, By = —16 MeV, J = 32 MeV,
and different values of Ky with (full lines) and without (dashed lines) SRC included. The panel stands
for (a) - approximated chemical potential and (b) - complete form of the chemical potential. Full circle
with error bars: result of A4 = 190ﬁ’28 obtained in Abbott et al. (2018).
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m1, ms, and the chirp mass, that reads

(m1m2)3/5

c — _(ml n m2)1/57

(2.49)

and is fixed at the observed value of 1.188M,, according to (ABBOTT et al., 2017). Upper
and lower orange dashed lines correspond to the 90% and 50% confidence limits, respec-
tively, provided by LIGO and Virgo Collaboration (ABBOTT et al., 2018). It is clear that
the effect of SRC is to move the A; X Ay curves of our excluded volume model to the region
of compatibility with the LIGO and Virgo Collaboration data regarding the GW170817
event, due to the fact that SRC decreases the values of both dimensionless tidal deforma-
bilities. In the figure, we also furnish a band with results obtained through the relativistic
mean field models studied in Lourengo et al. (2019) that are consistent with constraints
from nuclear matter, pure neutron matter, symmetry energy, and its derivatives analyzed
in Dutra et al. (2014). Notice that the parametrizations of the CCS-SRC model also have

a good intersection with this band.

It is also worth to noting that the CCS-SRC parametrizations used to construct
Figs. 2.8, 2.11, and 2.12 have the symmetry energy slope at the saturation density around
108 MeV. This value is inside the range of Ly = (106 + 37) MeV, claimed in Reed et al.
(2021) to be in full agreement with the updated results provided by the lead radius exper-
iment (PREX-2) collaboration concerning the neutron skin thickness of 2*Pb (ADHIKARI
et al., 2021). Nevertheless, it is also important to mention that there are other studies
pointing out smaller ranges for Ly. In Reinhard et al. (2021), for instance, the interval of
Ly = (54 + 8) MeV was determined from an analysis that takes into account theoretical
uncertainties of the parity-violating asymmetry in 2*Pb. Ab initio calculations performed
in Hu et al. (2022), also for the ?°*Pb nucleus, predict the range of Ly = (37 — 66) MeV
for the slope parameter. Furthermore, according to (LATTIMER, 2023), the range of
Lo = (=5 £ 40) MeV is related to the results of the neutron skin thickness of *Ca pro-
vided by CREX Collaboration (ADHIKARI et al., 2022). Another analysis in Zhang e Chen
(2022) combined the results from PREX-2 and CREX and found L, = 15.37%% MeV
through a Bayesian inference. However, another combination of the PREX-2 and CREX
results produced, through a covariance analysis, higher values for this isovector quantity:
Lo = (82.32 4+ 22.93) MeV (KUMAR et al, 2023).

We verified that for lower values of Ly, the CCS-SRC parametrizations are not simul-
taneously compatible with all astrophysical constraints depicted in Fig. 2.8. Moreover,
in this case, the model produces extremely low values of .J, for example, J ~ 19 MeV
for Lo = 66 MeV. This feature leads the bulk parameter space of the model with SRC
to the direction of higher values of Ly. A more complete description, namely, the one

in which lower values of Ly are also allowed, necessarily imposes a suitable modification
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FIGURE 2.12 — Ay versus A; for the CCS model with py = 0.15 fm ™3, By = —16 MeV, J = 32 MeV,
and different values of Ky with (full lines) and without (dashed lines) SRC included. The panel stands
for (a) - approximated chemical potential and (b) - complete form of the chemical potential. The orange
dashed lines correspond to the 90% and 50% confidence limits given by the LIGO and Virgo Collabora-
tion (LVC) (ABBOTT et al., 2018). The gray band represents the results obtained through the relativistic

mean field models studied in Lourenco et al. (2019).
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in the isovector sector. This specific study is already been performed for the CCS-SRC

model.

2.4 Final remarks

We verified that one of the effects of including SRC in the model is the shift of the
break of causality to a higher-density region. It is important to mention that this kind
of relativistic models suffer from this issue, namely, the break of causality due to the lack
of a complete treatment of the Lorentz contraction for the finite-size nucleons. As we
have shown, SRC helps to circumvent this problem in an effective way. We also observed
that SRC did not destroy the linear relationship between symmetry energy and its slope
(Lg), a correlation often found in the literature (DRISCHLER et al., 2020; LI et al., 2021;
SANTOS et al., 2015). Furthermore, SRC increase the value of Ly in comparison with
the model without this phenomenology implemented. At higher density regime, another
important finding shown in Fig. 2.4 is that the CCS-SRC model completely satisfies the
flow constraint, a wide constraint used to validate and select hadronic models (DUTRA et
al., 2014), for parametrizations constructed by running Ky in the range of K, = (240 4+
20) MeV (GARG; COLb, 2018).

With regard to the stellar matter, the inclusion of SRC in the CCS model softens the
EoS generated as input to the TOV equations used to construct the mass-radius profiles.
This softness is slightly greater if the exact chemical potential is used instead of the
approximated one. Looking only to the mass-radius diagram, one may notice that the
difference between the curves generated by the exact and approximated chemical potential

is very small.

For RMF models presenting quartic self-interaction in the repulsive vector field, that is,
models in which the Lagrangian density presents a term given by C,(w*w,)?, the effect of
the SRC inclusion in the EoS is opposite to the one suffered by the CCS model. For these
models, SRC make the EoS stiffer and consequently capable of producing more massive
neutron stars. However, RMF models in which C,, = 0 exhibit the same behavior as the
one found here, i.e.; softer EoS in comparison with the ones without SRC added. Never-
theless, the CCS-SRC model still generates mass-radius diagrams compatible with recent
astrophysical constraints, such as those coming from gravitational waves data related to
the GW170817 (ABBOTT et al., 2017; ABBOTT et al., 2018) and GW190425 (ABBOTT et al.,
2020) events, data from the NICER mission regarding the pulsars PSR J0030+0451 (RI-
LEY et al., 2019; MILLER et al., 2019) and PSR J07404-6620 (RILEY et al., 2021; MILLER et
al., 2021); and data from the latter pulsar extracted from (FONSECA et al., 2021a).

Our results show that SRC also favor the model to be consistent with the constraints
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regarding the dimensionless tidal deformability, namely, the one related to the 1.4M),
namely, A4 = 1907399 (ABBOTT et al., 2018), and those from the binary neutron stars
system (ABBOTT et al., 2017), both of them provided by the LIGO and Virgo Collaboration
through the analysis of gravitational waves detected in the GW170817 event. In this

particular case, it was observed that SRC decrease the value of A due to the reduction of

the neutron star radius caused by the softening of the EoS.

Finally, the values found for Ly are inside the range of Lo = (106 & 37) MeV, pointed
out in Reed et al. (2021) as compatible with data from the PREX-2 collaboration with
regard to the 2°*Pb neutron skin thickness (ADHIKARI et al., 2021). We also mention
that, for the case in which lower values of L are considered, the model is not able to
simultaneously reconcile with all astrophysical constraints. Furthermore, very low values
of J are also found in this case. This feature has motivated us to investigate a possible
improvement in the isovector sector of the model in order to make it suitable to also reach

this particular region of the parameter space.
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3 Hadronic model with short-range

correlations admixed with dark matter

3.1 Dark matter models in a two fluid formalism

As previously discussed in section the introduction, it is reasonable to consider dark
matter in the Neutron Stars. The effects of the dark matter are observed in the NS if one
takes the case of the non-self-annihilating DM. Non-self-annihilating DM stands for the
class of theories that propose that these particles do not annihilate itself, so its interactions
could lead not only to indirect effects, such as imprints in charged cosmic rays, but to most
direct effects as effects on the NS structure. A prominent type of non-self-annihilating
DM is the asymmetric DM. The asymmetric DM states that the process of formation of
DM in the early universe could result into a discrepancy between the quantity of DM and
anti-DM, similar to what happens to the baryonic matter (normal matter) . Therefore,
there is a net excess of dark matter that does not significantly self-annihilate nowadays.
(ZUREK, 2014)

One proposed model for describing asymmetric dark matter is the mirror dark matter
scenario, where each particle in the visible sector has a corresponding counterpart in
the dark sector. In this framework, an asymmetry in mirror baryons—analogous to the
baryon asymmetry in the visible sector—results in a relic abundance of mirror matter
that can account for dark matter in the universe. This asymmetry prevents mirror matter
from annihilating completely in the early universe, ensuring its survival. The interactions
between the mirror and visible sectors are primarily mediated through gravity, making
mirror matter difficult to detect directly. Nevertheless, it can still influence cosmological
processes, such as the formation of large-scale structures and the evolution of the universe
(PETRAKI; VOLKAS, 2013).

If the mirror modelling for the DM is considered, the description of this kind of matter
must be exactly equal to that used for the NM. In this context, in an ideal scenario for
treatment of a system with DM, one must use the same Lagrangian used for the baryonic

sector. This could be unachievable given that there is no sufficient observational data to
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constraint every mirrored constant present in the dark sector. The mirrored Lagrangian is

then customarily approximated, that meaning that some terms present in the Lagrangian
are neglected, a handling that has been extensively done recently (DAS et al., 2022; THAKUR
et al., 2024).

Regarding the interaction between sectors, one possible procedure is to take the inter-
action as purely gravitational. Being so, there is no Lagrangian cross term that relates
or link both sectors. The linking happens only in the gravitational field, that modifies
the TOV equations. Previously, the gravitational field for the normal matter was written
as a set of equations for a single fluid as in (1.1). The inclusion of an additional type of
matter, that is, a new fluid, give rise to a set of two additional equations (CTARCELLUT;
SANDIN, 2011; XTIANG et al., 2014; ELLIS et al., 2018; THAKUR et al., 2024). In this approach,
each fluid satisfies conservation of energy-momentum separately, that is equivalent to have
P(r) = P,.(r) + Pou(r) and E(r) = &,..(1) + Epm(r), with r being the radial coordinate
from the center of the star. This consideration leads to the following differential TOV

equations to be solved,

AP (r) [£uia(r) + P (r)] [m(r) + 47 P(r)]

o r[r —2m(r)] | .
o) __[Eonlr) + P?fﬁ z]%?)r dmr?P(r)] (3.2)
dmcv;(r) — 4r?E, (1), (3.3)
dmz—jf(” 426, (), (3.4)

where m(r) = m,(r) + mpy(r) is the total mass contained in the sphere of radius 7. The
visible matter mass is m.,(r), and the dark matter mass is mpy(r). This set of coupled

equations can be obtained from the stationary condition of the star mass (XIANG et al.,
2014).

Technically, the procedure adopted to solve Eqgs. (3.1)-(3.4) is the following. First we
define the four initial conditions as m.(0) = mpy(0) = 0, P, (0) = P<,, and Ppy(0) =
PS., where P and PS,, are the central pressures related to visible and dark matter,
respectively, given by the equations of state presented in the previous sections. Then,
for each set of initial conditions we use the fourth order Runge-Kutta method in order
to obtain pressures and masses as functions of r. The radii R, and Ry, are defined as
being the quantities that lead to P, (R..)/PS, = 0 and Poy(Rpy)/PS, = 0, within a
certain tolerance. The radii R, and Ry, are used to determine M, = m,(R.,), and
Mpy = mpu(Rpy). Therefore, the total mass of the respective star is M = M., + Mpy,,

and its radius is R = R, if R, > Rpu, or R = Rpy if Rpy > R,.. This latter case
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identifies dark matter halo configurations for the star of mass M and radius R.

In order to satisfy this restriction, we proceed as follows. First one needs to construct
P¢, and &5, (despite not di-

rectly used as initial conditions, the energy densities have also to be furnished since their

all the inputs for the TOV equations, namely, P¢_, £¢

vis? vis?

relationships with the pressures are used to replace £’s by P’s in the TOV equations).

To obtain the visible pressure and energy density, one should now define the kind of
description used to construct the EoS. For the visible sector, the hadrons should obbey
the Fermi-Dirac statistic and so, it must depicted by a Fermionic model. The question
that remains is what kind of interaction should be taken into account? In a previous work,
Dutra et al. (2014) explored an extensive description of the hadronic interaction within
the RMF formalism. We used a similar, but simplified description for the Lagrangian,

that is pointed out in the next section.

If the mirror dark matter framework is used, DM consists of fermionic particles that
are counterparts to ordinary baryonic matter. Within the RMF formalism, modeling such
fermionic dark matter requires constructing a Lagrangian density that includes mass terms
for the dark fermions, ensuring they have well-defined masses analogous to their visible-
sector counterparts. Moreover, the DM Lagrangian density must incorporate interactions
mediated by dark analogues of mesons—mirror mesons such as the dark scalar, vector,
and isovector meson fields. These interactions are characterized by coupling parameters
that determine the strength of the coupling between dark fermions and dark meson fields.
Including these coupling constants is essential, as they dictate the dynamics of the dark
matter particles within the RMF framework, influencing properties like the equation of
state, particle interactions, and ultimately the macroscopic behavior of dark matter in
astrophysical systems. However, the lack of observational constraints, leaves the choice
for the couplings parameters relatively free. Such constants are very often constrained by

astrophysical observational data.

This substantial flexibility in the choice of parameters could lead to difficulties in the
choice of an adequate range to reproduced observational data. To tackle this problem,
several strategies have been applied, the most prominent one being those that uses large
computational analyses. In its paper, Das et al. (2022) proposed an sophisticated tech-
nique to constraint and find the best choices for the dark counterpart of the coupling
constant relative to the scalar and vector mesons. They used a Bayesian analysis, in
which the prior was adequately chosen and the likelihood function was taken considering
the observational constraints of gravitational waves and X-ray telescopes. Another study
using a computational analysis was done by Thakur et al. (2024), who used a sampling of
50.000 combinations of parameter that represents the bare dark mass, the vector meson
mass and coupling constant and the dark mass fraction composing the star. They chose a

initial range for the parameters and used the Kendall ranking correlation to find a distri-
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bution of the most probable values for each parameter. The model for the fermionic dark
matter used in this work is exactly the one brought by Thakur et al. (2024).

Another possible dark matter description is the one considering it as of composed by
bosonic WIMP particles. Bosonic WIMPs are bosonic dark matter particles candidates
that interacts via weak nuclear force and gravity. Prominent examples include scalar sin-
glet dark matter from Higgs portal models, where a spin-0 scalar particle interacts with the
Standard Model Higgs boson through a coupling term in the Lagrangian (ARCADI et al.,
2018; ATHRON et al., 2019). This interaction allows the scalar particle to interact weakly
with ordinary matter. Another example is vector dark matter like dark photons, which
are spin-1 particles associated with a hidden U(1) gauge symmetry. Dark photons kinet-
ically mix with Standard Model photons, enabling weak interactions with normal matter
(FABBRICHESI et al., 2021; CAPUTO et al., 2021). Additionally, Kaluza-Klein photons from
theories with universal extra dimensions act as massive spin-1 bosonic WIMPs. These
higher-dimensional photons interact with Standard Model particles through extensions of
electromagnetic interactions (FLACKE et al., 2017; KAKIZAKI et al., 2017).

There is a widely range of possibilities to treat the bosonic dark matter. Here, we use
one simple model. The bosonic matter is considered as a self-interacting asymmetric dark
matter (ADM), with only the repulsive self-interactions of ADM, the minimal interaction
of ADM to gravity, and the interaction of ADM with baryons taken into account. This
kind of model was first proposed by Nelson et al. (2019). This model was then used by
Rutherford et al. (2023) to determine the free parameters related to dark matter via a
Bayesian analysis. We use exact the same results found by the last, including the pressure

and energy density for dark matter therein.

With both dark matter depictions defined, the main objective of this chapter can be
achieved, namely, to include the short-range correlations in the visible sector aiming to

verify the effect of such phenomenology in neutron stars with dark matter content.

3.2 Hadronic and DM models

For the fermionic dark matter model, we begin with a Lagrangian density that includes
a kinetic term (the Dirac Lagrangian density) for a single fermionic component, alongside
a vector meson coupled to the Dirac spinor. The complete expression is (XIANG et al.,
2014; DAS et al., 2022; THAKUR et al., 2024)

_ 1 1
Lion = X [7(10" — gy V) —my ] x — ZFWF“ + im%/VMV“, (3.5)
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The dark fermion mass is denoted by m,, and my represents the mass of the dark vector

meson. In this model, we do not include the dark scalar meson in order to simplify the
model and avoid an additional free parameter to be fixed. This can be done once that
the main effect driving the increase in the final compact star mass comes from repulsive
interactions. Introducing a scalar particle would lead to attractive interactions, which

would diminish the net repulsion.

Similar to the approach used in relativistic hadronic models, which follow the same
mathematical formulation for the Lagrangian density, we apply the mean field approxi-
mation to calculate the energy density and pressure of the dark sector. These expressions

are given by
| L ovijz | Lo oo
0
I K 1 5,
Pepy = Q/o dk W + §Cv/?x7 (3.7)

with Cy = gv/my and py, = k3, /(37%). The Fermi momentum of the dark particle is
kpy. Fermionic self-interacting dark matter models coupled to hadronic matter were used
in the description of neutron stars with DM content, as the reader can find in Das et al.
(2022), for instance.

Regarding the bosonic dark matter, the model by Nelson et al. (2019) and Rutherford
et al. (2023) brings following Lagrangian density for the model

1 1
Loy = —V—g (D;J*D“a —mioto — §mi¢#¢u 1 WZW) (3.8)

where D,, = 0, +i9,¢,, g, is the interaction strength of the dark scalar complex field o
with the dark vector field ¢*, Z,, = 0,¢, — 0,¢,, and g is the determinant of the metric.
The masses of the dark scalar and dark vector fields are m, and m,, respectively. Usual
quantum field theory techniques, along with the mean field approximation, lead to the

following energy-momentum tensor
1
Ty =2D;,0"D,o — g (D;O'*DPO' + mga*a) +m2 (gbugbl, — iguygzﬁpqﬁp) , (3.9)
that is used to find the equations of state for the bosonic DM model given by

1
Eppm = MePs + §C§¢p§, (310)

1
PBDM — 503¢p3.7 (3.11)

with Cpy = go/my. The DM density p, relates to the zero component of the vector field
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¢0, and with the scalar field and its conjugate through ¢g = (g,/ mé) P, and p, = 2my,o*0o,

respectively.

For the visible sector, we used the model studied by Lourenco et al. (2022) to describe

the hadronic matter, that is, nucleons and mesons, with the Lagrangian reading

| ] _ 1
ﬁHAD = w(zfyMau - Mnuc)w + gawaw - gwwﬁyuwuzb - %7?7#/)“77? + 5(8“0(9“0 - m<2702)

A, B, 1 . 1 C 1=
- §03 - ZU4 - ZF# Fl + émiwuw“ + Z(gfjwuwuf - ZB“ By,

1 . L5,
+ 390G, wu Pul + S (3.12)

in which 1) is the nucleon field whereas o, w”, and pj, are the scalar, vector, and isovector-
vector fields representing, respectively, mesons o, w, and p. Furthermore, one has F),, =
Oyw, — Oyw, and EW = O0ypy — Oupy. The nucleon rest mass is My, and the meson
masses are m,, M, and m,. Here we consider the meson self-interactions, like the ones
whose strengths are given by the constants A, B, C', and the ones between the w and g,

regulated by the constant of.

From the Lagrangian (3.12), if one applies the mean field approximation it is possible to
obtain the field equations and then the energy-momentum tensor 7*”, in which &, = (7)

and P;.—(r,,y/3. One may find that the form of the density energy reads

m2o?  Ac®  Bo' miw? Cglwl  mipis Gp
bw=—0 5+~ 2 — ; 0 — ”2()+gwwop+5ppo<3)p3
1 — n
- 50439392%2)/?(2](3) + Efin + Eins (3.13)

and pressure for the visible matter

P m2o? Ao® Bo' miw? Cglug mipﬁ(g) N 104 2 2 2
vis — 9 3 4 2 A 9 2 3gwgp 0p0(3)
+ P + B (3.14)

As in the previous chapter, the inclusion of the short-range correlation is done by

modifying the single-nucleon momentum distributions, from the usual Fermi step functions
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to those encompassing the high-momentum tail (HMT) that read

Ay, 0<k<EkR"
npn(k) = (3.15)

(KE")" o p
Con i k' <k < ¢pnkp

with Ay, =1—=3C,,(1 —1/¢pn), Cp = Co[l — C1(1 —2y,)], C,, = Co[l + C1(1 — 2y,)],
bp = o[l —d1(1—2y,)] and ¢, = @[l + P1(1—2y,)]. The values Cy = 0.161, C, = —0.25,
¢o = 2.38, and ¢; = —0.56 are determined (CATL LI, 2015b; CAT; L1, 2016b; CAT; LI, 2016a).

That steers to the kinetic energy density and pressure

A,, [Fren C, . [rnkron kL
glff: = = / k*dk (k‘2 + M*2>1/2 + 7—17’/ Fp, dk (k2 + M*2)1/27
0

272 212 Sy k2
(3.16)
and
A n ka,n k4dk n d’p,nka,n k:4 dk;
e / — 70”2’ / —Fn (3.17)
67 0 (k2 4+ M*2) / 67 [ (k2 4+ M*2) /

Notice that here we are using the indices p, n for protons and neutrons, respectively.
The degeneracy factor is v = 2 and the proton fraction is defined as y, = p,/p, with
proton/neutron densities given by

k3

o Fpn
Pon = V05" (3.18)

The quantity kg, is the Fermi momenta associated with the nucleon (protons and neu-

trons).

3.3 Results

With the mathematical formalism defined, it is necessary to chose a parametrization
for the visible matter. We chose the the FSU2R model (TOLOS et al., 2017b; TOLOS et
al., 2017a; LOURENCO et al., 2022), since it considers some of the mesons self-interaction
terms, but it is not so complicated that it undermines the study after the inclusion of the

short-range correlations.

The value of the coupling parameters for the visible matter are the same as those
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used by Lourenco et al. (2022), and are shown in table 3.1. We also used C' = 0.004,
Mpue = 939 MeV, m, = 497.479 MeV, m,, = 782.5 MeV, and m, = 763 MeV for both

versions, with and without short-range correlations. The values of the coupling constants

presented in Table I were found by authors by imposing the same bulk parameters for
both approaches (model with and without SRC), namely, py = 0.15 fm™3, By = —16.0
MeV (binding energy), m* = My/Mpue = 0.593 (M;: effective nucleon mass at p = py),
Ky = 237.7 MeV (incompressibility at p = pg), J = 30.7 MeV (symmetry energy at

p = po)-

TABLE 3.1 — Coupling constants of the FSU2R parametrization with and without SRC included.

Coupling FSU2R FSU2R-SRC
Jo 10.3718 10.5174
G 13.5054 12.3648
9p 14.3675 15.5988

A/My,e — 1.8365 2.9133
B -3.2403  -32.4432
ol 0.0900 0.0093

We start the study by taking the dark matter as composed of fermions. So, the dark
sector energy density and pressure are those described in (3.6) and (3.7). There is two
free constants to be fixed Cy and m,. To fix these constants we use the results found
by Thakur et al. (2024) . After the analysis for multiple EoS, the authors constrained
the values for each of those parameters for a select group of four different EoS. We chose
Cy = 3.25 fm and m, = 1950 MeV that are close to the central values for the distributions
of the selected EoS. Furthermore, one must chose the parameter set for the bosonic model.
For this model we must set two parameters, m, and Cy,4, to be able to completely define
equations (3.10) and (3.11). We use the exact same parameters as those chosen as best
scenario parameters by Rutherford et al. (2023): m, = 15 GeV and the C,;, = 0.1 MeV 1.

The third quantity of interest to be obtained is the relative mass fraction Fp,y =
My /M. The objective is to compare how different dark mass fractions changes the star
in presence of SRC. To construct the mass-radius diagram, one must firstly solve the two

fluid TOV equation (3.4) using the total energy density and pressure of the system

s 1 [VHT™E )1/2

4 1 \ HE—mE, K4
pvis - Pvis + Me + YD) ' dk NN (320)
1272 372 J, (k2 + m2)1/2
m

in which the first term is the energy density and pressure from the set of equations

(3.13) and (3.14). Additionally, in the astrophysical context, more specifically, the de-
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scription of neutron stars, one should consider stellar matter under charge neutrality and

[-equilibrium, i.e., a system in which the weak process and its inverse reaction, namely,
n — p+e + v, and p+e- — n+v,, occur simultaneously. Besides massless electrons, we
also consider muons, which appear when the electron chemical potential p,. exceeds the
muon mass (m, = 105.7 MeV). In this case, the following conditions hold: p, — p. = p,
and ft, — fp = fte, With 1, = . pe is the electron density with . and p. related to each
other through p. = p2/(372). The muon density is

o= | (2 = m2)™"] /372,

Once the chemical potential is related to the appearing of electrons and muons, if is
worth to mentioning explicitly its mathematical form for the case in which short range
correlations are included in the visible sector of the system. Its expression for protons

and neutrons is

Oe 9p -
,up,n = a = AP nlLLkm + /’Lkm(SRC) _'_ gwwo :i: Epp0(3)7 (321)
Pp.n
with
n w_ (Bpakbpn + M)
Mf{n(SRC) = 3Cp7" /’L;ll(’l’n - =
Ppn

4C, .k 1 Z’”k%p" ( b k%p” + M*2)1/2 2 Pp.n
+4Cp nkpy 0 ey (k% M) T2
DN pn

and p = (k,,, + M?)'/2. The quantity 7,, reads
2 12 2\ /2 2 72 2\ /?
¢o¢>1 ( ke, . T M* ) _ ¢0¢1 < o M* )
Fpnkry . ket Onok, e
+ CoC / dk e Gy / dk e
L k2 (k2 + M*2) kr k2 (k2 + M*2)
1 Chn ko m
~3 [0001 (1 - ) + gop1— } / dh (k? + M2)"* 2
¢p,n pn 0
1 n an,p
+3 {0001 (1 - ¢—) + dohy 02 4’] / dk (K + M*2)'? 2 (3.23)
n,p n,p 0

Now one must define the energy density for the DM. In both cases, bosonic and

fermionic DM, it is not completely defined since (3.6) and (3.7) depend on p,, which is
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not known. To determine p,, we impose that the DM energy density is a fraction of the

visible one: €py = fe,,. By varying the values of f and calculating the TOV, we select
stars that have a particular mass fraction. In this work, the stars selected are those with
a mass fraction between 1% and 8%. This limit is inside the range found by Ciancarella
et al. (2021) and by the sampling of Thakur et al. (2024).

To graphycally depict the influence of both, dark matter and SRC in the mass radius
digram, we adtopted the folloing approach: for each type of dark matter model we take
three different mass fractions. We use those mass fractions to construct four mass-radius
diagrams, two for the fermionic dark matter model and two for the bosonic (one with and

one without short-range correlations).

As stated, the Figs. 3.1 and 3.2 are direct consequences of the solving of the two fluid
TOV equations. In each graph, we take the FDM as equal to 2%, 5% and 8% in addition
to the case without DM. The influence of DM is indirectly manifested through its effects
on the behavior of the visible matter, which allows us to infer its presence and impact by

analyzing the observable properties of the star.

One may realize that the inclusion of DM decreases the maximum mass of the system.
This is a result previouly found by other authors and are in agreemente with recent
discussions (THAKUR et al., 2024; DAS et al., 2022; BHAT; PAUL, 2020; DAS et al., 2018).

Taking now the inclusion of SRC, we see that such a phenomenon produces more
massive stars. That is also in accordance with recent works that discuss the consequence
of SRC in RMF models (CATL LI, 2016¢; Souza et al., 2020; LOURENCO et al., 2022). One
should remark that the influence of SRC is dependent of the model. In the previous section
of this work, for example, the presence of SRC leads to less massive stars. Notice also that
the inclusion of SRC helps balancing the decreasing of the neutron star mass caused by
DM. This effect becomes more evident when we analyze the results for the fermionic DM
model. In the absence of SRC, only the curve without DM falls inside the constraint set
by Fonseca et al. (2021b). By including SRC, however, an additional curve—specifically,
the one with a DM mass fraction of 2% —also fits into this constraint region. For this
particular curve, the inclusion of SRC increases the maximum mass from M = 1.996 M,
to M = 2.055 M, which represents a difference of approximately 3%. A similar effect is

observed when considering bosonic DM, as demonstrated in the Fig. 3.2.

A comparison between fermionic and bosonic DM models incorporating SRC reveals
that the increase in maximum mass induced by SRC is slightly more pronounced in the
fermionic DM scenario. Despite this minor variation, the overall behavior of the MR
diagram for visible matter remains largely unaffected by the type of DM present. However,
this conclusion may not hold when considering the spatial distribution of DM within the

star, as distinct patterns can emerge. In particular, bosonic DM models are more likely
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FIGURE 3.1 — Mass-radius diagrams constructed from the FSU2R model with different values of Fpys
considering the fermionic DM, for (a) - the case without SRC and (b) - the case with SRC. The contours
are related to data from the NICER mission, namely, PSR J0030+0451 (RILEY et al., 2019; MILLER et
al., 2019) and PSR J0740+6620 (RILEY et al., 2021; MILLER et al., 2021), the GW170817 (ABBOTT et al.,
2017; ABBOTT et al., 2018) and the GW190425 events (ABBOTT et al., 2020), all of them at 90% credible
level. The red horizontal lines are also related to the PSR J0740+6620 pulsar (FONSECA et al., 2021a).

to lead to the formation of dark matter halos, which could significantly alter the internal
structure and the physical properties of neutron stars (MARZOLA et al., 2024; KARKEVANDI
et al., 2022).

In summary, the impact of dark matter on the mass-radius relationship of neutron
stars was systematically explored by using both fermionic and bosonic DM models within

the framework of the FSU2R parametrization with and without the inclusion of short-
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FIGURE 3.2 — Mass-radius diagrams constructed from the FSU2R model with different values of F'DM
considering the bosonic dark matter, for (a) - the case without SRC and (b) - the case with SRC. The
contours are the same described in 3.1.

range correlations. The study shows that SRC increases the stiffness of the equation of
state, resulting in more massive stars. This effect partially counterbalances the softening
of the EoS introduced by the presence of DM, as observed in both fermionic and bosonic
scenarios. While the overall behavior of the MR diagram for visible matter remains
relatively unchanged when comparing the two types of DM, bosonic models are more
likely to produce distinct dark matter distribution patterns, including the formation of
dark matter halos. Such structures can significantly alter the internal properties of neutron

stars, offering new insights into the influence of DM on compact astrophysical objects.
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3.4 Final remarks

The results presented in this chapter demonstrate that the inclusion of dark matter
in relativistic mean-field models can alter the physical properties of neutron stars, such
as their mass and radius. Moreover, the inclusion of SRC leads to a notable increase in
the maximum mass of neutron stars, making it a crucial factor to consider when mod-
eling stellar configurations that must satisfy observational constraints. The comparison
between fermionic and bosonic DM models indicates that while the overall impact on the
MR diagram remains similar, bosonic models could be sensitive to variations in the DM

distribution, potentially leading to observable differences in structure formation.

In future studies, the detailed profiles of dark matter distribution within neutron stars
will be investigated in order to assess the potential formation of dark matter halos. This
analysis will include the study of the radial density profiles and their impact on the visible
matter, as well as the conditions under which halos are formed. These studies can enlarge
the understanding of how dark matter influences the internal structure and observable
properties of neutron stars, helping to refine the constraints on dark matter models and

the role played by this component in compact objects.
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4 Final Remarks and future prospects

This study demonstrates that incorporating dark matter (DM) and short-range corre-
lations (SRC) within relativistic mean-field (RMF) models significantly affects the physical
properties of neutron stars, including their mass and radius. Our results show that SRC
increase the stiffness of the equation of state (EoS), thereby enhancing the maximum mass
of neutron stars. The presence of DM, on the other hand, softens the EoS, reducing the
maximum mass achieved by the model. However, the overall mass-radius (MR) diagram
remains within the observational constraints provided by recent astrophysical data. When
comparing fermionic and bosonic DM models, we found that both exhibit similar trends
in the MR diagram.

Regarding the CCS-SRC model, its clear that SRC also helps maintaining the linear
relationship between the symmetry energy and its slope (Lg), as observed in various
theoretical models, while increasing Ly compared to models without SRC.Moreover, our
study reveals that SRC can reconcile the CCS-SRC model with the flow constraint at
high densities, further validating the model’s applicability to a broad range of densities
and pressures. For stellar configurations, the inclusion of SRC leads to a slight softening
of the EoS when compared to models without SRC, yet it still produces stars that comply
with observational constraints, including mass-radius profiles derived from the NICER
mission and gravitational wave events like GW170817 and GW190425. The effect of SRC
on the dimensionless tidal deformability, A4, was also investigated, showing a decrease
in A due to the reduction in neutron star radius, which is consistent with LIGO and Virgo

measurements.

These findings underscore the importance of including SRC when modeling the EoS
for neutron stars, as it helps to resolve inconsistencies related to causality and enhances
agreement with both terrestrial and astrophysical constraints. However, challenges re-
main, particularly in the isovector sector of the model. Low values of Ly and J remain
problematic for reconciling the model with all observed data simultaneously, suggesting

the need for further refinements in future work.

Looking ahead, future studies will construct the MR diagrams, already done for a
RMF description in the visible sector, for a case with the CCS-SRC model for normal
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matter. We will also analyze the detailed profiles of DM distribution within neutron stars
to explore the conditions under which dark matter halos could form. This will be done for
both DM descriptions and for the FSU2R-SRC and CCS-SRC models. By investigating
the radial dependence of the energy density and pressure using profiles and their impact
on visible matter, we aim to gain deeper insights into how the combined effect of DM and
SRC influences the structure of NS.

In future studies, we also intend to use a Bayesian analysis to help constrain the
parameter space for the fermionic DM model with SRC. By utilizing Bayesian inference
techniques, we aim to find the set of parameters that govern the interactions within the
dark sector. Besides, we strive to include a negative coupling constant for the w,w" meson

interaction.



BIBLIOGRAPHY 70

Bibliography

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T. D.; ACERNESE, F.; ACKLEY, K. et al.
Gw170817: Observation of gravitational waves from a binary neutron star inspiral.
Phys. Rev. Lett., American Physical Society, v. 119, p. 161101, Oct 2017. Available at:
https://link.aps.org/doi/10.1103 /PhysRevLett.119.161101.

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T. D.; ACERNESE, F.; ACKLEY et al.
Gw170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett.,
American Physical Society, v. 121, p. 161101, Oct 2018. Available at:
https://link.aps.org/doi/10.1103/PhysRevLett.121.161101.

ABBOTT, B. P.; ABBOTT, R.; ABBOTT, T. D.; ABRAHAM, S.; ACERNESE, F. et
al. Gw190425: Observation of a compact binary coalescence with total mass 3.4 m. The
Astrophysical Journal Letters, The American Astronomical Society, v. 892, n. 1, p. L3,
mar 2020. Available at: https://dx.doi.org/10.3847/2041-8213/ab75f5.

Abbott, B. P. et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory.
Reports on Progress in Physics, v. 72, n. 7, p. 076901, jul. 2009.

Abbott, B. P. et al. Gw170817: Measurements of neutron star radii and equation of
state. Phys. Rev. Lett., American Physical Society, v. 121, p. 161101, Oct 2018.
Available at: https://link.aps.org/doi/10.1103/PhysRevLett.121.161101.

ABRAMOWITZ, M.; STEGUN, 1. A. Handbook of mathematical functions with
formulas, graphs, and mathematical tables. [S.l.]: US Government printing office, 1964.

Accadia, T. et al. Virgo: a laser interferometer to detect gravitational waves. Journal of
Instrumentation, v. 7, n. 3, p. 3012, mar. 2012.

ADHIKARI, D.: ALBATAINEH, H.. ANDROIC, D.; ANIOL, K.: ARMSTRONG, D. S..
AVERETT, T. et al. Accurate determination of the neutron skin thickness of 2*Pb
through parity-violation in electron scattering. Phys. Rev. Lett., American Physical
Society, v. 126, p. 172502, Apr 2021. Available at:

https://link.aps.org/doi/10.1103 /PhysRevLett.126.172502.

ADHIKARI, D.; ALBATAINEH, H.; ANDROIC, D.; ANIOL, K. A.; ARMSTRONG,
D. S.: AVERETT, T.; GAYOSO, C. A.; BARCUS, S. K.; BELLINT, V.;
BEMINIWATTHA, R. S.; BENESCH, J. F.: BHATT, H.; PATHAK, D. B.;
BHETUWAL, D.; BLAIKIE, B.: BOYD, J.; CAMPAGNA, Q.; CAMSONNE, A
CATES, G. D.; CHEN, Y.; CLARKE, C.; CORNEJO, J. C.; DUSA, S. C.; DALTON,



BIBLIOGRAPHY 71

M. M.; DATTA, P.; DESHPANDE, A.; DUTTA, D.; FELDMAN, C.; FUCHEY, E.;
GAL, C.; GASKELL, D.; GAUTAM, T.; GERICKE, M.; GHOSH, C.; HALILOVIC, L,
HANSEN, J.-O.; HASSAN, O.; HAUENSTEIN, F.; HENRY, W.; HOROWITZ, C. J;
JANTZI, C.; JIAN, S.; JOHNSTON;, S.; JONES, D. C.; KAKKAR, S.;
KATUGAMPOLA, S.; KEPPEL, C.; KING, P. M.; KING, D. E.; KUMAR, K. S.;
KUTZ, T.; LASHLEY-COLTHIRST, N.; LEVERICK, G.; LIU, H.; LIYANAGE, N.;
MAMMEI, J.; MAMMEI, R.; MCCAUGHAN, M.; MCNULTY, D.; MEEKINS, D.;
METTS, C.; MICHAELS, R.; MIHOVILOVIC, M.; MONDAL, M. M.; NAPOLITANO,
J.; NARAYAN, A.; NIKOLAEV, D.; OWEN, V.; PALATCHI, C.; PAN, J.; PANDEY,
B.; PARK, S.; PASCHKE, K. D.; PETRUSKY, M.; PITT, M. L.; PREMATHILAKE,
S.; QUINN, B.; RADLOFF, R.; RAHMAN, S.; RASHAD, M. N. H.; RATHNAYAKE,
A.; REED, B. T.; REIMER, P. E.; RICHARDS, R.; RIORDAN, S.; ROBLIN, Y. R.;
SEEDS, S.; SHAHINYAN, A.; SOUDER, P.; THIEL, M.; TIAN, Y.; URCIUOLI, G. M.;
WERTZ, E. W.; WOJTSEKHOWSKI, B.; YALE, B.; YE, T.; YOON, A.; XIONG, W
ZEC, A.; ZHANG, W.; ZHANG, J.; ZHENG, X. Precision determination of the neutral
weak form factor of **Ca. Phys. Rev. Lett., American Physical Society, v. 129, p. 042501,
Jul 2022. Available at: https://link.aps.org/doi/10.1103/PhysRevLett.129.042501.

Anti¢, S.; Stone, J. R.; Miller, J. C.; Martinez, K. L.; Guichon, P. A. M.; Thomas, A. W.
Outer crust of a cold, nonaccreting neutron star within the quark-meson-coupling
model. , v. 102, n. 6, p. 065801, dez. 2020.

Antoniadis, J.; Freire, P. C. C.; Wex, N.; Tauris, T. M. et al. A Massive Pulsar in a
Compact Relativistic Binary. Science, v. 340, n. 6131, p. 448, abr. 2013.

ANTONIADIS, J.; FREIRE, P. C. C.; WEX, N.; TAURIS, T. M.; LYNCH, R. S.;
KERKWIJK, M. H. van; KRAMER, M.; BASSA, C.; DHILLON, V. S.; DRIEBE, T.;
HESSELS, J. W. T.; KASPI, V. M.; KONDRATIEV, V. I.; LANGER, N.; MARSH,
T. R.; MCLAUGHLIN, M. A.; PENNUCCI, T. T.; RANSOM, S. M.; STAIRS, I. H.;
LEEUWEN, J. van; VERBIEST, J. P. W.; WHELAN, D. G. A massive pulsar in a
compact relativistic binary. Science, v. 340, n. 6131, p. 1233232, 2013. Available at:
https://www.science.org/doi/abs/10.1126 /science.1233232.

ARCADI, G.; DUTRA, M.; GHOSH, P.; LINDNER, M.; MAMBRINI, Y.; PIERRE,
M.; PROFUMO, S.; QUEIROZ, F. S. The waning of the wimp? a review of models,
searches, and constraints. The European Physical Journal C, v. 78, n. 3, p. 203, 2018.
ISSN 1434-6052. Available at: https://doi.org/10.1140/epjc/s10052-018-5662-y.

ARFKEN, G. B.; WEBER, H. J.; HARRIS, F. E. Chapter 18 - more special functions.
In: ARFKEN, G. B.,; WEBER, H. J.; HARRIS, F. E. (Ed.). Mathematical Methods for
Physicists (Seventh Edition). Seventh edition. Boston: Academic Press, 2013. p.
871-933. ISBN 978-0-12-384654-9. Available at:
https://www.sciencedirect.com/science/article/pii/B9780123846549000189.

ARRINGTON, J.; FOMIN, N.; SCHMIDT, A. Progress in understanding short-range
structure in nuclei: An experimental perspective. Annual Review of Nuclear and
Particle Science, v. 72, n. 1, p. 307-337, 2022. Available at:

https://doi.org/10.1146 /annurev-nucl-102020-022253.

ATHRON;, P. et al. Global analyses of higgs portal singlet dark matter models using
gambit. European Physical Journal C, Springer, v. 79, n. 1, p. 38, 2019.



BIBLIOGRAPHY 72

Baldo, M.; Burgio, G. F. The nuclear symmetry energy. Progress in Particle and
Nuclear Physics, v. 91, p. 203-258, nov. 2016.

Baym, G.; Pethick, C.; Sutherland, P. The Ground State of Matter at High Densities:
Equation of State and Stellar Models. , v. 170, p. 299, dez. 1971.

BEINER, M.; FLOCARD, H.; Van Giai, N.; QUENTIN, P. Nuclear ground-state
properties and self-consistent calculations with the skyrme interaction: (i). spherical
description. Nuclear Physics A, v. 238, n. 1, p. 29-69, 1975. ISSN 0375-9474. Available
at: https://www.sciencedirect.com/science/article/pii/0375947475903383.

BETHE, H. Annu. Rev. Nucl. Sci. 1971.

BETHE, H. A.; WILSON, J. R. Revival of a stalled supernova shock by neutrino
heating. , v. 295, p. 14-23, ago. 1985.

BHAT, S. A.; PAUL, A. Effect of dark matter on neutron star properties within the
relativistic mean field framework. European Physical Journal C, v. 80, p. 544, 2020.

BINNINGTON, T.; POISSON, E. Relativistic theory of tidal love numbers. Phys. Rev.
D, American Physical Society, v. 80, p. 084018, Oct 2009. Available at:
https://link.aps.org/doi/10.1103 /PhysRevD.80.084018.

BUGAEV, K. A. The van der waals gas eos for the lorentz contracted rigid spheres.
Nuclear Physics A, v. 807, n. 3, p. 251-268, 2008. ISSN 0375-9474. Available at:
https://www.sciencedirect.com/science/article/pii/S0375947408005265.

BUGAEV, K. A.; IVANYTSKYT, A. I.; SAGUN, V. V.; GRINYUK, B. E;
SAVCHENKO, D. O.; ZINOVJEV, G. M.; NIKONOV, E. G.; BRAVINA, L. V;
ZABRODIN, E. E.; BLASCHKE, D. B.; TARANENKO, A. V.; TURKO, L. Hard-core
radius of nucleons within the induced surface tension approach. Universe, v. 5, n. 2,

2019. ISSN 2218-1997. Available at: https://www.mdpi.com/2218-1997/5/2/63.

BURROWS, A.; Hayes, J.; Fryxell, B. A. On the Nature of Core-Collapse Supernova
Explosions. , v. 450, p. 830, set. 1995.

CAI B.-J.; LI, B.-A. Isospin quartic term in the kinetic energy of neutron-rich nucleonic
matter. Phys. Rev. C, American Physical Society, v. 92, p. 011601, Jul 2015. Available
at: https://link.aps.org/doi/10.1103/PhysRevC.92.011601.

CAI B.-J.; LI, B.-A. Isospin quartic term in the kinetic energy of neutron-rich nucleonic
matter. Phys. Rev. C, American Physical Society, v. 92, p. 011601, Jul 2015. Available
at: https://link.aps.org/doi/10.1103/PhysRevC.92.011601.

CAI B.-J.; LI, B.-A. Nucleon effective E-mass in neutron-rich matter from the
Migdal-Luttinger jump. Phys. Lett. B, v. 757, p. 79-83, 2016.

CAI B.-J.; LI, B.-A. Symmetry energy of cold nucleonic matter within a relativistic
mean field model encapsulating effects of high-momentum nucleons induced by
short-range correlations. Phys. Rev. C, American Physical Society, v. 93, p. 014619, Jan
2016. Available at: https://link.aps.org/doi/10.1103 /PhysRevC.93.014619.



BIBLIOGRAPHY 73

CAI B.-J.; LI, B.-A. Symmetry energy of cold nucleonic matter within a relativistic
mean field model encapsulating effects of high-momentum nucleons induced by
short-range correlations. Phys. Rev. C, American Physical Society, v. 93, p. 014619, Jan
2016. Available at: https://link.aps.org/doi/10.1103/PhysRevC.93.014619.

CAI B.-J.; LI, B.-A. Equation of state of neutron-rich matter in d-dimensions. Annals
of Physics, v. 444, p. 169062, 2022. ISSN 0003-4916. Available at:
https://www.sciencedirect.com/science/article /pii/S000349162200183X.

CAMENZIND, M. Compact objects in astrophysics. [S.l.]: Springer, 2007.

CAPUTO, A.; ELOR, G.; HARDY, E. Dark photon limits: A handbook. Physical
Review D, American Physical Society, v. 104, n. 9, p. 095029, 2021.

Carlson, B. V.; Dutra, M.; Lourengo, O.; Margueron, J. Low-energy nuclear physics and
global neutron star properties. arXiv e-prints, p. arXiv:2209.03257, set. 2022.

Carnahan, N. F.; Starling, K. E. Equation of State for Nonattracting Rigid Spheres. ,
v. 51, n. 2, p. 635-636, jul. 1969.

CERDA-DURAN, P.; ELIAS-ROSA, N. Neutron stars formation and core collapse
supernovae. In: REZZOLLA, L.; PIZZOCHERO, P.; JONES, D. I.; REA, N,; NA, . V.
(Ed.). The Physics and Astrophysics of Neutron Stars. [S.l.]: Springer, 2018. v. 457.

CHAVANIS, P.-H. Self-gravitating bose-einstein condensates. In: . Quantum
Aspects of Black Holes. Cham: Springer International Publishing, 2015. p. 151-194.
ISBN 978-3-319-10852-0. Available at: https://doi.org/10.1007/978-3-319-10852-0_6.

CIANCARELLA, R.; PANNARALE, F.; ADDAZI, A.; MARCIANO, A. Neutron star
binaries as particle detectors for early dark energy and exotic gravitational waves.
Physics of the Dark Universe, v. 32, p. 100796, 2021.

CIARCELLUT, P.; SANDIN, F. Phys. lett. b. Physics Letters B, v. 695, p. 19, 2011.

CLAS Collaboration. Probing high-momentum protons and neutrons in neutron-rich
nuclei. , v. 560, n. 7720, p. 617-621, ago. 2018.

CLOWE, D.; BRADA¢, M.; GONZALEZ, A. H.; MARKEVITCH, M.; RANDALL,
S. W.; JONES, C.; ZARITSKY, D. A direct empirical proof of the existence of dark
matter®. The Astrophysical Journal, v. 648, n. 2, p. 109, aug 2006. Available at:
https://dx.doi.org/10.1086,/508162.

COLLE, C.; HEN, O.; COSYN, W.; KOROVER, I.; PIASETZKY, E.; RYCKEBUSCH,
J.; WEINSTEIN, L. B. Extracting the mass dependence and quantum numbers of
short-range correlated pairs from a(e, €' p) and a(e, ¢ pp) scattering. Phys. Rev. C,
American Physical Society, v. 92, p. 024604, Aug 2015. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.92.024604.

DAMOUR, T.; NAGAR, A. Effective one body description of tidal effects in inspiralling
compact binaries. Phys. Rev. D, American Physical Society, v. 81, p. 084016, Apr 2010.
Available at: https://link.aps.org/doi/10.1103/PhysRevD.81.084016.



BIBLIOGRAPHY 74

Danielewicz, P.; Lacey, R.; Lynch, W. G. Determination of the Equation of State of
Dense Matter. Science, v. 298, n. 5598, p. 1592-1596, nov. 2002.

DANIELEWICZ, P.; LACEY, R.; LYNCH, W. G. Determination of the equation of
state of dense matter. Science, v. 298, n. 5598, p. 1592-1596, 2002. Available at:
https://www.science.org/doi/abs/10.1126 /science.1078070.

DAS, A.; MALIK, T.; NAYAK, A. C. Dark matter admixed neutron star properties in
light of gravitational wave observations: A two fluid approach. Phys. Rev. D, American
Physical Society, v. 105, p. 123034, Jun 2022. Available at:
https://link.aps.org/doi/10.1103/PhysRevD.105.123034.

DAS, A.; MUKHOPADHYAY, B.; RAO, A. R. Effects of magnetic field and dark matter
on neutron star structure. Journal of Cosmology and Astroparticle Physics, v. 2018,
n. 5, p. 045, 2018.

DECHARGE, J.; GOGNY, D. Hartree-fock-bogolyubov calculations with the d1
effective interaction on spherical nuclei. Phys. Rev. C, American Physical Society, v. 21,
p. 1568-1593, Apr 1980. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.21.1568.

DEGENAAR, N.; SULEIMANOV, V. F. Testing the equation of state with
electromagnetic observations. In: REZZOLLA, L.; PIZZOCHERO, P.; JONES, D. L;
REA, N.; NA, I. V. (Ed.). The Physics and Astrophysics of Neutron Stars. [S.1]:
Springer, 2018. v. 457.

DELIYERGIYEV, M.; POPOLO, A. D.; TOLOS, L.; DELLIOU, M. L.; LEE, X.;
BURGIO, F. Dark compact objects: An extensive overview. Phys. Rev. D, American
Physical Society, v. 99, p. 063015, Mar 2019. Available at:
https://link.aps.org/doi/10.1103/PhysRevD.99.063015.

DRISCHLER, C.; FURNSTAHL, R. J.; MELENDEZ, J. A.; PHILLIPS, D. R. How well
do we know the neutron-matter equation of state at the densities inside neutron stars? a
bayesian approach with correlated uncertainties. Phys. Rev. Lett., American Physical
Society, v. 125, p. 202702, Nov 2020. Available at:

https://link.aps.org/doi/10.1103 /PhysRevLett.125.202702.

DUTRA, M.; cO, O. Louren; AVANCINI, S. S.; CARLSON, B. V.; DELFINO, A.;
MENEZES, D. P.; PROVIDENCIA, C.; TYPEL, S.; STONE, J. R. Relativistic
mean-field hadronic models under nuclear matter constraints. Phys. Rev. C, American
Physical Society, v. 90, p. 055203, Nov 2014. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.90.055203.

DUTRA, M.; cO, O. Louren; MARTINS, J. S. S.; DELFINO, A.; STONE, J. R,;
STEVENSON, P. D. Skyrme interaction and nuclear matter constraints. Phys. Rev. C,
American Physical Society, v. 85, p. 035201, Mar 2012. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.85.035201.

DUTRA, M.; LENZI, C. H.; LOURENcO, O. Dark particle mass effects on neutron star
properties from a short-range correlated hadronic model. Monthly Notices of the Royal
Astronomical Society, v. 517, n. 3, p. 4265-4274, 10 2022. ISSN 0035-8711. Available at:
https://doi.org/10.1093 /mnras/stac2986.



BIBLIOGRAPHY 75

DUTRA, M.; SANTOS, B. M.; LOUREN¢O, O. Constraints and correlations of nuclear
matter parameters from a density-dependent van der waals model. Journal of Physics
G: Nuclear and Particle Physics, IOP Publishing, v. 47, n. 3, p. 035101, jan 2020.
Available at: https://dx.doi.org/10.1088/1361-6471/ab5774.

ELLIS, J.; HUTSI, G.; KANNIKE, K.; MARZOLA, L.; RAIDAL, M.; VASKONEN, V.
Phys. rev. d. Physical Review D, v. 97, p. 123007, 2018.

FABBRICHESI, M.; GABRIELLL, E.; LANFRANCHI, G. The Dark Photon. [S.1]:
Springer, 2021. (SpringerBriefs in Physics).

FAN, X.-H.; YANG, Z.-X.; YIN, P.; CHEN, P.-H.; DONG, J.-M.; LI, Z.-P.; LTANG, H.
A local-density-approximation description of high-momentum tails in isospin asymmetric
nuclei. Physics Letters B, Elsevier, 2022.

FISCHER, T.; HUTHER, L.; LOHS, A.; MARTfNEZ—PINEDO, G. Early protoneutron
star deleptonization - consistent modeling of weak processes and equation of state.
Journal of Physics: Conference Series, [OP Publishing, v. 665, p. 012069, jan 2016.
Available at: https://doi.org/10.1088/1742-6596/665/1/012069.

FLACKE, T.; KIM, J. S.; PARK, S. C. Constraining universal extra dimensions at the
lhc and beyond. Journal of High Energy Physics, Springer, v. 2017, n. 5, p. 189, 2017.

FOGLIZZO, T. Explosion physics of core-collapse supernovae. In: Alsabti, A. W_;
Murdin, P. (Ed.). Handbook of Supernovae. [S.l.]: Springer, 2017.

FOMIN, N.; HIGINBOTHAM, D.; SARGSIAN, M.; SOLVIGNON, P. New results on
short-range correlations in nuclei. Annual Review of Nuclear and Particle Science,
v. 67, n. 1, p. 129-159, 2017. Available at:

https://doi.org/10.1146 /annurev-nucl-102115-044939.

FONSECA, E.; CROMARTIE, H. T.; PENNUCCI, T. T.; RAY, P. S. et al. Refined
mass and geometric measurements of the high-mass psr j0740+6620. The Astrophysical
Journal Letters, The American Astronomical Society, v. 915, n. 1, p. L12, jul 2021.
Available at: https://dx.doi.org/10.3847/2041-8213/ac03b8.

FONSECA, E. et al. Refined Mass and Geometric Measurements of the High-mass PSR
J07404-6620. Astrophys. J. Lett., v. 915, n. 1, p. 12, 2021.

GAMBHIR, Y.; RING, P.; THIMET, A. Relativistic mean field theory for finite nuclei.
Annals of Physics, Elsevier, v. 198, n. 1, p. 132-179, 1990.

GARG, U.; COLo, G. The compression-mode giant resonances and nuclear
incompressibility. Progress in Particle and Nuclear Physics, v. 101, p. 55-95, 2018.
ISSN 0146-6410. Available at:
https://www.sciencedirect.com/science/article/pii/S0146641018300322.

GOLDMAN, I.; NUSSINOV, S. Weakly interacting massive particles and neutron stars.
Phys. Rev. D, American Physical Society, v. 40, p. 3221-3230, Nov 1989. Available at:
https://link.aps.org/doi/10.1103/PhysRevD.40.3221.



BIBLIOGRAPHY 76

GONZALEZ-BOQUERA, C.; CENTELLES, M.; NAS, X. V.; RIOS, A. Higher-order
symmetry energy and neutron star core-crust transition with gogny forces. Phys. Rev.
C, American Physical Society, v. 96, p. 065806, Dec 2017. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.96.065806.

GONZALEZ-BOQUERA, C.; CENTELLES, M.; NAS, X. V.; ROUTRAY, T. R.
Core-crust transition in neutron stars with finite-range interactions: The dynamical
method. Phys. Rev. C, American Physical Society, v. 100, p. 015806, Jul 2019. Available
at: https://link.aps.org/doi/10.1103/PhysRevC.100.015806.

GRABER, V.; ANDERSSON, N.; HOGG, M. Neutron stars in the laboratory.
International Journal of Modern Physics D, World Scientific, v. 26, n. 08, p. 1730015,
2017.

GRALLA, S. E. On the ambiguity in relativistic tidal deformability. Classical and
Quantum Gravity, IOP Publishing, v. 35, n. 8, p. 085002, mar 2018. Available at:
https://dx.doi.org/10.1088/1361-6382/aab186.

GRIEST, K.; KAMIONKOWSKI, M. Unitarity limits on the mass and radius of
dark-matter particles. Phys. Rev. Lett., American Physical Society, v. 64, p. 615618,
Feb 1990. Available at: https://link.aps.org/doi/10.1103/PhysRevLett.64.615.

GUO, W.-M.; LI, B.-A.; YONG, G.-C. Imprints of high-momentum nucleons in nuclei
on hard photons from heavy-ion collisions near the fermi energy. Phys. Rev. C,
American Physical Society, v. 104, p. 034603, Sep 2021. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.104.034603.

GUO, W.-M.; LI, B.-A.; YONG, G.-C. Imprints of high-momentum nucleons in nuclei
on hard photons from heavy-ion collisions near the fermi energy. Phys. Rev. C,
American Physical Society, v. 104, p. 034603, Sep 2021. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.104.034603.

HANSEN, C. J.; KAWALER, S. D.; TRIMBLE, V. Stellar interiors: physical
principles, structure, and evolution. [S.l.]: Springer Science & Business Media, 2012.

HEN, O.; LI, B.-A.; GUO, W.-J.; WEINSTEIN, L. B.; PIASETZKY, E. Symmetry
energy of nucleonic matter with tensor correlations. Phys. Rev. C, American Physical
Society, v. 91, p. 025803, Feb 2015. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.91.025803.

HEN, O.; LI, B.-A.; GUO, W.-J.; WEINSTEIN, L. B.; PIASETZKY, E. Symmetry
energy of nucleonic matter with tensor correlations. Phys. Rev. C, American Physical
Society, v. 91, p. 025803, Feb 2015. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.91.025803.

HEN, O.; WEINSTEIN, L. B.; PIASETZKY, E.; MILLER, G. A.; SARGSIAN, M. M,;
SAGI, Y. Correlated fermions in nuclei and ultracold atomic gases. Phys. Rev. C,
American Physical Society, v. 92, p. 045205, Oct 2015. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.92.045205.

HEYDE, K. L. The nuclear shell model. In: The Nuclear Shell Model. [S.l.]: Springer,
1994. p. 58-154.



BIBLIOGRAPHY 77

HINDERER, T. Tidal love numbers of neutron stars. The Astrophysical Journal,
v. 677, n. 2, p. 1216, apr 2008. Available at: https://dx.doi.org/10.1086/533487.

Hong, B.; Ren, Z.; Mu, X.-L. Short-range correlation effects in neutron star’s radial and
non-radial oscillations. Chinese Physics C, v. 46, n. 6, p. 065104, jun. 2022.

Hu, B.; Jiang, W.; Miyagi, T.; Sun, Z.; Ekstrom, A.; Forssén, C.; Hagen, G.; Holt, J. D.;
Papenbrock, T.; Stroberg, S. R.; Vernon, I. Ab initio predictions link the neutron skin of
208Ph to nuclear forces. Nature Physics, v. 18, n. 10, p. 1196-1200, out. 2022.

HUANG, K. Statistical mechanics. [S.l.]: John Wiley & Sons, 2008.

JANKA, H.-T. Explosion mechanisms of core-collapse supernovae. Annual Review of
Nuclear and Particle Science, Annual Reviews, v. 62, p. 407-451, 2012.

JANKA, H.-T.; MULLER, E. Neutrino heating, convection, and the mechanism of
type-ii supernova explosions. Astronomy and Astrophysics, v. 306, p. 167, 1996.

KAKIZAKI, M.; MATSUMOTO, S.; SATO, R. Phenomenology of universal extra
dimensions with bulk masses and brane localized terms. Physical Review D, American
Physical Society, v. 95, n. 5, p. 055018, 2017.

KARKEVANDI, D. R.; SHAKERI, S.; SAGUN, V.; IVANYTSKYI, O. Constraining
dark matter equation of state in neutron stars with gravitational wave observations.
Physical Review D, v. 105, n. 2, p. 023001, 2022.

KIPPENHAHN, R.; WEIGERT, A.; WEISS, A. Stellar Structure and Evolution. [S.[.:
s.n.], 2013.

KUMAR, M.; KUMAR, S.; THAKUR, V.; KUMAR, R.; AGRAWAL, B. K.; DHIMAN,
S. K. Crex- and prex-ii-motivated relativistic interactions and their implications for the
bulk properties of nuclear matter and neutron stars. Phys. Rev. C, American Physical
Society, v. 107, p. 055801, May 2023. Available at:

https://link.aps.org/doi/10.1103 /PhysRevC.107.055801.

LALAZISSIS, G. A.; KONIG, J.; RING, P. New parametrization for the lagrangian
density of relativistic mean field theory. Phys. Rev. C, American Physical Society, v. 55,
p. 540-543, Jan 1997. Available at: https://link.aps.org/doi/10.1103/PhysRevC.55.540.

LATTIMER, J. M. Constraints on nuclear symmetry energy parameters. Particles, v. 6,
n. 1, p. 30-56, 2023. ISSN 2571-712X. Available at:
https://www.mdpi.com/2571-712X/6/1/3.

LI, B.-A.; CAI B.-J.; XIE, W.-J.; ZHANG, N.-B. Progress in constraining nuclear
symmetry energy using neutron star observables since gwl70817. Universe, v. 7, n. 6,
2021. ISSN 2218-1997. Available at: https://www.mdpi.com/2218-1997/7/6/182.

LI, B.-A.; CHEN, L.-W.; KO, C. M. Recent progress and new challenges in isospin
physics with heavy-ion reactions. Physics Reports, v. 464, n. 4, p. 113-281, 2008. ISSN
0370-1573. Available at:
https://www.sciencedirect.com/science/article/pii/S0370157308001269.



BIBLIOGRAPHY 78

LIGO-CALLTECH. Latest Update on Start of Next Observing Run (04). 2022.
Available at: https://www.ligo.caltech.edu/news/ligo20220617.

LINK, B.; EPSTEIN, R. I.; LATTIMER, J. M. Pulsar constraints on neutron star
structure and equation of state. Phys. Rev. Lett., American Physical Society, v. 83, p.
3362-3365, Oct 1999. Available at:
https://link.aps.org/doi/10.1103/PhysRevLett.83.3362.

Lopez, A.; Kelly, P.; Dauer, K.; Vitali, E. Fermionic superfluidity: from cold atoms to
neutron stars. European Journal of Physics, v. 43, n. 6, p. 065801, nov. 2022.

Lourenco, O.; DUTRA, M.; LENZI, C. H.; FLORES, C. V.; MENEZES, D. P.
Consistent relativistic mean-field models constrained by gw170817. Phys. Rev. C,
American Physical Society, v. 99, p. 045202, Apr 2019. Available at:
https://link.aps.org/doi/10.1103/PhysRev(.99.045202.

Lourencgo, O.; Dutra, M.; Lenzi, C. H.; Biswal, S. K.; Bhuyan, M.; Menezes, D. P.
Consistent Skyrme parametrizations constrained by GW170817. European Physical
Journal A, v. 56, n. 2, p. 32, fev. 2020.

LOURENCO, O.; DUTRA, M.; LENZI, C. H.; BHUYAN, M.; BISWAL, S. K ;
SANTOS, B. M. A density-dependent van der waals model under the gw170817
constraint. The Astrophysical Journal, The American Astronomical Society, v. 882,
n. 1, p. 67, sep 2019. Available at: https://dx.doi.org/10.3847/1538-4357 /ab3122.

LOURENCO, O.; FREDERICO, T.; DUTRA, M. Dark matter component in hadronic
models with short-range correlations. Phys. Rev. D, American Physical Society, v. 105,
p- 023008, Jan 2022. Available at:
https://link.aps.org/doi/10.1103/PhysRevD.105.023008.

LOURENCO, O.; LENZI, C. H.; FREDERICO, T.; DUTRA, M. Dark matter effects on
tidal deformabilities and moment of inertia in a hadronic model with short-range
correlations. Phys. Rev. D, American Physical Society, v. 106, p. 043010, Aug 2022.
Available at: https://link.aps.org/doi/10.1103 /PhysRevD.106.043010.

LOURENcO, O.; LENZI, C. H.; FREDERICO, T.; DUTRA, M. Dark matter effects on
tidal deformabilities and moment of inertia in a hadronic model with short-range
correlations. Phys. Rev. D, American Physical Society, v. 106, p. 043010, Aug 2022.
Available at: https://link.aps.org/doi/10.1103/PhysRevD.106.043010.

LOVELL, A. E.; MOHAN, A. T.; SPROUSE, T. M.; MUMPOWER, M. R. Nuclear
masses learned from a probabilistic neural network. Phys. Rev. C, American Physical
Society, v. 106, p. 014305, Jul 2022. Available at:

https://link.aps.org/doi/10.1103 /PhysRevC.106.014305.

LU, H.; REN, Z.; BAI, D. Impacts of nucleon-nucleon short-range correlations on
neutron stars. Nuclear Physics A, v. 1011, p. 122200, 2021. ISSN 0375-9474. Available
at: https://www.sciencedirect.com /science/article/pii/S0375947421000658.

MARZOLA, I.; RODRIGUES Everson H.; COELHO, A. F.; LOURENO, O. Strange
stars admixed with dark matter: equiparticle model in a two fluid approach. 2024.
Available at: https://arxiv.org/abs/2408.16583.



BIBLIOGRAPHY 79

MIAO, Z.; ZHU, Y.; LI, A.; HUANG, F. Dark matter admixed neutron star properties
in the light of x-ray pulse profile observations. The Astrophysical Journal, The
American Astronomical Society, v. 936, n. 1, p. 69, aug 2022. Available at:
https://dx.doi.org/10.3847/1538-4357 /ac8544.

MILLER, M. C.; LAMB, F. K.; DITTMANN, A. J.; BOGDANOV, S. et al. Psr
j00304-0451 mass and radius from nicer data and implications for the properties of
neutron star matter. The Astrophysical Journal Letters, The American Astronomical
Society, v. 887, n. 1, p. L24, dec 2019. Available at:
https://dx.doi.org/10.3847,/2041-8213 /ab50c5.

MILLER, M. C.; LAMB, F. K.; DITTMANN, A. J.; BOGDANOV, S. et al. The radius
of psr j0740+6620 from nicer and xmm-newton data. The Astrophysical Journal
Letters, The American Astronomical Society, v. 918, n. 2, p. L28, sep 2021. Available at:
https://dx.doi.org/10.3847/2041-8213/ac089b.

Miller, M. C. et al. PSR J0030+0451 Mass and Radius from NICER Data and
Implications for the Properties of Neutron Star Matter. , v. 887, n. 1, p. L24, dez. 2019.

Mondal, C.; Vinas, X.; Centelles, M.; De, J. N. Structure and composition of the inner
crust of neutron stars from Gogny interactions. , v. 102, n. 1, p. 015802, jul. 2020.

Natarajan, P.; WILLIAMS, L. L. R.; BRADA¢, M.; GRILLO, C.; GHOSH, A_;
SHARON, K.; WAGNER, J. Strong lensing by galaxy clusters. Space Science Reviews,
v. 220, n. 2, p. 19, 2024. Available at: https://doi.org/10.1007/s11214-024-01051-8.

NEGREIROS, R.; TOLOS, L.; CENTELLES, M.; RAMOS, A.; DEXHEIMER, V.
Cooling of small and massive hyperonic stars. The Astrophysical Journal, The
American Astronomical Society, v. 863, n. 1, p. 104, aug 2018. Available at:
https://dx.doi.org/10.3847/1538-4357 /aad049.

NELSON; A. E.; REDDY, S.; ZHOU, D. Dark halos around neutron stars and
gravitational waves. Journal of Cosmology and Astroparticle Physics, v. 2019, n. 07,
p. 012, jul 2019. Available at: https://dx.doi.org/10.1088/1475-7516/2019/07/012.

NEUFCOURT, L.; CAO, Y.; GIULIANI, S. A.; NAZAREWICZ, W.; OLSEN, E.;
TARASOV, O. B. Quantified limits of the nuclear landscape. Phys. Rev. C, American
Physical Society, v. 101, p. 044307, Apr 2020. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.101.044307.

Oertel, M.; Hempel, M.; Kldhn, T.; Typel, S. Equations of state for supernovae and
compact stars. Reviews of Modern Physics, v. 89, n. 1, p. 015007, jan. 2017.

OERTEL, M.; PROVIDENCIA, C.; GULMINELLL F.; RADUTA, A. R. Hyperons in
neutron star matter within relativistic mean-field models. Journal of Physics G:
Nuclear and Particle Physics, [OP Publishing, v. 42, n. 7, p. 075202, 2015.

OPPENHEIMER, J. R.; VOLKOFF, G. M. On massive neutron cores. Phys. Rev.,
American Physical Society, v. 55, p. 374-381, Feb 1939. Available at:
https://link.aps.org/doi/10.1103 /PhysRev.55.374.



BIBLIOGRAPHY 80

OPPENHEIMER, J. R.; VOLKOFF, G. M. On massive neutron cores. Phys. Rev.,
American Physical Society, v. 55, p. 374-381, Feb 1939. Available at:
https://link.aps.org/doi/10.1103/PhysRev.55.374.

PAGE, D.; LATTIMER, J. M.; PRAKASH, M.; STEINER, A. W. Neutrino Emission
from Cooper Pairs and Minimal Cooling of Neutron Stars. Astrophys. J., v. 707, p.
1131-1140, 2009.

PATSYUK, M.; HEN, O.; PIASETZKY, E. Exclusive studies on short range
correlations in nuclei. EPJ Web Conf., v. 204, p. 01016, 2019.

Pelicer, M. R.; Menezes, D. P.; Dutra, M.; Lourenco, O. Do short range correlations
inhibit the appearance of the nuclear pasta? arXiv e-prints, p. arXiv:2211.14002, nov.
2022.

PETRAKI, K.; VOLKAS, R. R. Review of asymmetric dark matter. International
Journal of Modern Physics A, v. 28, n. 19, p. 1330028, 2013. Available at:
https://doi.org/10.1142/50217751X13300287.

Piekarewicz, J. The Nuclear Physics of Neutron Stars. arXiv e-prints, p.
arXiv:2209.14877, set. 2022.

PIEKAREWICZ, J.; FATTOYEV, F. J. Impact of the neutron star crust on the tidal
polarizability. Phys. Rev. C, American Physical Society, v. 99, p. 045802, Apr 2019.
Available at: https://link.aps.org/doi/10.1103/PhysRevC.99.045802.

Planck Collaboration. Planck 2018 results - I. Overview and the cosmological legacy of
Planck. Astronomy & Astrophysics, v. 641, p. A1, 2020. Available at:
https://doi.org/10.1051/0004-6361/201833880.

POPOLO, A. D.; PACE, F.; DELLIOU, M. L. Constraints to dark matter from relaxed,
massive cluster abundances. Journal of Cosmology and Astroparticle Physics, v. 2018,
n. 2, p. 034, 2018.

POSTNIKOV, S.; PRAKASH, M.; LATTIMER, J. M. Tidal love numbers of neutron
and self-bound quark stars. Phys. Rev. D, American Physical Society, v. 82, p. 024016,
Jul 2010. Available at: https://link.aps.org/doi/10.1103/PhysRevD.82.024016.

POTEKHIN, A. Y.; De Luca, A.; Pons, J. A. Neutron Stars—Thermal Emitters. ,
v. 191, n. 1-4, p. 171-206, out. 2015.

RAMOS, A.; POLLS, A.; DICKHOFF, W. Single-particle properties and short-range
correlations in nuclear matter. Nuclear Physics A, Elsevier, v. 503, p. 1-52, 19809.

REED, B. T.; FATTOYEV, F. J.; HOROWITZ, C. J.; PIEKAREWICZ, J. Implications
of prex-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett., American
Physical Society, v. 126, p. 172503, Apr 2021. Available at:
https://link.aps.org/doi/10.1103/PhysRevLett.126.172503.

REINHARD, P. G. The relativistic mean-field description of nuclei and nuclear
dynamics. Reports on Progress in Physics, v. 52, n. 4, p. 439, apr 1989. Available at:
https://dx.doi.org/10.1088,/0034-4885/52/4,/002.



BIBLIOGRAPHY 81

REINHARD, P-G.; ROCA-MAZA, X.: NAZAREWICZ, W. Information content of the
parity-violating asymmetry in 2*Pb. Phys. Rev. Lett., American Physical Society,

v. 127, p. 232501, Nov 2021. Available at:

https://link.aps.org/doi/10.1103 /PhysRevLett.127.232501.

RILEY, T. E.; WATTS, A. L.; BOGDANOV, S.; RAY, P. S. et al. A nicer view of psr
j00304-0451: Millisecond pulsar parameter estimation. The Astrophysical Journal
Letters, The American Astronomical Society, v. 887, n. 1, p. L21, dec 2019. Available
at: https://dx.doi.org/10.3847,/2041-8213/ab481c.

RILEY, T. E.; WATTS, A. L.; RAY, P. S.; BOGDANOV, S. et al. A nicer view of the
massive pulsar psr j0740+6620 informed by radio timing and xmm-newton spectroscopy.
The Astrophysical Journal Letters, The American Astronomical Society, v. 918, n. 2,
p. L27, sep 2021. Available at: https://dx.doi.org/10.3847/2041-8213/ac0a8]1.

RING, P.; SCHUCK, P. The nuclear many-body problem. [S.l.]: Springer Science &
Business Media, 2004.

RODRIGUES, E. H.; DUTRA, M.; LOURENc¢O, O. Recent astrophysical observations
reproduced by a short-range correlated van der Waals-type model? Monthly Notices of
the Royal Astronomical Society, v. 523, n. 4, p. 4859-4868, 06 2023. ISSN 0035-8711.
Available at: https://doi.org/10.1093 /mnras/stad1783.

ROMANI, R. W.; KANDEL, D.; FILIPPENKO, A. V.; BRINK, T. G.; ZHENG, W. Psr
j09520607: The fastest and heaviest known galactic neutron star. The Astrophysical
Journal Letters, The American Astronomical Society, v. 934, n. 2, p. L17, jul 2022.
Available at: https://dx.doi.org/10.3847/2041-8213/ac8007.

ROSZKOWSKI, L.; SESSOLO, E. M.; TROJANOWSKI, S. Wimp dark matter
candidates and searches—current status and future prospects. Reports on Progress in
Physics, IOP Publishing, v. 81, n. 6, p. 066201, may 2018. Available at:
https://dx.doi.org/10.1088/1361-6633 /aab913.

Rubin, V. C.; Ford, W. K. Rotation of the Andromeda Nebula from a Spectroscopic
Survey of Emission Regions. , v. 159, p. 379, fev. 1970.

Riister, S. B.; Hempel, M.; Schaffner-Bielich, J. Outer crust of nonaccreting cold neutron
stars. , v. 73, n. 3, p. 035804, mar. 2006.

RUTHERFORD, N.; RAAIJMAKERS, G.; PRESCOD-WEINSTEIN, C.; WATTS, A.
Constraining bosonic asymmetric dark matter with neutron star mass-radius
measurements. Phys. Rev. D, American Physical Society, v. 107, p. 103051, May 2023.
Available at: https://link.aps.org/doi/10.1103/PhysRevD.107.103051.

Sagun, V. V.; Bugaev, K. A.; Ivanytskyi, A. I.; Yakimenko, I. P.; Nikonov, E. G.;
Taranenko, A. V.; Greiner, C.; Blaschke, D. B.; Zinovjev, G. M. Hadron resonance gas
model with induced surface tension. European Physical Journal A, v. 54, n. 6, p. 100,
jun. 2018.

SAIKAWA, K.; YANAGIDA, T. T. Stellar cooling anomalies and variant axion models.
Journal of Cosmology and Astroparticle Physics, v. 2020, n. 03, p. 007, mar 2020.
Available at: https://dx.doi.org/10.1088/1475-7516,/2020/03/007.



BIBLIOGRAPHY 82

SANTOS, B. M.; DUTRA, M.; cO, O. Louren; DELFINO, A. Correlations between bulk
parameters in relativistic and nonrelativistic hadronic mean-field models. Phys. Rev. C,
American Physical Society, v. 92, p. 015210, Jul 2015. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.92.015210.

Sauls, J. A. Superfluidity in the Interiors of Neutron Stars. arXiv e-prints, p.
arXiv:1906.09641, jun. 2019.

SCHUMANN, M. Direct detection of wimp dark matter: concepts and status. Journal
of Physics G: Nuclear and Particle Physics, IOP Publishing, v. 46, n. 10, p. 103003,
aug 2019. Available at: https://dx.doi.org/10.1088/1361-6471/ab2ea5.

SHEN, S.-H.; HU, J.-N.; LIANG, H.-Z.; MENG, J.; RING, P.; ZHANG, S.-Q.
Relativistic brueckner—hartree—fock theory for finite nuclei. Chinese Physics Letters,
IOP Publishing, v. 33, n. 10, p. 102103, oct 2016. Available at:
https://doi.org/10.1088,/0256-307x/33/10/102103.

Shlomo, S.; Kolomietz, V. M.; Colo, G. Deducing the nuclear-matter incompressibility
coefficient from data on isoscalar compression modes. European Physical Journal A,
v. 30, n. 1, p. 23-30, out. 2006.

SILVA, J.; LOUREN¢O, O.; DELFINO, A.; MARTINS, J. S.; DUTRA, M. Critical
behavior of mean-field hadronic models for warm nuclear matter. Physics Letters B,
v. 664, n. 4, p. 246-252, 2008. ISSN 0370-2693. Available at:
https://www.sciencedirect.com/science/article/pii/S0370269308006175.

SKYRME, T. The effective nuclear potential. Nuclear Physics, Elsevier, v. 9, n. 4, p.
615-634, 1958.

Souza, L. A.; Dutra, M.; Lenzi, C. H.; Lourenco, O. Effects of short-range nuclear
correlations on the deformability of neutron stars. , v. 101, n. 6, p. 065202, jun. 2020.

SOUZA, L. A.; DUTRA, M.; LENZI, C. H.; cO, O. Louren. Effects of short-range
nuclear correlations on the deformability of neutron stars. Phys. Rev. C, American
Physical Society, v. 101, p. 065202, Jun 2020. Available at:
https://link.aps.org/doi/10.1103 /PhysRevC.101.065202.

STONE, J. R.; STONE, N. J.; MOSZKOWSKI, S. A. Incompressibility in finite nuclei
and nuclear matter. Phys. Rev. C, American Physical Society, v. 89, p. 044316, Apr
2014. Available at: https://link.aps.org/doi/10.1103 /PhysRevC.89.044316.

THAKUR, P.; MALIK, T.; DAS, A.; JHA, T. K.; PROVIDENCIA, C. m. c. Exploring
robust correlations between fermionic dark matter model parameters and neutron star

properties: A two-fluid perspective. Phys. Rev. D, American Physical Society, v. 109, p.
043030, Feb 2024. Available at: https://link.aps.org/doi/10.1103/PhysRevD.109.043030.

TOLMAN, R. C. Static solutions of einstein’s field equations for spheres of fluid. Phys.
Rev., American Physical Society, v. 55, p. 364-373, Feb 1939. Available at:
https://link.aps.org/doi/10.1103 /PhysRev.55.364.



BIBLIOGRAPHY 83

TOLMAN, R. C. Static solutions of einstein’s field equations for spheres of fluid. Phys.
Rev., American Physical Society, v. 55, p. 364-373, Feb 1939. Available at:
https://link.aps.org/doi/10.1103/PhysRev.55.364.

TOLOS, L.; CENTELLES, M.; RAMOS, A. Equation of state for nucleonic and
hyperonic neutron stars with mass and radius constraints. Publications of the
Astronomical Society of Australia, v. 34, p. e065, 2017.

TOLOS, L.; CENTELLES, M.; RAMOS, A. The equation of state for the nucleonic and
hyperonic core of neutron stars. Publications of the Astronomical Society of Australia,
Cambridge University Press, v. 34, p. €065, 2017.

TONG, H.; WANG, C.; WANG, S. Nuclear matter and neutron stars from relativistic
brueckner—hartree—fock theory. The Astrophysical Journal, IOP Publishing, v. 930, n. 2,
p. 137, 2022.

TSANG, C.; TSANG, M.; DANIELEWICZ, P.; FATTOYEV, F.; LYNCH, W. Insights
on skyrme parameters from gwl170817. Physics Letters B, v. 796, p. 1-5, 2019. ISSN
0370-2693. Available at:
https://www.sciencedirect.com/science/article/pii/S0370269319304575.

VAUTHERIN, D.; BRINK, D. M. Hartree-fock calculations with skyrme’s interaction. i.
spherical nuclei. Phys. Rev. C, American Physical Society, v. 5, p. 626-647, Mar 1972.
Available at: https://link.aps.org/doi/10.1103/PhysRevC.5.626.

Vinas, X.; Gonzalez-Boquera, C.; Centelles, M.; Mondal, C.; Robledo, L. M. Unified
Equation of State for Neutron Stars Based on the Gogny Interaction. Symmetry, v. 13,
n. 9, p. 1613, set. 2021.

VOVCHENKO, V. Equations of state for real gases on the nuclear scale. Phys. Rev. C,
American Physical Society, v. 96, p. 015206, Jul 2017a. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.96.015206.

VOVCHENKO, V.; ANCHISHKIN, D. V.; GORENSTEIN, M. I. Particle number
fluctuations for the van der waals equation of state. Journal of Physics A:
Mathematical and Theoretical, [OP Publishing, v. 48, n. 30, p. 305001, jul 2015a.
Available at: https://dx.doi.org/10.1088/1751-8113/48/30,/305001.

VOVCHENKO, V.; ANCHISHKIN, D. V.; GORENSTEIN, M. I. Van der waals
equation of state with fermi statistics for nuclear matter. Phys. Rev. C, American
Physical Society, v. 91, p. 064314, Jun 2015b. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.91.064314.

Vovchenko, V.; Gorenstein, M. I.; Stoecker, H. Modeling baryonic interactions with the
Clausius-type equation of state. European Physical Journal A, v. 54, n. 2, p. 16, fev.
2018.

VOVCHENKO, V.; MOTORNENKO, A.; ALBA, P.; GORENSTEIN, M. [;
SATAROV, L. M.; STOECKER, H. Multicomponent van der waals equation of state:
Applications in nuclear and hadronic physics. Phys. Rev. C, American Physical Society,
v. 96, p. 045202, Oct 2017b. Available at:
https://link.aps.org/doi/10.1103/PhysRevC.96.045202.



BIBLIOGRAPHY 84

Walecka, J. D. A theory of highly condensed matter. Annals of Physics, v. 83, p.
491-529, jan. 1974.

XIANG, Q.-F.; JIANG, W.-Z.; ZHANG, D.-R.; YANG, R.-Y. Effects of fermionic dark
matter on properties of neutron stars. Phys. Rev. C, American Physical Society, v. 89, p.
025803, Feb 2014. Available at: https://link.aps.org/doi/10.1103/PhysRevC.89.025803.

Xu, J.; Chen, L.-W.; Li, B.-A.; Ma, H.-R. Nuclear Constraints on Properties of Neutron
Star Crusts. , v. 697, n. 2, p. 1549-1568, jun. 2009.

YOUNG, B.-L. A survey of dark matter and related topics in cosmology. Frontiers of
Physics, v. 12, n. 2, p. 121201, 2016. ISSN 2095-0470. Available at:
https://doi.org/10.1007 /s11467-016-0583-4.

ZHANG, J.: LIU, H-M.; LI, Z.: BURGIO, G. F.: SCHULZE, H. Nuclear liquid-gas
phase transition within a brueckner-hartree-fock approach. Chinese Physics C, 2022.
Available at: http://iopscience.iop.org/article/10.1088/1674-1137-

/ac82e2http:/ /iopscience.iop.org/article/10.1088/1674-1137 /ac82¢2.

ZHANG, Z.; CHEN, L.-W. Extended skyrme interactions for nuclear matter, finite
nuclei, and neutron stars. Phys. Rev. C, American Physical Society, v. 94, p. 064326,
Dec 2016. Available at: https://link.aps.org/doi/10.1103/PhysRevC.94.064326.

ZHANG, Z.; CHEN, L.-W. Bayesian Inference of the Symmetry Energy and the
Neutron Skin in **Ca and 2°*Pb from CREX and PREX-2. 2022.

ZUREK, K. M. Asymmetric dark matter: Theories, signatures, and constraints. Physics
Reports, v. 537, n. 3, p. 91-121, asymmetric Dark Matter: Theories, signatures, and
constraints, 2014. ISSN 0370-1573. Available at:
https://www.sciencedirect.com/science/article/pii/S0370157313004341.

ZWICKY, F. On the Masses of Nebulae and of Clusters of Nebulae. , v. 86, p. 217, out.
1937.



APPENDIX A. RELATIVISTIC MEAN FIELD MODELS 85

Appendix A - Relativistic mean field

models

The relativistic mean field model has its foundations in the model first proposed by
Walecka (1974). In the original form, the model was proposed based on the Quantum Field
Theory. It was composed of protons and neutrons interacting through the exchange of
two kinds of mesons, the scalar mesons ¢ and vectorial mesons wwith masses m, and m,,,
respectively. The exchange of the scalar mesons o would be responsible for the attractive
interaction. In contrast, the exchange of vectorial mesons would generate the repulsive

part of the interaction.

The model is constructed from a Lorentz invariant Lagrangian, which gives to it a
relativistic nature. Starting from the Lagrangian, after using a fields theory formalism,
one can obtain thermodynamics quantities such as pressure and energy density, and in
addition, characteristic quantities from the nuclear matter, such as saturation density and
binding energy. For the pure Walecka model, the final form of the potential is (Walecka,
1974)

V)= —9e& T 9 (A1)

A7 r AT 7

with g, and g, being choosen to fit nuclear matter observables quantities.

The model proposed by Walecka fails to reproduce some of the bulk parameter quan-
tities such as the incompressibility of the nuclear matter in the saturation density and
the effective nucleon mass. However, the model first proposed by Walecka has received
many adjustments through the years, with several terms being added to apply this kind of
description in different contexts. The modifications led the relativistic mean field models
(RMF) to reproduce successfully many modern experimental data, from finite nuclei to
nuclear matter in stellar environments. This fact has raised the RMF models to the most

used and powerful descriptions in nuclear theory.

In a general way, one could write the Lagrangian considering several mesonic fields.

Another possibility is to consider the mesonic field as sensitive to the medium, allowing
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one to write density-dependent models.

For a detailed description, one could check Dutra et al. (2014) and references wherein.
For practical purposes, we will consider a model with four mesonic fields, two vectorial

and two scalar fields. The Lagrangian represented by

L= Lo+ Lo+ Lo+ Ly+ Low, (A.2)
with
Lo = Py (i0" — gow " — g, " T) — (M — go0)]),
L, = —%mgﬁQ + %auaﬁ“a — ?03 - 504,
o= gl i~ Qo+ (A3)
Ly am G = i,
Lowp = +%g§ Puf " Av gl wuw

The two last terms in £, are sometimes also written as

A B M 3 4
U(U):—J3+—U4:ba (950) n (gga)‘

5 1 5 Co 1 (A4)

In the equation for £, we have C' = ¢, /g%. We also have that W = Oyw, — Oyw,, and
Puv = Oupy — O,p, being the strength tensors for the fields w and p. The mesons 1 stand
for the nucleon field, ¢ and w stand for the scalar and vectorial parts of the isoscalar
field, and at last, p stand for the vectorial isovector field. It is worth mentioning that the
Lagrangian L,,, concentrate the terms related to the interaction between the nucleons
and the mesons. The lagrangians written as £; , with j = o,w, p bring the free and
self-interacting terms of the mesons. The lagrangian with more than one greek subscript

brings the terms due to crossed interactions between the meson fields.

Once composed the Lagrangian with the desired mesonic fields, one could write down
the field equations by using the Euler-Lagrange equations (EL). However, that can not
be immediately done. If one just uses the EL equations, the fields will be treated fully
as quantum fields, which means considering the quantum fluctuations and the particle
correlations. These effects will, many times, complicate considerably or even make im-
possible to calculate interesting quantities for nuclear physics in many nucleon systems.

Therefore, the first required artifice is the mean-field approximation (MFA).

Within the mean-field approximation, all the quantum fluctuations disappear, since
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it only uses the mean value of the field. This approach provides another simplification,
since, in this approximation, the fields act on single nucleons independently (REINHARD,
1989).

The second approximation usually adopted in the RMF models is the no-sea approxi-
mation. In this case, the effects becoming from the Dirac sea are not taken into account.
This approximation restrains the summation of the state’s density to occupied particle
states only, freeing one from calculating the vacuum polarisation effects by ignoring the
antiparticle states. (REINHARD, 1989; GAMBHIR et al., 1990).

Then, taking into account those approximations, one could write

o= (o)y=0, w,— (W) = wo,

" —(3)

A5
pu — <p_/;> = Po > ( )

The superscript (3) represents the third isospin component and the subscript 0 is the

zeroth four-vector component.

From considerations (A.5), one can write the mean-field equations. One of the field
equations, specifically the one deduced from the Lagrangian L,,,,, will be equivalent to the
Dirac equation for a nucleon of effective mass M*. For our system, the effective mass will
be M* = M — g,7, being M the nucleon mass. Furthermore, the field equations provide

the relations needed to calculate the energy-momentum tensor 7,

oL
77;1/ = _g,uwc + Z m&/Qz (A6)

In the MFA, the mean value of the time component 7qg is the total energy density of
the system, so (7o) = €. Additionally, the total pressure is given by the mean value of
the spatial component of (7;/3) = P.

For the Lagrangian (A.2), the pressure and energy density are

" 1 _ . _(3),2 1 _ 1 _ 1 _
P = Py, + Plfin ) [mioz - minQ - m?)(p(()g)) - gbo<gaa)3 - 100(90‘7)4 + ch(gww0)4
L, _ _
+ 5(9576")* Av (9.50)°

(A7)
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and
1 2 1 3 1
€ = €in+ A+ 5 [ M2+ 2T+ B) |+ Sba(9:7) + Jen(9:7) + Jeu(0.70)'
3. _ _
+ (9,80 ) Av (9.7%) -

2
(A.8)

With the terms eim being the kinetic part of the energy density and P,fm being the
analogous quantity for the pressure. Once obtained the energy and pressure, other quan-
tities such as the symmetry energy, the binding energy and the incompressibility can be
equally found. These quantities can be compared to experimental data to establish values

for the system parameters.

Expression (A.8) and (A.7) are a direct consequence of the Lagrangian construction.
The RMF models are very heterogenous and changes in the Lagrangian constituents can
change dramatically the form of the density energy and pressure. In this chapter, we have
chosen the Lagrangian (A.2) due to the extensive analysis already done with it. As an
example, one can cite the theoretical study about the symmetry energy done by (CAIL LI,
2016¢). Another imperative work is the one by (Souza et al., 2020) in which the model was
also applied to the neutron stellar environment, reproducing satisfactorily several physical
quantities. Both works have been used the described RMF model with the inclusion of
SRC.
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Appendix B - Short-range correlation

foundations

The short-range correlation will promote the apparition of a high momentum tail in
the fermions system. In this tail, the fermions will have momentum above the Fermi one.
Thence, the particle distribution will change. The modified fermi distribution nj has
been extensively discussed in the past few years in the literature (CAT; LI, 2015a; HEN et
al., 2015b; CAL LI, 2016a)

nl(p,y) = Ay + B I(|k/kL]), 0< k| < ki (B.1)
Cy (kz/[k[)*, ki < k| < ¢ski,
Inside the interval 0 < k < oo, it is expected to find all the nucleons. So, if one uses this

normalization condition, one will found that

e/ ni.(p,y)k*dk = el Ay + B, I(k/kD)] K2dk + . (kL k) K2 dk| = p,.
F
(B.2)
Using that the density is p; = (k£)*/37? and will result
1 kr $ak J\3
N Ly e
(77-)2 0 L 372
k] ' (B.3)
- —1
B+ o / L I(k/ k)] Kdk +3C; (¢=’ ) 1
(kF) 0 (0%}

The last term in (B.5) is the function that gives the fraction of nucleons with momen-

tum higher than the Fermi one and is described by

Pk _
XHMT = & /kJ (kb /k)* K2dk = 30, (%J 1) . (B.4)

The parameter 3; measures how intensively the depletion depends upon the momentum
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near the Fermi surface. This factor promotes a very small alteration in the energy per

nucleon and it can be taken as zero.

Now only two terms remain in (B.5). Isolating the A; one will find the depletion as

Ay=1-3C, (¢J_1>. (B.5)
oy

Now considering that investigations using the Bruenecker-Hartree-Fock have found
that the energy must be linear with 6 = 1 — 2y, so the four parameters are expanded as
L7 = Lj(1+ LJs). Considering the kinetic energy and the fact the linear part of it with
0 must vanish, the relation A" = —AP, C,, = C},, and ¢; = ¢y. This information, linked

to the generic form of the expansion L7 = LJ(1 + LJ§) results for the cut-off parameters

bn = ¢o(1 + ¢1(1 — 2y)),

(B.6)
Gp = ¢0(1 - ¢1(1 - 2y)),

and for the amplitude

C, = Co(1+ C1(1 — 2y)), B.7)
Cp, = Cp(1 —Ci(1 —2y)).

The short-range correlation will also change the thermodynamic quantities of the sys-
tem. In a free Fermi gas, pressure and energy density are calculated through an integration
of the particle’s momentum. If one is treating a system without the inclusion of SRC,
the integral will be from the lower possible momentum, zero, to maximum one, kf.. But,
as argued, now a fraction of the gas particles are in a correlated state with momentum

higher than the Fermi momentum, kf¢;.

In a general way, the modification induced by the SRC is of the form

J

k. kids
/ nyFFO rak — / M) £k (B.8)
0 0

TFFG) ig the step function that defines the distribution of the

is the distribution with the inclusion of SRC.

where f is any quantity, n;,

J(HMT
free Fermi gas, and nk )i

Directly, for a model such as the one described by (A.2), the kinetic part of the pressure

becomes:

’VAJ / LG / Y e R (B.9)
k:m \/w 672 K k4\/m .
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and the kinetic part of the energy density:

A ki bk} k)4
el =127 / di KV 1R+ 1 ak 5 e (B.10)
0

27T2 2772 kf kZ

Additionally, the scalar density will also change in the exact same way that happens
for (B.10) and (B.9). The modification in those quantities has a powerful effect on many
characteristics of the system and even changes some structural properties of the NS, if

one is considering this medium.

The seminal work by Pelicer et al. (2022), using the RMF IUFSU model has investi-
gated the effects of the SRC in nuclear pasta. The authors were able to conclude, in this
scope, that if one considers the SRC, the presence of nuclear pasta becomes highly related
to the temperature. For a small change in temperature, no pasta phase will be found in

the inner crust, whereas for a model without SRC pasta certainly exists in that region.

In addition, SRC also could affect the NS oscillations. Hong et al. (2022) have demon-
strated that the inclusion of the SRC in the RMF theory using coupling parameters given
by SU(3) group changes the frequency of both oscillations: radial and non-radial. For the
non-radial oscillation, the f-mode frequency decreases with the inclusion of SRC' by a
factor of 7.35% ~ 11.57%. At this point, is worth mentioning that the f-mode is the main
information source about non-radial oscillations of the NS received by the ground-based
interferometers. For the radial oscillations, the authors have found a reduction in the fre-
quency of approximately 22% for low massive NS (1.4M). Due to this huge alteration,
the authors argue that the future Einstein Telescope and Cosmic Explorer detectors could
directly test the SRC in NS.
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Appendix C - High orders short-range

correlations

High powers in short-range-correlation

The preeminence of the SRC has also led to studies of how modifications in the func-
tional form of this phenomenon alter its effects. As argued by many papers in the first
years following the observation of the SRC, the function that describes the HMT is usually
of quartic form (HEN et al., 2015b; CAT; L1, 2015a). However, the restriction over the form
of the tail is very unfettered, as long as the number of observed high momentum nucleons
stays next to the observed 20 to 25% of the total of nucleons (HEN et al., 2015¢; COLLE et
al., 2015).

In fact, a notable work by Guo et al. (2021a) has investigated the effects that the
different shapes of SRC will promote in the production of hard photons. The authors
have studied three different shapes for the SRC HMT: k*, k® and £°. The analysis done
by the authors was concentrated in the hard photons emissions due to the reactions
UN +12C and *8Ca+'24Se at beam energies around the Fermi energy. From the reactions,
they analyzed the yields, angular distribution and energy spectra of the hard photons,

leading them to important conclusions.

The first is related to the yields, which increase equally for all different powers of k in
(B.2). The second is that the shape of the HMT does not affect the angular distribution
of the produced hard photons. In this way, if one looks only at the yields of production

or at the angular distribution, the shape seems not to be relevant.

The two first conclusions make the third one the most meaningful. The authors have
calculated the effects of the HMT shape in the hard photons spectra, finding that this
effect is considerable and should not be ignored. The effects are greater as greater are the
energy of the photons (GUO et al., 2021a).

Therefore, if one considers an NS environment, it is reasonable to consider that the

shape of the HMT could promote relevant changes in the macrophysics of the NS. More
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than that, some observables from NS could help to test the influence of the HMT, even if
its microphysics is unknown. Motivated by that, we have calculated in the context of the
RMF model, the pressure and energy density of HMT for shapes k%, k° and for a generic
shape k™, all of that using the model (A.2).

From references where the quartic form of the HMT was studied (CAT; LI, 2015a; Souza
et al., 2020) one may notice that the change in the pressure and density energy happens
only in the kinetic part of (A.7) and (A.8). Its calculations are straightforward, being
necessary only to change the power of the last term to the shape of interest. The puzzling
part is to calculate the coefficients of cut-off, amplitude and depletion. These coefficients
C,, ¢, and A,, depends upon the constants Cy, Ci, ¢g and ¢;. All these constants
are determined using the normalization condition and the expression for the fraction of
nucleons in the HMT, both clearly change with the shape. Considering this, we have
calculated the modified constants Cy, C1, ¢y and ¢;. inasmuch as the cases k% and k° are

specific forms for the most general £™, we will do only this one.

The function that gives the nucleons fraction in HMT, for distribution of the kind

Ay + B I(k/KL), 0< |k| < ki
ni(p,y)z 7+ B I([k/kxg]) k| F (C.1)
Cy (kp/[k))™, ke < k| < ¢ ki

18

HMT 3 ¢Jk£‘ J 2
it = o [ ke ke

(k5)® Jiy (©2)
_ G (=45
(m—3)

what is the same as

XHMT 1/(m=3)
¢>J=<1— o (m—S)) :

3C, (C.3)

From the above equation, one may notice that the C; and ¢; are related by the fraction
XFMT 1 one considers the symmetric nuclear matter, equations (B.7) show that C,, =
C, = Cp. Furthermore, the cutoff parameter ¢, is defined as ¢y = 2.38(CAIL LI, 2015a;
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GUO et al., 2021a). So

O
—(1- —3
o= (1= 580 - 3))

(C.4)

\HMT
31=ay )

where the fraction x24T = 0.28 (HEN et al., 2015b; COLLE et al., 2015; HEN et al., 2015c¢).

So, for any power m chosen, the term ¢y is uniquely determined. To determine the

constant C; one may consider again equations (B.7) but now in the pure neutron matter

regime. That means y = 0, so CIVM = Cy(1+C4). But CENM ~ 0.12 (CAL LI, 2015a) so

PNM
Ch = C”C -1
0
0
Ch = BCfNM—HMT

XSNM (m - 3)

Another experimental constraint states that in pure neutron matter, only 1.5% of the
neutrons correlate between themselves in high momentum pairs, so Y2V = 0.015 (HEN
et al., 2015b). The expression for VM

PNM XENAT o=
— (1 XBNM (3
On ( 3¢, | )) (C.6)
At last, using the expression (B.6) and (C.6), ¢ is also determined
PNM

b = ¢¢— 1

0
= (1- ~3 1
o= 5 (1= X0 - 3))

In the table C.1, we have expressed the values for the calculated constants for the
shapes k%, kS and k°. The first line k*' brings values found using the calculation for a
generic m of this work, which gives back the values of (CAT; LI, 2015a) for m = 4. They
are disposed only to show consistency and for comparison purposes. The other two lines

show the original and unpublished results, coming from this work.
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TABLE C.1 — Constant values for different shapes

®1 Co Ch
kYT -0.561 0.160 -0.254
kS  -0.560 0.302 -0.603
E  -0.559 0.563 -0.786

With the calculated coefficients one can easily write the energy density and pressure
for any desired shaping power. We have calculated both quantities again for a generic

shape m.

Beginning with the energy density, the integral

pk? (k.J

A
€ = u dk EPVM*2 + k2 + — 1€y ! dk —f> VM2 + k2, (C.8)
kin M—

272 272 J o km—2
7

the next step was to evaluate this integral. Using concepts of mathematical physics
(ARFKEN et al., 2013; ABRAMOWITZ; STEGUN, 1964), one may recognize the second term

in C.8 as a hypergeometric function. So the integration results in

s Cylkp)*

1 m—4 m-—2 M*? 1 m—4 m-—2 M*?
X {2F1 <—— ; y — >—¢§m 2 F1 (— ; ;— >]

27 2 2 (ki)? 27 2 2 (kf)20%
A J *2 " *4 Ms
+ 32 [(kp) ( + M ,/ (k$)? + M*2 + M** log ( e (l{:}ﬁ))] )
(C.9)

Similarly, the pressure

pJ _’YAJ/ el /m% dk ()" (C.10)
P \/W 672 Jiy =4/ M~ + k2
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results in

s _ Cylkg)!
Mn 812 (m — 4)

1 m—4 m-—2 M*2 1l m—4 m-—2 M*2
F (= . . o 4—mF - . .
{ 1(2’ > e <k3£>2) i (2 > o (k%)%?)]

1

/{:J
4 F

2472

A kL (2(k1)? — 3M*? k)2 + M*2 4+ 3A; M** tanh ™!
J F( ( F) ) ( F) J (k’}];)Q—i-M*Z

(C.11)

In the denominator of (C.11) and (C.9) there is a (m — 4) term. Due to this fact, it
seems that there is a divergence if m = 4. However, in the limit of m — 4 the subtraction
of the hypergeometric functions also go to zero. So, applying the L’Hospital rule, the
result found is exactly the results present in the literature (CAIL LI, 2015a; GUO et al.,
2021a).

The generalizations in this section allow one to choose any convenient shape for m.
The generic expressions used to find the numerical values for the Cy , C', ¢g, and ¢; could

be used to construct the cut-off parameters, the amplitude, and depletion.

This versatility is required since the exact shape of the SRC HMT is not exactly known,
and the SRC effect have been recently under deep scrutiny. For example, experiments to
investigate the contribution of the SRC in several nuclei including light nuclei such as *He,
0Li, and ?C (ARRINGTON et al., 2022). The CLAS-12 collaboration aims to increase the
data collection rate (PATSYUK et al., 2019). In the Joint Institute for Nuclear Research in
Dubna, an innovative inverse kinematics experiment has begun the measurements, from

which sensitive information about knocked-out nucleons is expected to come.

Furthermore, the generalization done for the pressure and energy density never has
been done in the literature. So, the pioneering calculations open ways to apply these
quantities into the NS environments, testing in such medium every possible shape for the
SRC. Also, we expect to guide future works with more complex models or with different

effects included.

As future prospects, we expect to conclude the calculation of thermodynamics quan-
tities by finding the scalar density, chemical potential, and incompressibility. From that
point, we should be able to also find the symmetry energy, which is the last step before

starting the application of this formalism to the stellar matter.

)|
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L. RESUMO:

In this study, we investigate the impact of dark matter (DM) and short-range correlations (SRC) on the physical
properties of neutron stars (NS). In the second chapter we enhance a van der Waals-type model by incorporating
the effects of short-range correlations (SRC). The attractive and repulsive components of the nucleon-nucleon
interaction are treated as density-dependent functions. Specifically, we adopt the Carnahan—Starling (CS) ap-
proach for the repulsive term and employ a suitable expression for the attractive term to replicate the Clausius
(C) real gas model structure. The resulting model, referred to as the Clausius—Carnahan—Starling (CCS)-SRC
model, demonstrates its capability to reproduce the flow constraint at high-density regimes of symmetric nuclear
matter, with incompressibility values within the range of Ky = (240 4 20) MeV.

In the context of stellar matter, the CCS-SRC model shows good agreement with recent astrophysical observa-
tions, including mass-radius contours and dimensionless tidal deformability constraints obtained from gravita-
tional wave data associated with the GW170817 and GW190425 events, as well as observations from NASA’s
Neutron Star Interior Composition Explorer (NICER) mission. Furthermore, the slope of the symmetry energy
(Lp) predicted by this model aligns with recent results, consistent with those reported by the updated Lead
Radius Experiment (PREX-2) collaboration. Our findings indicate that higher values of Ly are preferred for
ensuring simultaneous compatibility with astrophysical data, while lower values of Ly fail to meet this criterion.
In the third chapter, we incorporate dark matter (DM) and SRC into the relativistic mean-field model FSU2R
using the fermionic and bosonic dark matter models. Both models include a repulsive vector interaction, which
is particularly crucial for the bosonic model, as it prevents the collapse of the star in the absence of degeneracy
pressure. We explore its effects on the mass-radius (MR) diagram. Our findings show that both fermionic and
bosonic DM models influence the MR diagram in a similar manner. The inclusion of SRC results in a notable
increase in the maximum mass of NS balancing the reduction yielded by the inclusion of DM. Our findings
suggest the existence of potentially stable configurations of neutron stars that are consistent with observations
from PSR J0030+4-0451, PSR J07404-6620 and NICER.
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